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Abstract.  The problem of classification has been studied by many authors, and different methods 
have been developed. In this paper a combination of rough sets and fuzzy logic for classification 
is adopted. Rough set theory helps in minimizing the number of attributes that influence the 
selection. Using this technique, a group of rules can be extracted. When information is diffuse 
and the number of obtained values for each attribute is large, so is the number of rules. Even 
worst is hidden information in the data that makes the process complicated. Due to this fact, an 
interval of values is defined for each attribute, moving from the minimum to the maximum 
obtained values in the database. This is what is defined as interval-valued information systems. 
For discriminating between solutions that may give more than one possible object due to their 
similarity, a fuzzy logic discrimination is proposed, which is simple, and gives accuracy not less 
than other methods. 
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1  Introduction 
When analyzing an information system 
or a database, frequently we have found 
problems like attributes redundancy, 
missing or diffuse values, which are due 
in general to noise and missing partial 
data.  Rough set theory is a very useful 
approach for minimizing the number of 
attributes necessary to represent the 
desired category structure by eliminating 
redundancy.  The lack of data or 
complete knowledge of the system 
makes developing a model a practically 
impossible task using conventional 
means. This lack of data can be 
attributed to sensors failure, or simple 
due to incomplete system information.  
At last, diffuse values could be related to 
noise or imprecise measurements from 
sensors.  In many applications, the 
information is obtained from different 

sensors, which are corrupted by noise 
and outliers.  The present work is 
devoted to the analysis of these 
situations and the way they can be 
solved using rough and fuzzy sets. An 
example has been included to 
demonstrate the concepts of using rough 
and fuzzy sets, in classification 
applications. 
 
 
 2   Methodologies 
 
 
2.1 Rough Sets 
Rough Set Theory (RST), an extension 
of conventional set theory, supports 
approximations in decision making, and 
was introduced by Pawlak in 1982 [1]. 
This theory can be used as a tool to 
recover data dependencies and to reduce 
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the number of attributes contained in a 
given data set by using the data alone, 
without additional information [2]. 
Pawlak has defined an information 
system by a pair K = (U, A), where U is 
the universe of all objects and A is a 
finite set of attributes [3].  Any attribute  
a ∈  A is a total function of a: U  Va, 
where Va is the domain of a.  Let a(x) 
denote the value of attribute a for object 
x, where [x]A is the corresponding 
equivalent class containing object x.  We 
say that (x, y) is A-indiscernible for the 
equivalence relation I(A), where U/I(A) 
denotes the partition determined by the 
relation I(A), if (x, y) belongs to I(A) [4]. 
Then two operations can be defined on 
any subset X of U.  The lower 
approximation (positive region), is 
efined as follows: 

→

d
 

( ) { :[ ] }AA X x U x X= ∈ ⊆  
 
It is the union of all equivalent classes in 
[x]A which are subsets of X.  The lower 
approximation is the complete set of 
objects that can be unequivocally 
classified as belonging to set X.  This is 
called the positive region if A and X are 
equivalence relations over U: 
 
          POSA(U) = X ∈  U/A A(X) ∪
 
The upper approximation has the 

efinition d
 

( ) { :[ ] 0}AA X x U x X= ∈ ∩ ≠  
 
It is the union of all equivalence classes 
in [x]A which are non-empty intersection 
with the target set.  The upper 
approximation is the complete set of 
objects that are possible members of the 
target set X . The concept of reduct is 
important, which is the minimum 
number of attributes that can 
characterize the knowledge in the 
information system as a whole, or a 
subset of it.  In any case, the reducts are 
not unique.  The set of attributes which 

is common to all reducts is called core.  
Rough set attribute reduction provides a 
tool by which knowledge is extracted 
from a dataset, retaining the information 
content, without affecting the knowledge 
involved.   
In the literature there are several 
methods for attribute reduction.  R. 
Jensen [2] analyzes the problem of 
finding a reduct of an information 
system.  It becomes clear that the perfect 
solution to locating such a subset is to 
generate all possible subsets and retrieve 
those with a maximum rough set 
dependency degree, but this solution is 
not practical for medium and large 
databases.  A method for practical 
reducing the number of attempts is the 
QUICK REDUCT algorithm [2].  This 
algorithm starts off with an empty set 
and adds in turn, one at a time, those 
attributes that result in the greatest 
increase in the rough dependency metric 
until it produces its maximum possible 
value for the dataset.  For very large 
datasets, one criterion for stopping the 
search could be to terminate the process 
when there is no further increase in the 
dependency.  Another method uses the 
discernibility matrix approach.  A 
discernibility matrix of a decision table 

),( Ω= UCUD  is a symmetric U ×U  
matrix, where Ω is the set of decision 
features, C is the set of all conditional 
eatures, and the entries correspond to  f

 
* * *
1( ,..., ) { | }

                 1 | |
D m ij ijf a a d d

j i U

= ∧ ∨ ≠ ∅

≤ ≤ ≤
 

 
W
 

here 

  * *{ | }ij ijd a a d= ∈
 
Each dij contains those attributes that 
differ between objects i and j.  The 
discernibility function fD for minimizing 
the attributes aj using the discernibility 
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matrix is a Boolean function given for 
ach term by e

 
           1( ,..., ) { }i m ijf a a d= ∧ ∨  
Finding the set of all prime implicants of 
the discernibility function, all the 
minimal reducts of the system may be 
determined. 
 
 
2.2. Fuzzy Sets 
Fuzzy logic is a multi-valued Boolean 
logic that helps describing concepts that 
are commonly encountered in the real 
world, using linguistic variables.  The 
range of possible values of a linguistic 
variable represents the universe of 
discourse of that variable. 
One of the basic concepts in fuzzy logic 
is that of the membership functions.  In 
general any function A: X →  [0, 1] can 
be used as a membership function 
describing a fuzzy set. Differently from 
the Boolean logic, which only consider 
one of two possible states for a 
proposition, fuzzy logic states that it can 
be more states, which are defined by the 
membership functions.  
 When designing a fuzzy system, the 
expert encounters besides the selection 
of the input and output functions and 
their universe of discourse, the problem 
of optimizing the number and 
characteristics of the membership 
functions as well as the rules that control 
the process.  Another issue is the way 
the classification is going to be made. 
Many simple decision processes are 
based on a single attribute, such as 
minimizing cost, maximizing profit, etc. 
An example of this can be found in [5]. 
Often, however, decisions must be made 
in an environment where more than one 
attribute affect the decision, and the 
relative value of each of these attributes 
can be different [6].  This is the case that 
often appears in classification problems. 

When solving a multi-attribute 
classification problem, it is necessary to 
acquire information regarding the 
attributes belonging to the different 
classes (objects) and to rank or weight 
the relative importance of each of the 
attributes. The typical multi-attribute 
classification problem involves the 
selection of one object ui from a group 
of objects, given a collection, or a set of 
attributes that are important to the 
classification.  
Having the universe of m attributes  
A = a1, a2, …, am and a set of n objects  
U = u1, u2, ..., un, the degree of 
membership of alternative a in ui, 
denoted by μui(a), is the degree to which 
alternative a satisfies the criteria 
specified for this objective.  All this 
leads to the concept of the Compatibility 
Index (CI), presented by Cox [7], and 
applied in several works [8] which is a 
method for calculating the similarity of a 
situation with previously imposed 
conditions using fuzzy sets. In this case, 
a weakness in the contribution of one 
attribute can be compensated by an 
increase in strength of the remaining 
attributes.  This index can be calculated 
as the average of the degrees of 
membership (µ) for each object 
considering all the participating 
attributes. If all the attributes are given 
the same weight, the compatibility index 
can be calculated using the expression: 
 

CIi =  ∑
=

=
m

k
ki mCI

1
/μ

 
Where i = 1,…, n is the object number 
and k = 1,…, m is the attribute number. 
 
 
3. Classification of Diffuse or 

Incomplete Dataset  
 The theory of rough sets is used for the 
analysis of categorical data.  The values 
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that can be obtained for the different 
attributes characterizing the objects of 
interest may be very large, which can 
lead to the creation of too many rules.   
As indicated by Y. Leung [9]: “These 
rules may be accurate with reference to 
the training data set; their generalization 
ability will most likely be rather low 
since perfect match of attribute values of 
the condition parts in real numbers is 
generally difficult if not impossible.  To 
make the identified classification rules 
more comprising and practical, a 
preprocessing step which can transform 
the real numbered attribute values into a 
sufficiently small number of meaningful 
intervals is thus necessary.”   This 
method of approach is known as 
granular computing.  Y.Y. Yao [10, 11] 
stated that when a problem involves 
incomplete, uncertain, or vague 
information, it may be difficult to 
differentiate distinct elements and one is 
forced to consider granules.  This 
approach leads to the simplification of 
practical problems.  R Jensen [2] 
presents a fuzzy-rough feature selection 
handling noisy data, to perform 
discretization before dealing with the 
data set. Several algorithms and 
examples are presented [2]. 
A generalization of rough set models 
based on fuzzy lower approximation is 
presented by Wang [4].  The concept of 
tolerant lower approximation is 
introduced for dealing with noisy data.  
When dealing with incomplete 
information, the typical approach is to 
use fuzzy logic, deriving inference rules 
from training examples using the 
available information and assuming that 
the characteristics of the missing part are 
similar to that of the previously 
obtained.  Literature defines many 
methods to derive membership functions 
and fuzzy rules from training examples 
[12, 13].  Among them can be cited the 

Batch Least Square Algorithm, the 
Recursive Least Square Algorithm, the 
Gradient Method, the Learning from 
Example method, etc.  E. A. Rady [14] 
introduced the modified similarity 
relation, for dealing with incomplete 
information systems, which is dependent 
on the number of missing values with 
respect to the number of the whole 
defined attributes for each object.  Also 
neural networks and genetic algorithms 
have been used for classification with 
incomplete data.  E. Granger, [15] 
present a work, analyzing the situations 
of limited number of training cases, 
missing components of the input 
patterns, missing class labels during 
training, and missing classes, using the 
fuzzy ARTMAP neural network.  

 
 

4 Example for Diffuse Dataset 
In this paper, the solution of the iris 
classification problem is used like a 
practical example. This problem has 
been solved by several authors. One 
example of solving classification 
problems using fuzzy sets and rough 
theory is presented by T. Ying-Chieh, 
[16].  He uses a rough classification 
approach and a minimization entropy 
algorithm for solving the iris 
classification problem.  Another solution 
for solving the same problem is 
developed by Shyi-Ming Chen and Yao-
De Fang  [17]. These examples use 
Table 1, originally developed by R. 
Fisher [18]. The classes are defined as 
SL-sepal length, SW-sepal width, PL-
petal length, and PW-petal width.  These 
classes will be used in our example, 
where the mean and standard deviation, 
values have been calculated, as well as 
the minimum and maximum for each 
class have been included.  The results 
are presented in Table 2. 
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Table 1. Iris Classification [15] 
    
                  Setosa                   Versicolor                Virginica 

No. SL SW PL PW SL SW PL PW SL SW PL PW 
1 5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5 
2 4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9 
3 4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1 
4 4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8 
5 5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2 
6 5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1 
7 4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7 
8 5 3.4 1.5 0.2 4.9 2.4 3.3 1 7.3 2.9 6.3 1.8 
9 4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8 

10 4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5 
11 5.4 3.7 1.5 0.2 5 2 3.5 1 6.5 3.2 5.1 2 
12 4.8 3.4 1.6 0.2 5.9 3 4.2 1.5 6.4 2.7 5.3 1.9 
13 4.8 3 1.4 0.1 6 2.2 4 1 6.8 3 5.5 2.1 
14 4.3 3 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5 2 
15 5.8 4 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4 
16 5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3 
17 5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 6.5 3 5.5 1.8 
18 5.1 3.5 1.4 0.3 5.8 2.7 4.1 1 7.7 3.8 6.7 2.2 
19 5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3 
20 5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6 2.2 5 1.5 
21 5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3 
22 5.1 3.7 1.5 0.4 6.1 2.8 4 1.3 5.6 2.8 4.9 2 
23 4.6 3.6 1 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2 
24 5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8 
25 4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1 
26 5 3 1.6 0.2 6.6 3 4.4 1.4 7.2 3.2 6 1.8 
27 5 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8 
28 5.2 3.5 1.5 0.2 6.7 3 5 1.7 6.1 3 4.9 1.8 
29 5.2 3.4 1.4 0.2 6 2.9 4.5 1.5 6.4 2.8 5.6 2.1 
30 4.7 3.2 1.6 0.2 5.7 2.6 3.5 1 7.2 3 5.8 1.6 
31 4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9 
32 5.4 3.4 1.5 0.4 5.5 2.4 3.7 1 7.9 3.8 6.4 2 
33 5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2 
34 5.5 4.2 1.4 0.2 6 2.7 5.1 1.6 6.3 2.8 5.1 1.5 
35 4.9 3.1 1.5 0.2 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4 
36 5 3.2 1.2 0.2 6 3.4 4.5 1.6 7.7 3 6.1 2.3 
37 5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4 
38 4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8 
39 4.4 3 1.3 0.2 5.6 3 4.1 1.3 6 3 4.8 1.8 
40 5.1 3.4 1.5 0.2 5.5 2.5 4 1.3 6.9 3.1 5.4 2.1 
41 5 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4 
42 4.5 2.3 1.3 0.3 6.1 3 4.6 1.4 6.9 3.1 5.1 2.3 
43 4.4 3.2 1.3 0.2 5.8 2.6 4 1.2 5.8 2.7 5.1 1.9 
44 5 3.5 1.6 0.6 5 2.3 3.3 1 6.8 3.2 5.9 2.3 
45 5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5 
46 4.8 3 1.4 0.3 5.7 3 4.2 1.2 6.7 3 5.2 2.3 
47 5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5 1.9 
48 4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3 5.2 2 
49 5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3 
50 5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8 
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T
 

able 2. Attributes for Each Class 

Attributes             Setosa              Versicolor             Virginica 

 xav σ Min Max xav σ Min Max xav σ Min Max 
SL 5.0 0.35 4.3 5.8 5.94 0.52 4.9 7.0 6.59 0.64 4.9  7.9 
SW 3.42 0.38 2.3 4.4 2.77 0.31 2.0 3.4 2.91 0.32 2.2 3.8 
PL 1.45 0.11 1.0 1.9 4.26 0.47 3.0 5.1 5.55 0.55 4.5 6.9 
PW 0.24 0.11 0.1 0.6 1.33 0.20 1.0 1.8 2.03 0.27 1.4 2.5 
 
   
                                             li

k = 3.2                                                       ui
k = 3.9 

 
 
 
 
 
 
 
 
                          
                             lj                                

k = 2.8                                     uj
k = 3.6 

Fig.1. Region of Coincidence of Classes i and j for the Attribute k 
 

   αij
k  = 0             The solution is divided in two parts. In 

the first part, the useful attributes for the 
classification is found based on the 
rough theory. For this part, the approach 
introduced by Leung Yee [9] is applied 
to the iris classification problem with 
small changes. In the second part, fuzzy 
logic is employed for discriminating 
between similar situations. 

          if [li
k, ui

k] [lj
k, uj

k] = 0; I
 
   αij

k  = min{(ui
k − lj

k, uj
k − li

k)/(ui
k  

                  −li
k)},1}, 

          if [li
k, ui

k] [lj
k, uj

k] 0. I ≠
 
Where li

k and ui
k are the minimum and 

maximum values for the object i and 
attribute k; lj

k and uj
k are the minimum 

and maximum values for the object j and 
attribute k.   

For clarifying the procedure, the 
following definitions are presented. 
 

For clarifying the concept, we present a 
numerical example on Fig.1. The region 
of intersection of the values of the two 
objects represents the zone, where the 
classification becomes problematic.  

 
4.1 Misclassification Rates 
Let k

ijα  denote the misclassification error 
between the classes i and j for attribute 
k.  Probability that objects in class ui are 
misclassified in class uj according to 
ttribute k is: 

For the presented case, the 
misclassification error between the 
lasses i and j for attribute k is given by a

 c
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 αij
k = min{(3.9−2.8, 3.6 −3.2)/(3.9    

   – 3.2)} 
  αij

k = 0.57          
 
 Note that in general  
 

αij
k
  αji

k
. ≠

 
The maximum mutual classification 
error between classes ui and uj for 
attribute k is  
 

β
 ij

k = max { αij
k, αji

k} 

where βij
k = βji

k
.  The permissible 

misclassification rate between classes ui 
and uj in the system k is 
 

βij = min βij
k  for 1  k  m ≤ ≤

 
Defining a parameter α as the specified 
admissible classification error, 0 < α < 1.   
If  βij  α, there must exist an attribute ak 
so that, by using ak, the two classes  ui 
and uj can be separated within the 
permissible misclassification rate α [6]. 

≤

 
 

4.2 α-Tolerance Relation Matrix 
For a given permissible misclassification 
rate α∈ [0, 1] and an attribute subset  
B⊆  A, a binary relation on U is defined 
y  b

 
    {( , ) | , }k

B i j ij kR u u U U a Bα β α= ∈ × > ∀ ∈  
 
The errors that objects in class ui being 
misclassified into class uj in the system 
are defined as αij = min {αij

k: k ≤  m  and 
are given in Table 3. 

}

 
Table 3.Error of Misclassification of  
Object ui into uj 
 

α ij u1 u2 u3 
u1 1 0 0 
u2 0 1 0.25 
u3 0 0.29 1 

 

The maximal mutual classification error 
etween classes is defined by  b

 
βij

k = max {αij
k, αji

k} 
  
In the present example is given by: 
 
β12

1 = 0.6       β13
1  =  0.6      β23

1  = 1 
β12

2 = 0.78     β13
2  =  0.94    β23

2  = 0.86 
β12

3 = 0          β13
3  =  0         β23

3 = 0.29 
β12

4 = 0          β13
4  =  0         β23

4 = 0.5 
 
Selecting α = 0.2, the permissible 
misclassification rate for this example is 
shown on Table 4. 
 
Table 4. Permissible Misclassification 

etween Classes ui and uj Rate B
           

βij u1 u2 u3 
u1 1 0 0 
u2 0 1 0.29 
u3 0 0.29 1 

 
The matrix for the α-Tolerance relations, 
where all βij> α is represented by 1.  
 

  RA
0.2 =    

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
011
100

 
From the matrix, it is clear that object  
u1 - Setosa can be uniquely defined from 
the given attributes, but objects u2 -
Versicolor and u3 - Virginica may not be 
separated. This situation can be 
xpressed by  e

 
               SA

0.2(u1) = {u1} 
 
 
             SA

0.2(u2) =  SA
0.2(u3) = {u2, u3}, 

where SA
0.2(u) denotes that these are the 

sets of objects which are possible 
indiscernible  by A within u within the 
misclassification rate α = 0.2.  From the 
previous results, the 0.2-discernibility set 
is given on Table 5. 
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Table 5. Discernibility Set 
 

 u1 u2 u3 
u1    
u2 a3, a4   
u3 a3, a4   

 
The obtained functions are 

f1
0.2 = a3 ∨  a4 

f2
0.2 = a3 ∨  a4 

Using rough sets, it has been 
demonstrated that the important 
attributes for the classification are  
a3: PL-petal length, and a4:  PW-petal 
width. 
From the previous results, the following 
ules can be extracted: r

 
R(u1) – IF a3 ∈  [1, 1.9] or a4 ∈  [0.1,0.6] 
             THEN it is u1 – Setosa. 
R(u2) – IF a3 ∈  [3.0, 5.1] or  
             a4  [1.0, 1.8] THEN it can be     
 u2 – Versicolor or u3 – Virginica. 

∈

R(u3) – If  a3 ∈  [4.5, 6.9] or  
 a4 ∈  [1.4, 2.5] THEN it can be    

u2 – Versicolor or  u3 – Virginica. 
 
Rule 1 is clear for Setosa classification. 
Note that from R(u2) and R(u3), it is 
possible to develop other rules that 
ubstitute them: s

 
R(u4) − IF a3 ∈  [3.0, 4.5] or a4 ∈  [1.0, 1.4] 
            THEN it is u2 − Versicolor. 
R(u5) − If  a3 ∈  [5.1, 6.9] or a4 ∈  [1.8, 2.5] 
 THEN it is u3 − Virginica. 
 
R(u6) − If  a3 ∈  [4.5, 5.1] or a4 ∈  [1.4, 1.8] 
 THEN it can be  
  u2 − Versicolor or u3 − Virginica. 
 
In order to select between u2 and u3, into 
the coincident interval, one possibility is 
to use fuzzy logic. The authors propose 
the following procedure: 

1) For each of the objects ui in the 
fired rule, find the degree of 
membership with the imposed 

conditions, for each of the 
participating attributes ak. 

2) Find the compatibility index (CI) 
for each object.  

3) Compare the different 
compatibility indexes and select 
the object with the greater one.  

 
For the example, it was proposed for 
each interval and each type, a bell shape 
membership function with the maximum 
value coincident with the mean value for 
the interval, and defining the domain 
from the minimum to maximum values 
in the interval.   The compatibility 
indexes are calculated using for this 
case, the different measurements 
obtained from Table 1. Rule R(u6) has 
been used taking into consideration only 
the petal length (a3)  and petal width 
(a4), as stated by the rule.  It has been  
tested the values for measurements 1, 5, 
and 10. This test is shown in Table 6. 
The values for versicolor were compared 
with the membership function 
“versicolor”, and the same was done for 
virginica. This is shown in columns 2 
and 3. Latter, the values for versicolor 
were compared with the membership 
function “virginica” and the values for 
virginica with the membership function 
“versicolor”. This is shown in columns 4 
and 5.   As can be seen from Table 6, 
there is a big difference in the 
compatibility index between the proper 
and the wrong comparison. A test was 
made to all the objects in table 1. In this 
case, there are 50 virginica and 50 
versicolor examples.  The algorithm fails 
in one versicolor and one virginica.  This 
gives an average classification rate of 
98% for the analyzed table.  
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Table 6. Compatibility Indexes for Different Measurements from Table 1 
 

No. Comp. Index 
Vers./Vers. 

Comp. Index
Virg./Virg. 

Comp. Index
Vers./Virg. 

Comp. Index
Virg./Vers. 

1 0.59 0.46 ≤ 0.1 ≤ 0.1 
5 0.60 0.79 ≤ 0.1 ≤ 0.1 
10 0.99 0.42 0.3 ≤ 0.1 

 
 
5 Conclusions 
The combination of rough sets and fuzzy 
logic is a powerful tool for classifying 
objects into a database.  The attribute  
minimization using rough set theory is 
extremely useful when dealing with 
large databases.  If the number of 
possible values for the attributes is large, 
the selection of interval values is 
mandatory.  Fuzzy logic can be used 
together with the rough theory for 
obtaining a unique response, in case 
where this is not possible using the 
rough theory alone.  Several methods are 
presented for the classification with 
imprecise or missing information.  It is 
not possible to affirm that one method is 
always better than other.  In any case, 
there is always some uncertainty 
regarding the final result.  This 
uncertainty is related to the accepted 
admissible classification error (α) in the 
case of imprecise information and to the 
characteristics and quantity of the 
missed information, in the case of 
incomplete information.  The solution of 
the iris classification using a method that 
differs from those originally presented in 
the literature shows a different approach 
for obtaining equivalent results.  The 
solution of the iris classification in the 
present work, results simpler than other 
methods due to the fact that simpler 
and/or fewer rules have been used.  The  
usefulness of the method is more evident 
when dealing with databases containing 
a large number of objects and attributes, 
but the example presented in this paper 

serves for the purpose of giving an idea 
of the presented method. 
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