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Abstract: This work deals with the problems of the Weakly Structurable Continuous Dynamic System
(WSCDS) optimal control and briefly discuss the results developed by G. Sirbiladze [17]. Sufficient and
necessary conditions are presented for the existence of an extremal fuzzy optimal control processes, for
which we use R. Bellman’s optimality principle and take into consideration the gain-loss fuzzy process. A
separate consideration is given to the case where an extremal fuzzy control process acting on the WSCDS
(1) depends and (2) does not depend on an WSCDS state.

Applying Bellman’s optimality principle and assuming that the gain-loss process exists for the WSCDS,

a variant of the fuzzy integral representation of an optimal control is given for the WSCDS. This variant
employs the instrument of extended extremal fuzzy composition measures constructed in [16].

The questions of defining a fuzzy gain relation for the WSCDS are considered, taking into account the avail-
able expert knowledge on the WSCDS subject-matter.

An example of constructing of the WSCDS optimal control is presented.

Key—Words:Fuzzy Optimal Control, Fuzzy Dynamic Systems, WSCDS, Extended Extremal Fuzzy Mea-
sures, Sugeno Type Extremal Integrals, Fuzzy Gain-Loss Process, Bellman'’s Optimality Principle

1 Introduction processes.
To make the decision-making effective in the

In recent years, both the dynamics of fuzzy system framework of computer systems supporting this pro-
and the modeling issue received an increased atten- C€sS, wWe must solve analytic problems of state evalu-
tion. Dynamics is an obvious problem in control; ation, model identification, complex dynamic system
moreover, its interest goes far beyond control applica- control, optimal control, filtering and so on.

tions. Applications of the dynamics of fuzzy systems It is well recognized that optimization and other
and of the modeling of dynamic systems by fuzzy sys- decision support technologies have been playing an
tems range from physics to biology to economics to important role in improving almost every aspect of
pattern recognition and to time series prediction. human society. Intensive study over the past several

Evidence exists that fuzzy models can explain co- Yeéars has resulted in significant progress in both the
operative processes, such as in biology, chemistry, th(_aory and applications of optimization and decision
material sciences, or in economy. Relationships be- SCIENCE.
tween dynamics of fuzzy systems and the perfor- Optimization and decision-making problems are
mance of decision support systems were found, and traditionally handled by either the deterministic or
chaotic processes in various classes of fuzzy systems probabilistic approaches. The former provides an ap-
were shown as a powerful tool in analyzing complex, proximate solution, completely ignoring uncertainty,
weakly structurable systems, as anomal and extremal while the latter assumes that any uncertainty can be
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representecs a probability distribution. Of course, [10] and so on) and applied in such various dis-
both approaches only partially capture reality uncer- ciplines as operations research, economic manage-
tainty (such as stock price, commodity, cost, natural ment, business administration, engineering and so on.
resource availability and so on) that indeed exist but Liu B. (Liu [10], 2002) presents a brief review on
not in the form of known probability distributions. fuzzy programming models, and classifies them into

In alternative classical approaches to modeling three broad classes: expected value models, chance-
and when working with complex systems the main constrained programming and chance-dependent pro-
accent is placed on the assumption of fuzziness. As gramming.

the complexity of systems increases, our ability to de-
fine exactly their behaviour drops to a certain level,
below which such characteristics of information as
exactness and definiteness become mutually exclud-
ing. In such situations an exact quantitative analysis
of real complex systems is apt to be not quite plausi-
ble. Hence, a conclusion comes to mind that problems
of this kind should be solved by means of analytic-
fundamental methods of fuzzy mathematics, while the
system approach to constructing models of complex
systems with fuzzy-statistical uncertainty guarantees
the creation of computer-aided systems forming the
instrumental basis of the solutions intelligent technol-
ogy of expert-analytic problems. It is obvious that the
source of fuzzy-statistical samples is the population
of fuzzy characteristics of our knowledge. Fuzziness
arises from observations of time moments as well as
from other expert measurements.

In the Preface of the Journal of Fuzzy Optimiza-
tion and Decision Making (vol. I, 2002, pp. 11-12)
Professor L. A. Zadeh had said: “My 1970 paper with
R.E. Bellman, “Decision-Making in a Fuzzy Environ-
ment” was intended to suggest a framework based on
the theory of fuzzy sets for dealing with imprecision
and partial truth in optimization and decision analy-
sis. In the intervening years, a voluminous literature
on applications of fuzzy logic to decision analysis has
come into existence.”

Problems of making an optimal solution for sys-
tems with fuzzy uncertainty are difficult because it fre-

guently happens that the controllable object possesses

conflicting properties which might include:

1) imperfection of a control process due to informa-
tion uncertainty;

2) unreliable elements of a control system;

3) nonunigueness and the applicability of many cri-
teria encountered in a control process;

4) restriction of possibilities (resources) of a control
system;

5) loss of the ability of a control system to solve
arising control problems.

Fuzzy programming problems have been dis-
cussed widely in literature ([2], [3], [6], [11], [17],

Our further study belongs to the first class, where
we use the instrument of fuzzy measures ([4], [5],
[16], [17],[18], [19], [20], [24]) or, speaking more ex-
actly, extremal fuzzy measures and Sugeno integrals
along with extremal fuzzy expected values.

Our attention is focused on the rapidly developing
theory of fuzzy measures and integrals [4], [16], [19].
The application of fuzzy measures and integrals as
an instrument of constructing of intelligent decision-
making systems is not a novel idea [4], [16]. We em-
ploy the part of the theory of fuzzy measures which
concerns extremal fuzzy measures [16] and which, in
our opinion, is rather seldom used. We have con-
structed a new instrument of a fuzzy measure [16],
the extension of which is based on Sugeno lower and
upper integrals [24].

We will deal with the fuzzy control problems of
fuzzy dynamic systems (WSCDS) [16], [17], where
fuzzy uncertainty arises with time and time structures
are monotone classes of measurable sets. On such
structures the extremal fuzzy measures play the role
of measures of uncertainty.

In the present paper, we continue to investigate
the controllable extremal fuzzy processes defined in
[16]. The subject/matter of our investigation is the
existence of an optimal control for WSCDS's. Sec-
tion 2 contains some necessary preliminary concepts
presented in [16]. Section 3 deals with problems
of WSCDS optimization when the control parameter
depends or does not depend on a state in which an
WSCDS is. Questions of the existence of an optimal
control are studied, and variants of their fuzzy integral
representation are proposed. Section 4 contains anal-
ysis of the definition of the gain-loss fuzzy process
for WSCDS'’s, which is carried out using the avail-
able expert knowledge on the WSCDS subject/matter.
Section 5 contains an example in which the WSCDS
fuzzy optimal control process is constructed.

2 Preliminary Concepts

All definitions and results see in [16].
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2.1 On the space of extended extremal fuzzy
measures

Definition 1 Let X be some nonempty set.

a) We call some clasg* < 2% of subsets
X an upperc*-monotone class if (iy), X € B*;
(i) VA, B € B* = AU B € B* (iii)) V{4,} € B*,
n=12,...,4, 1 A= A € B*.

b) We call some clas®, C 2% of subsets
X a lower o,-monotone class if (i), X € B,;
(i) VA, B € B, = AN B € B,; (iii) V{A,} € B,,
n=12,...,A, | A= A e B,.

Definition 2 We call the classeB8* and B, extremal
if and only if

VA e B*< A€ B,.

Remark 1 Let B C 2% be somer-algebra. Ther3
is both as*-monotone class andsa.-monotone class.

Definition 3 1) (X, 5*) is called an upper measur-
able space;
2) (X, B,) is called a lower measurable space;
3) If B* andB, are extremad™*- ando.-monotone
classes, thefX, B,, B*) is called an extremal mea-
surable space.

Example 1

Bi 2 {ACR! | A=(a;+00), a € R} U
U{0} U{RJ} is ac*-monotone class,

B 2 {ACR} |A=[0;a], a cR{}U
U{0} U {RJ} is ac.-monotone class.

B} and B, are respectively called a Boret*-
monotone class and a Borel-monotone class of first
kind. Clearly,B; and3;.. are extremal.

Example 2

B;é{ACRar|A:[O;a), aeRJ}U

U{0} U {R{} is ac*-monotone class,
Bo £ {ACR} | A=[a;+00), a € RF} U

U{0} U {RJ} is ac.-monotone class.

B3 and B, are respectively called a Boref- and a
Borel o..-monotone class of second kind. It is obvious
that 35 andB.. are extremal.

Definition 4 Let (X, B*) be some upper measurable
space. A functiory* : B* — [0;1] is called an up-
per fuzzy measure if: (iy*(0) = 0, ¢*(X) = 1;
(i) VA,B € B*, A C B = ¢g*(A) < ¢"(B);
(i) v{A,} e B*\n=1,2,..., A, 1 A= g*(A) =
lim ¢g*(Ap).

n—oo
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Definition 5 Let (X, B,) be some lower measurable
space. A functiong, : B, — [0;1] is called a
lower fuzzy measure if: (iy.(0) = 0, g.(X) = 1;
(i) VA,B € B,, A C B = g«(4) < g«(B);
(i) V{4,} € B,n=1,2,..., 4, | A= g.(A) =
g Ge{An).

Definition 6 Let (X, B, B*) be some extremal mea-
surable spacey, be a lower and;* an upper fuzzy
measure.

Then:

a) g« : B. — [0;1] andg* : B* — [0;1] is called
extremal if and only if

VA€ B, : g.(A) =1-g*(A).

b) (X, B, B*, 9., g*) is called a space of extremal
fuzzy measures.
Definition 7 Let (X1, B, B”*) and (X2, B}, B"*) be
some extremal measurable spades; X; — Xs is
called measurable if
VAeB"™ BeB' : h'(A)eB™* h'(B)eB.

Definition 8 Let (X, B, B*) be some extremal mea-
surable space. Then:

a) The functiom : X — R{ is called upper mea-
surable if and only ifx is measurable with respect to
the space$X, B., B*) and (R, Bi., B;). Then

Va>0 h7'((a;+00)) € B*, h71([0;a]) € B,.

b) The functionh : X — R{ is called lower
measurable if and only # is measurable with respect
to the spaceéX, B., B*) and (R, Bz, B3). Then

Va>0 h71([0;a)) € B, h!([a;+00)) € B..

Definition 9 Let (X, B,, B*) be some extremal mea-
surable space.

a) The class of fuzzy subsets ¢ X with lower
measurable compatibility functions

B, = {KC X | pz is lower measurabﬂe:

- {Xexwogag, n7'([0;0)) € B,

3 ([ +oc) € B |

is called an extension of the.-monotone class..
b) The class of fuzzy subsets C X with upper
measurable compatibility functions

B* = {ﬁ C X | py is upper measurab}e:
_ {Eexwogag 1, 15 ([0:0)) € B,
-1 . *
p7 (05 4+00)) € B

is called an extension of the*-monotone clas8*.
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Definition 10 An  extremal measurable space

(X, B.,B*) is called an extension of an extremal
measurable spade, 5., B*).

Using the Sugeno integral, we next introduce the
notion of extension of fuzzy extremal measures.

Definition 11 Let (X, B, B*, g«, g*) be some space
of extremal fuzzy measures, aqll, B., B*) be an ex-
tension of the extremal measurable spgkeB,, 5*).
Then:

a) the function

= f na)o0.) 2

X
A

g«(A)

V
0<a<l

[a A g*([i]&)} . VAeB.: (U

is called an extension of the fuzzy measgyen B.;
b) the function

f 13050

X

>

VAN
0<a<l

[a \/g*([g]a)} . VAe B, (2)

is called an extension of the fuzzy measyten E

Here [Al, = {z € X | uz(z) > ab, [Aa
{re X |pz( )>a} 0<a<l.

Definition 12 A space of extremal fuzzy measures
(X, B*, B* ,gx, g") is called an extension of the space

(X B*aB )g*u )

Let (X, B, B*, g, ) bes
fuzzy measures andX, 5., B*, g., g*
sion.

g*) be some space of extremal
) be its exten-

Definition 13 a) Let A, B € B, be any fuzzy sets.
Then the lower fuzzy Sugeno integral of the compat-
ibility function p 5 on the fuzzy setl is defined with
respect to a lower fuzzy measujeby the formula

f a0 2 v [arg(An(Bla)]. @

A

b) Let A, B € B* be any fuzzy sets. Then the up-
per fuzzy Sugeno integral of the compatibility func-
tion iz on the fuzzy setl is defined with respect to a
upper fuzzy measurg* by the formula

f‘%@) TR N

A

Vg (AU[Bl)|. @)
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Definition 14 Let (X, B, B*, g., g*
of extremal fuzzy measures.
a) Leth € B, be some fuzzy set. The measure

) be some space

VAEB, : G2 f un()o7.() =
AV*
— [ 13()05.0) = f tyoale) 0500 ©
n X

is called the lower extension gf. on B, with respect
to h.
b) Leth € B* be some fuzzy set. The measure

VAeB : Gi(A)2 f pn(x) 0 g*(-) =

A

~f 13070 = f mos@ o7 ©

h X

is called the upper extension gf on B* with respect
to h.

Let (Xi1,B,,B™*,4¢.,¢") and (Xo,BY B"™,
gr g"*) be any two spaces of extremal fuzzy
measures.

We have constructed [16] the compositional space
of extremal extended fuzzy measu(gg, x X,, B, ®

R )

2.2 On the algebraic structure of the fuzzy
time intervals

A person who makes a decision always gives an “in-
complete” prognosis about a time moment for ex-
tremal, crisis, anomalous and other situations that may
occur in the future. The person (expert) who makes a
decision connects all such situations with future fuzzy
time moments and intervals. Clearly, his/her progno-
sis is of possibilistic character and the corresponding
optimal decisions should be obtained by possibilistic-
statistical analysis or, speaking more exactly, by anal-
ysis of monotone fuzzy time intervals, for which we
need to construct a new fuzzy mathematical instru-
ment.

Def|n|t|on 15 a) Any fuzzy positive number

[O 7) € B is called an extended fuzzy current time
interval.

b) Any fuzzy positive numbefr = [r;+00) €
B, is called an extended fuzzy future time interval.
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Definition 16 The classof current fuzzy time inter-
vals is called the class of fuzzy nonnegatlve numbers

FI (T") with the propertiegr € FI (T)):
() p7(0) = 1;
(ii) Y10 > 0, pz(m0) = T;/TO 11(7);

(iii) u7 is nonincreasing off = R .

It is not difficult to verify thatFI (T) is a sub-
class of the space of extended fuzzy current time in-

tervalsF 1 *(T) C B;.
Analogously, we introduce the definition of the
classF1.(T), which is extremal td—"I*(T), ie.,

FeFI(T) C Bo &7 € FI (T) C B

Now let us consider the algebraic structures
of the classes of extremal fuzzy time intervals

(FT'(T), FL(T)).
On the semilatticé F1 (T'), <} we introduce the
algebraic sum operatiol é ro.

i (1) S M () V iy () |

1,72 €T, 71+ 120 ="T}

1
(7)

It is not difficult to verify that the structure

{ﬁ*(T), = é} is a partially ordered commutative
semigroup.

The algebraic sum operatio% in ﬁ*(T) in-

duces in]?l*(T) another operation (conjugate f&)
®:

*

VLo € FIUT) : 1 @7 =71 & 7o

*

(8)

On ]?/I*(T), the induced structure
{FI(T),>=,®} is a partially ordered commuta-

tive semigroup.
We call the pair of structures

{FT (1), 2.0} {FL(D), = 8})  (9)

an extremal partially ordered commutative semigroup
[16].

2.3 On the composition product of spaces of
extremal fuzzy measures

Let (X1, B,,B",g,,¢") and (X2, B, 8", g/, 9")
be any two spaces of extremal fuzzy measures.
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Definition 17 Let some subsell C X; x X5 be a
binary relation. We introduce the following mappings
Vxg € X3 andVyo € Xo:

Ep(zo,-) £ {y € X2 | (w0,y) € H},

A (10)
En(y0) 2 {z € X1 | (x,90) € H}.

a) A binary relationd C X x X5 is called lower
measurable VA € B andVB e B, there exist
sequenceszy, tnen C B, {yn}nen C A such that
Er(zn,") O Ex(wn+1), Eu(yn) O Ea(, Ynt1),
n=1,2.... We have

Th(A) 2 {ze X, |VyecA: (z,y) € H =

= EuC.p)= () EuC.yn) €B. (1)
yeA n=1
and
/I{*(B)é{yGX2‘VxGB:(x,y)eH}E
= ( Eu(x,) = ) Bulzn,) € B (12)
zeB n=1

b) Denote by, ® B the set of all binary lower
measurable relations fromX; x X, and call it the
composition product of measurable spaBegandB.

a) A binary relationi ¢ X7 x X is called upper
measurable i¥A € B”* andVB € B™* there exist
sequenceszy, tnen C B, {yn}nen C A such that
EH(l'n’ ) C EH(-'L‘n+1)a EH('a yn) C EH('a yn+1),
n=1,2.... We have

I (A) 2 {reX |IyeA: (z,y) e H =

yeA n=1
and
T%(B)2{ye X, |IweB: (v,y) € H} =
=JE = |J Eul(zn,) €B™.  (14)
z€eB n=1

b’) Denote byB™* @ B"* the set of all binary up-
per measurable relations froti; x X5 and call it
the composition product of measurable spagésand
B//*.

It is not difficult to verify that B, @ B/ is a
lower o.-monotone class an8™ @ B"* is a upper
o*-monotone class.
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Theorem1 Let (X1, B,,¢,) and(Xs, B/, g/) be two
spaces of lower fuzzy measures. Then on the compo-

sition lower measurable spat¥; x X», B, @ BY) the
measuregy, : VH € B, ® B, defined by
A
g9+(H) = g. ®gi'(H) =
a2 " —
{g* L. (F))Agi(F)}  (15)

FEB”

is a lower fuzzy measure.

Theorem 2 Let (X1, 8™, ¢"*) and (X2, B"*, ¢"*) be

two spaces of upper fuzzy measures. Then, on the
composition upper measurable spa&g x Xo, B* ®
B*), the measure* : VH € B"* @ B"* defined by

g"(H) =

9" ®g"(H)
{g"(E E))} =
{9"@TH(E) v g™ (F)}
is an upper fuzzy measure.

Theorem 3 a) LetH € B,®B! be some binary lower
measurable relatiof C X; x X5). Then the value

of the measurg, ® ¢/ on H is represented through
g. andg/ as the following composition:

1>

VZES I*
EeB’* YV gy

1
Fe/gl/* ( 6)

9. @ gL (H) = fgi(EH(v y))ogi(-) =

X2

— [ d(Bule, ) o i) @)
X
b) Let H € B™* @ B"* be some binary upper
measurable relation. Then the value of the measure

g* ® ¢ on H is represented througjt* andg¢”* as
the following composition:

g/* ® g//*(H)

f* 9" (En(-y)og" ()=

Xa

fg"*<EH<x,~>>og'*<~>. (18)

X1

Now let us proceed to defining fuzzy binary rela-
tions onX; x Xo.

Definition 18 a) A fuzzy setd C X; x X is called a
lower fuzzy binary relation if the compatibility func-
tionugz : Xy x Xo — [0;1] is lower measurable;

b) A fuzzy setH C X; x X» is called an upper
fuzzy binary relation if the compatibility function;
is upper measurable.
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We have constructed the compositional space of
extremal extended fuzzy measure$; x X, B, @
B// B*/ B*// g/ ®g// g ®g*//)

2.4 On the weakly structurable continuous
dynamic system

In [16], [21] we described objects of a fuzzy dynamic
system. LetX (X # @) be the set of states of some
system to be investigated. LeX, B, g) be the space
of a fuzzy measure on the measurable spaces),
where B is a o-algebra inX (fuzzy restrictions on
states).

Let the time structure of fuzzy dynamic systems is
represented by some space of extended extremal fuzzy
measures

(T, FL.(T),FI (T),Grs,35), T =R, (19)

wheregT* andg; are some extremal fuzzy measures
on BT* = Bg* anng; = 82, respectively.

Definition 19 a) A family {7 },>¢, 7 € B, 7 > 0,
of monotonically increasing upper fuzzy time inter-
vals, i.e.,

~*k

T

~sk
n 2T

T2

\V/’7'2>7'1 ZO,

is called a process of current fuzzy time intervals.

b) A famlly {?T*}TZOl 777'* S gT*a T > 0, of
monotonically decreasing lower fuzzy time intervals,
i.e.,

V1o > 11 >0, 777'1* = ?7-2*

is called a process of future fuzzy time intervals.

¢) A pair of processes of future and current fuzzy
time intervals{7.., 7%} .>¢ is called a process of ex-
tremal fuzzy time mtervals

Definition 20 A process of extremal fuzzy time inter-
vals (7., %) is called ergodic if there exist the limits

~%

: oo 2%
lim 77 =7, € Br.

lim 7Try = Toox € BT*,
T—+00

T—+00

A relation between the spacés, B, 5, g, g*)
and (T, Brs, B, 97+,97) and their extensions
through conditional measures can be represented as
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follows: Vr, € Br., r* € B, 7 € Br., 7 € B

g74(rs) = f gon(re | 2) 0 9,

X
G5 () = f GE(r | ) 0 g°(),

X

(20)

g1 () = f GonlFe | 2) 0 9(),

X
() :fgz‘@* | 2) 0 g"(),

X

For any lower and upper fuzzy time intervalsc

Br. and7* € B* there exist fuzzy setsl~ c B,
Az € Bsuchthat'r € X
pi () =G | 2), pz, (2)=5 | 2). (1)

Definition 21 For extremal fuzzy time intervals
(7%, 7) the fuzzy setsd, and A € B from the ex-

tended measurable space of system states are calle

the expert knowledge reflections of extremal fuzzy
time intervals with respect to extended extremal con-
ditional fuzzy measureg..(- | ) andg; (- | ).

Let us formulate a theorem that describes the er-
godicity of a reflection process in an ergodic process
of extremal fuzzy time intervals.

Theorem 4 An ergodic proces$r «,7r)r>o Of ex-

tremal fuzzy time intervals on the measurable space
(X, B) of states of the system induces an ergodic re-
flection proces$R,, R*) = (A5 _, Ax

Trs?

)720

Let the initial time moment = 0 the fuzzy state
of the fuzzy dynamic system be represented by a pair
of fuzzy setsdy,, AO € B.

Now assume that the Fuzzy Dynamic System is
represented by some operatot, p*) describing the
system state change dynamics.

Definition 22 a) Let (7-«, ) ->0 be some process of
extremal fuzzy time intervals. A paifQ., Q*) of
lower and upper measurable binary relati(@s €
B@\B/T* and@* € B/@}?E; is called a fuzzy process

describing the system state dynamics in the process of

extremal fuzzy time interval§r,., 7 ),>¢ if the fol-
lowing representation hold§z,7) € X x T

. a2 | f o' 0)090)] 05 =

Trs ZO*
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(22)

f:ﬂﬁ; (.Z',t) 0 gT*(')7

Tr%

u@*(x,r)éf Vuz*(w,x’vt)og*(-) °gr(")

[ A
T Af

£ b0 0570

el
Tr

b) Fuzzy Dynamic System represented by the fol-
lowing cortege

<X7 B’gv T, {777'*}7 {ﬁ}a (ﬁ*aﬁ*
(R, BY), (Qu, Q7))

is called the weakly structurable continuous dynamic
system if extremal processes are ergodic.

)7 (gT%g’})’

Now let us consider an importan~t th~eorem, in
which a relation between the proces$€s, Q*) and
(R, R*) is defined.

grheorem 5 Let (7., 77)>0 be some ergodic pro-

cess of extremal fuzzy time intervals, af,, R*)
be a process of expert knowledge reflection of ex-
tremal fuzzy time intervals oflX, l§) with respect to
some extended extremal conditional fuzzy measures
Gix(- | ) andg; (- | z). Then

a) the process$Q., Q*) describing the WSCDS
state dynamics in the process of extremal fuzzy time
intervals (7, 7%) >0 has the following representa-
tion:V(z,7) € X x T

g 0.7) = f 15 (20) T ()

T

,U,@*(.I',T) :f i (2, t) ogE@*(.,T)(J,

T

(23)

where on the right-hand sides of lower and upper
Sugeno integrals the integration measures are the ex-
tremal fuzzy measures extended with respect to the

process(R,., R*) on the measurable spac8s. and
B, respectively.
b) The proceséQ., Q") is ergodic.

3 The Fuzzy Dynamic Programming
Problem in WSCDS

3.1 Case when a fuzzy control does not de-
pend on the WSCDS state

All definitions and results see in [17], [21].
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In alternatve classical approaches to modeling
and when working with the weakly structurable sys-
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restrictions are given for measurable subset& offe.
the fuzzy measure spac¢&’, Bk, gx) (fuzzy restric-

tems the main accent is placed on the assumption tion on the criteria) is defined oft [17].

of fuzzyness [2], [3], [6], 1][5], [21]. We will deal
with fuzzy dynamic systems (WSCDS), where fuzzy
uncertainty arises with time and time structures are
monotone classes of measurable sets [16].

We start describing objects of a controllable
WSCDS. LetX (X # () be the set of states of some
system (WSCDS) to be investigated. I(&f, B, g) be

Let L € Bx ® By be some fuzzy binary relation
of “losses” with respect to each of the critetise K
in the choice of controk € U. Note thatu; is a

Bx ® By-measurable compatibility function
pi(v,u) s K x U — [0,1]. (25)

the space of a fuzzy measure on the measurable spacelhen the complemertt is calledthefuzzy relation of

(X,B), whereB is ao-algebra inX (fuzzy restric-
tions on states).

Let the time structure of a WSCDS is represented
by (9) and some space of extended extremal fuzzy
measures

(T, BT*; B’}:v gT*v /g/;)v
wheregr, andg}. are some extremal fuzzy measures
on By, = Bo, andB}. = B3, respectively.

LetU (U # () be the set of all admissible con-
trols (of external factors) acting on the WSCDS. As-
sume that controls are subjected to restrictions of un-
certain character in the form of some space of a fuzzy
measure(U, By, gv), Where By is the measurable
space of controls, while the fuzzy measujg de-
scribes the restrictions imposed on controls.

We consider the optimization problems of a con-
trollable WSCDS when the model of the continuous

extremal fuzzy process is described by the system of
fuzzy integral equations [16], [21]:

pg, (@,7)= %{MEE* () (WABE, (2,.,)(u:t) }O

UxT

T =R,

Og\(} ®gm)()7 (24)

M@*(%T):f{M}Eﬂ*(.,7)(U)VME5/*(L-,.)(U7t)}o
UxT

© g(*] ® gE]R*(-,T)('),

where(Q., Q") is a fuzzy extremal process describ-
ing the system state dynami¢®.., R*) is an extremal
fuzzy process of expert reflections in extremal fuzzy
time intervals (the expert reflections on the states of
WSCDS in the extremal fuzzy time intervalgp;., p*)

WSCDS “gain” and the values
/’Lf(va U) =1- M (Uv ’LL) (26)

define the measure of gain in the choice of contrel
U for a criterionv € K.

Definition 23 a) Given all criteria, aBy ® Bj-
measurable function?(u,t) € U x T

PE (u,t) 2
2 f {NEﬂ*(~,t)(u) Vopg(w) V p=(v, u)} °
K
° g (), (27)

where the extended fuzzy measyie : Bx — [0, 1]
is the dual fuzzy measure 9k (VS € B : g5 (S) =

1 — gx(S)), is calleda gain with respect to a current

(upper) fuzzy control process” € By ® Bj with
respect to the initial fuzzy contrgly_., (. -,y (u) =
i (w)-

b) Given all criteria, &8y ® Br.-measurable func-
tion: V(u,t) e U x T

alf (u,t) 2
= f{“ﬂﬂa*(',t) () A pox(u) A g (v, “)} °
K
o gk (-) (28)

is called a loss with respect to a future (lower) fuzzy

control process:, € By ® Br, with respect to the
initial fuzzy controlyug,, (. ) (u) = pox(u).

Definition 24 a) A B ® Bj-measurable function:

is the operator of the WSCDS states change dynamics; V(u,7) €U T

on right-hand sides of Sugeno extended lower and up-

per integrals the integration measures are the extremal

compositional fuzzy measures extended with respect
to the proces$R,, R*) (Definition 21);E is a symbol
of projector of Galois indexing mapping.

We say that the effectiveness of WSCDS control
is defined by some set of Criterfd, on which fuzzy

Iﬂ* (uv 7-) é

[ PEw oG () @9

T

is called an integral current gain with respect to a cur-
rent (upper) fuzzy control proces$ € By @ B on

a current fuzzy time interval* € 5.
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b) A By ® Br.-measurabléunction: V(u, ) €
UxT

Fo(wr) 2 f o, () ©0)

T

is called an integral future loss with respect to a future

(upper) fuzzy control process, € By @ Br. on a
future fuzzy time intervaf,., € Br,.

We have thus defined, oii, an extremal fuzzy
“gain-loss” process I+, J,,). Further, for model
(24) we will consider, in terms of (29) and (30), the
problem of formation of an optimal control (in the
sense of minimization of the future loss and maxi-
mization of the current gain) of an extremal process:
V(u,t) e U x T

P (1,1) 0 G, () (7) = max,

(31)
as (u,t) o gmg_(r)(-) = min.

U

B

Functional equations by means of which we can
define an extremal fuzzy optimal control in the sense
of extremalization of criteria (31) can be written in the
following form, V(u, 7") € U x |19, 7]:

j’g (U,T/) = A jﬁ (U, T/) =
Uk a*eBU®BT*
Y -

U« EBy @By v *
u U T T

32
Ewr)= vV L) = (32)
= v % PﬂK*(uat) OgER*(~,T/)(')7
i €By ®BY .
with the initial control conditions
]EE ('77-0) = a0* S BUa
- (33)

Eg*(-,To) = ’dfg € BU

and the WSCDS initial statesiE@*(-, 70) and
E@* ('7 TO)'

Definition 25 An extremal fuzzy control process
(uy,u*), 7o < 7' < 7, with the initial conditions (33)

is called an optimal for WSCDS (24) in the sense of
Bellman’s optimality principle if criterion (32) is sat-
isfied.
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The following theorem which gives the optimality
condition (an analogue of Bellman’'s equation [1]) is
valid.

Theorem 6 Let a controllable WSCDS be described
by system(24). Then an extremal fuzzy control pro-

cess(t,, u*), 7y < 7' < 7, is optimal in the sense of
criterion (32) if and only if the following inequalities
are fulfilled: V(u, ') € U x 10, 7]

(Kf o) 0 7))

/\MEE (-;70) (U),

(K/ (o) 03 () )

VHE, () (u);

Js (u, 7)<

Use

(34)
Ig* (uv T/)

Theorem 7 An extremal fuzzy optimal control pro-

cess(&*,ﬁ*) for the WSCDS(24) in the sense of
criterion (32) not depending on a WSCDS state can
be defined by the following system of fuzzy-integral
equations¥(u, ') € U x [, 7]

pa (u,7')=pa (u,70)A
A(%ﬂz(v, u) o EK(-)>A 9ag (At (1),
K /
Pe, (u, T ):“3* (u, T0)V

\/(f,uz(v, u) o @'}}())V fgv]E@*(-,A(TOJ’))(T)‘
K

(35)

Remark 2 Expressions in (35) of an extremal opti-

mal fuzzy control processu,,u*), 7y < 7 < T,

are a variant of the solution of inequalities (34), but
this fuzzy-integral representation of an optimal con-
trol gives a good analogue of the solution of the prob-
lem of stochastic dynamic programming, where the
expression of an optimal control contains “direct”
analogues to (35).f 13 (v,u) o gk (-) is the Bell-

man functional Whlii:h is an analogue of the kernel in
the representation of a stochastic optimal control or,
more exactly, an analogue of the signal of a stochas-
tic model or its deterministic part, while the values of
the extended fuzzy measurﬁgﬁﬁ*(,,A(TM/))(T) and

§E§*(.,A(TO,T,))(T) are analogues of stochastic mea-

sure in the representation of stochastic optimal con-
trols.

It is studied the case when a fuzzy control of
WSCDS depends not only on timé € [0, 7| but also
on a WSCDS state € X.
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3.2 Casewhen a fuzzy control depends on
the WSCDS state

Now let us consider a more difficult case, where a
fuzzy control of a controllable WSCDS depends not
only on timer’ € [y, 7], but also on a WSCDS
statex € X. Then the fuzzy control is considered

asu’ € By ® B, a future fuzzy control process as
u, € (By ® B)®Br., acurrent fuzzy control process

asi™* € (By @ B) @ B or pw : U x X — [0,1],
pa 2 (U x X)x T —[0,1], g : (U x X) xT —
0,1].

In this situation WSCDS model (24) changes and
we obtain:V(z,7) € X x T

g (w.7) =

= f{NEﬁ;(-,z,r) (U)/\,MEﬁ,* (L.,.)(u,t)}o

UxT

—_—

o gUOn (,r)();

36
g (a,7) = =

= % {uEﬁ/* (1) (U,) \/'U“Eﬁz* (x, ) (U, t) }O
UxT

The maximal gain and the minimal loss for a fuzzy

controlw’ € By ® B change as followsY(v, x) €
KxX

Ly(v,z) 2 v {MEE(.@)(U) A Mf,(%%fv)} :
A {15 () A i (0, 0,) |
(37)
whereL’ is a fuzzy loss taking into account the state
r e X.
a) a maximal gaifP ;- is calculated by

jﬁ/(U,CC) é

11>

Pﬁ’* (Ua z, t)
A
= UXU{ (11 (es0) (W) V By (o) (W) A
/\,uL/(v u x)} (38)

and b) a minimal lossg; is calculated by

{ (ME% () (W Apig, (.735770)(11)) Vv

Vg (v, u, x)} (39)
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In Definition 23, a gain and a loss for all criteria
are calculated as follow&(u, z,t) € U x X X [19, 7]

A
PE. =

A
:% HE - ( :J:t)( )\/IU’IE /*(z‘ro)(u)v
K

(u,x,t)

N Iu’f/ <U7 u, 1‘):| ° gK()v
N (40)
g,*(u,:c,t) =

A
8 [ oy (0) Ay ()

K

A bz (0, 4,2)] 0 Gic ().

In Definition 24, the integral current gaify;-
and the future loss/;; are calculated as follows:
V(u,z,t) € U x X x [19,7]

A [F -
o (w.2.1) 2 PE.(0.2.0) 0y .0 )

A

T
-
(41)

The optimization problem (31) can be now rewritten

K
qQy

*

Ty (u, 2, 7) (u,2,t) 0 Gr . (.,r)()-

Opt* (u'™) 2

/*E(BU@)B)@E;

wauxt /u* )ogr(),

T T (42)
Opt, (i) =8

u G(BU®B)®BT*

% (u,z,t) f ) o grs(+).

T T

with the initial control conditions
Es (+,70) = o« € By @ B,
o L (43)
Ea/*(-, 7'0) = HS S BU & B,
and the initial state conditions
) € B.

E©*<',T0) and EQ*(',TO (43’)

We can reformulate Definition 25 as follows.

Definition 26 If the fuzzy control depends on a
WSCDS stater € X, then an extremal fuzzy control
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process(t,, u*), 7o < 7 < 7, with the initial con-
ditions (43) is called an optimal control (an extremal
optimal control process) in the sense of Bellman'’s op-
timality principle provided that criteria (42) are satis-
fied.

Suppose we are given some fuzzy conditional
measurey, (- | v) that connects the fuzzy measure
spaces X, B, g) and(K, Bk, gk ):

o(4) = f ge(Alv)ogi(), YAECB, (44)
K

whereVv € K, g,(- | v) : B — [0,1] is a fuzzy
measure andA € B, g,(A|-): K — [0,1] is aBk-
measurable function. Note that the conditional fuzzy
measurey, (- | v) takes into account the influence of
a WSCDS state: € X in terms of an estimate by a
criterionv € K.

We introduce the following definitions.

Definition 27 The proces$5*, 5*), Z* € By ® Brs,
u* € By @ By defined asfu € U

Mz (U,T/) =
- f {ME@*(-,T’) (x> A MES, (u,~,7”)($)/\
X *

A b, ) (@) 0 90),
" (45)
Mz (U, T/) =

is called an extremal fuzzy WSCDS control process
in fuzzy extremal state@ 5 (-, 7, Eg.( ) (10 <
7 < 7).

Definition 28 A fuzzy loss L is defined with a
WSCDS state taken into account through the condi-
tional fuzzy measure

ME(Uvu) é fﬂZ/(%u?x) ogm(- ‘ 1)), (46)

X

whereL’ € Bx ® By @ B is a fuzzy WSCDS loss
for a choiceu € U with a strategy € K in a state
r e X.
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The following theorem is true.

Theorem 8 An optimal fuzzy extremal control pro-

cess(&*, &*) for WSCDS(36) in the sense of criterion
(42) depending on a WSCDS state, can be defined by
the system of fuzzy-integral equations

/LS (U,T/) =
U
= sz (U,T()) A % MEJ/(‘M‘,U,T/)(J;/’x,/7v)o
U Px
X2xK

—_— —_~

o (gm(' [v) @ g() ®9K(')> A
NG (A, (1),

(47)
pe (1,7)

/1”6*(”77—0) \ % /’I/Eﬁ/l*(‘,',',u,‘l'/)(x,7x”?v)o
U
X2xK

o (g2 Tv) 29" () @ g5 () v
\ gE‘E* (-sA(70,7)) (T)’

where the fuzzy relationg!! and p”* are defined as
follows:

Zf*’:@; ﬂz’, ﬁ*, € B2 ® Bx®(By & Br.),

- (48)
ﬁ/*:Ql* ﬂL/, ﬁ/* 682 ®BK®(BU ®B[}:)’

while the fuzzy relations)’, and Q’* are cylindrical
continuations of the relation&),, Q*). The process
(Q.,Q*) describes WSCDS state dynamics B
andvr’ € [, 7],V(v,z) € K x X

n A ! n A
MEQI (""U) (.’E, T ) - 'ué* (:E’ T )’ NJEQI*(',HU) (I‘, T ) -

A

= i (2, 7).
Proof. Using certain properties of the extremal
Sugeno integrals and the composition properties of
extremal extended fuzzy measures (see [16]), we ob-
tain: V(u,7’) € U x [19, 7]
e () = f [ME@*«,T')(:U’) At (g (W)

X *

" {Kf [/MEZ/(W,-)(U;%H)O

X

/\gE~

R«

oa:(-10)| 071} | 051

ps (u, 7o) /\f
Use
X

(-sA(70,7")) (T)

{/"LEQ* (-,T/) (x/)/\



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

ISSN: 1991-8763 948

A [fum/(,u,)(v,x”) o (gac/(-\vv) ®9/Kv(-)>HO
XxK
0 9() Ngr s (a(ror) (1) = ps (u,70)A

A gEﬁ*("A(To,T’))(T) = W (u, 0)A
A f [ME@;(.;/7.)(;13’71)) N /LEE/(',u,-)(l'",’U)] o
X2xK

P

o <g:r( | v) ®g/\/(') ®5/1(x§) A gEg*(',A(To,T'))(T)

= U3 ('LL, 7'0) VAN % |:ME~//(-,~,.7U,T’)('$/7 Iﬂa U)] ©
Uy Px
X2xK

e~ —~—

o (92 T0) ® 90) @ 9 ()) Ay (At (D),

where
Eﬁ;’(‘? . ',U,T/) — EQ;(’ 7-/’ ) ﬂ EZ’(.’ u’ )

We have thereby proved the first equality in (47). The
second equality in (47) is easy to prove by applying
the properties of the extremal Sugeno integrals for
complementary fuzzy relations and dual fuzzy mea-
sures.

The theorem is proved. O

4 Definition of Fuzzy Relations of a
Future Loss and a Current Gain in
the WSCDS Optimization Problem

Proceeding from the results obtained in the preceding
section on an optimal WSCDS control, we see that
this control is defined by fuzzy relations of a future
loss and a current gain (Theorems 6-8). Their com-
patibility functions are analogues of Bellman’s func-
tions in the classical dynamic programming method.
Thus we need to obtain a fuzzy relation of a lédsgor

L) takinginto account a state in which the controlled
WSCDS is. Here we will consider the case only for
L, using the processed available information on the
WSCDS structure and characteristics. Thelsale-
fines the set of criterion estimates of the WSCDS,
while U is the set of all possible controlling influences
on the system. To obtain the compatibility function
pz(v,u) we should additionally consider the set of
WSCDS characteristic® (for instance, of WSCDS
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state characteristics, external disturbances, additional
restrictions and so on). Each characteristic= 2
takes its own values in some universal get (most
frequently,A,, is a numerical set). It is assumed that
these characteristics may be fuzzy or have fuzzy val-
ues inA,,, the distribution of which is known.

It is advisable to choose such characteristics of
the set() that define to a maximal extent an estimate
obtained by a criterionn € K. To define the val-
ues ug_(.v) (u), we first restore by various methods
(expert evaluation, processing of available observa-
tion data and so on (see, e.g., [18])) the conditional
fuzzy measure,, (- | v) that preassigns “a degree of
desirability” of a valuea € A, of a characteristic
w € Q, and b)gq(- | v) that defines “the impor-
tance of taking into account the value” of a charac-
teristicw €  for an estimate obtained by a criterion
v € K. Itis assumed that the fuzzy measure spaces
(2, Ba, gal- | ), (Au, Ba.,gu(- | v)) are given
ones, and also that the fuzzy measuyg§ | v) and
ga(- | v) define some knowledge base on the WSCDS
subject-matter. The WSCDS knowledge base is de-
fined by the train

<K> Uva{AUJ}weQagw(' | U)?QQ(' | U)>

All components of the WSCDS knowledge base are
assumed to be described a priori. To describe the func-
tion HE () (u) itis necessary to measure (or to prog-
nose or estimate) possible (most probably fuzzy) val-
ues of the characteristics 6f for a choice of control
u € .

Suppose that as a result of measurements we
have, for a concrete € 2, some compatibility func-
tion

(49)

hy: X x A, x U — [0,1], (50)

that defines possible valuess A, of a characteristic
w €  for a chosen control. Then the fuzzy gain func-
tion HE~(-v) (u) is definedby a double fuzzy integral
of the form

IU’ET(',U

/

This integral is interpreted as follows: after taking the
first integral, for a fixed criteriom € K of a control
choice we have a gain € U for each characteris-
tic from 2. The second integral defines a generalized
gain degree of a choice of contral ¢ U for each
criterionv € K.

The use of (51) in the case of (35) for defining
an optimal WSCDS control allows us to solve “static”

y(u) =
[ hwrau) 0 (-1 0)| o gal ] 0). G

Aw
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problemsof an optimal choice in the possibility un-
certainty conditions.

If an expert grougE takes part in the estimation
of WSCDS states and the possibility distribution of
experts’ competence isg(e), e € E, then for each
experte € F the functionh naturally depends ofnso
that the integral definition (51) can be replaced by

5y = f {f | f rcraworon10)o
E Q

w

o gal- v>} o Poss(.). (52)

wherePoss is a fuzzy possibility measure dfi, 2%)
with the possibility distributionrg(+).

5 Example
Let the set of WSCDS states be finiteY =

{1,2,3,4}; g* : 2¥ — [0, 1] be the possibility mea-
sure with the possibility distribution oX

i 2L, i=1,234
4
X . % - .
(vBe2¥:g"(4) = v m(0)).

Let the WSCDS be subjected to the influence of
an external control factor with the finite sét =
{uy,us} (for example,u, é“+1”, U Bu_ 1"). Let
the uniform probability distribution play the role of
the fuzzy measurgy : 2V — [0,1],i.e. gy({u1}) =
gu({u2}) = 3. Thetwo-element sekl = {v1,vs} is
taken as the set of chosen criteria, while the uniform
probability distributiongx ({v1}) = gk ({v2}) = 3
is consideredhsplaying the role of the fuzzy measure
gx : 2% — [0,1]. Thus we have the fuzzy mea-
sure spacegX, 2%, g), (K, 25 gx) and(U, 2Y, gi/).
The dual measurg* on 2¥ is the necessity measure
g(A) =1— ‘;/Aﬂ(i). Since the fuzzy measures

andgy are the probability ones, we know they are au-
todual and

97 =9us 9Kk = 9K-

It is assumed that the initial moment of WSCDS
observation isy = 0. Let the initial extremal fuzzy
distributions of an optimal control be

/*’LS (ulv 0)

1
o - 5 - Mg*(u170)7
1
s (u2,0) = — = us (ug,0).
Us 4 u*

949
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Let the binaryfuzzy loss relatiorl on U x K be de-
fined as follows:

1
MZ(Ula vy) = Mz(u2,v2) 25,

1
pg(ur, v2) = pg(uz,v1) =7

Thedistributionsof extremal fuzzy time intervals are
given as

0, 0<t<r,
B, () = 1-7 toa
t7 M (53)
0<t <,

L,
M?:(t):{T
t b

Let the initial distribution ¢ = 0) of the WSCDS
state description process look like

- 1 2 3 4
AO*“’(l 11 1>’
4 4 2 2

t>T.

1 2 3 4 (54)
‘AS“J<1 11 1>-
2 2 2 2
We consider the example of the space
(Ta BT*7 B;‘v g;, %‘«) Whel’e
A 1
gr+([t, +00)) = ——,  [t,400) € Bry,
o 1+t (55)
gr([0,t)) = 0,t) € By, t>0.

14t

Further, we introduce the conditional fuzzy mea-
sures onBr, and B}, with respect to the sek =
{1,2,3,4}:

«(Tr4] 1) =——, wWhereie X, r,, € Brx,
gt (TT |Z) 1+ZT 1 rr T (56)
1T
H(r¥li) = ——, whereie X, r e Bj.
9t (TT| Z) 1+ZT ¢ rr T

Thus the WSCDS state description process can be rep-
resented as follows:

.07 = { s (0) At oy 1) o

UxT

Oé\l}@)gE]ﬁ* (,T) ()7

M@*(SC,T)Zf {MEW(.,T)(U)Vumﬁ,*(z,-,.)(u,t)}o

UxT

Og\(}@gE]ﬁ* ('7T)<')a (57)
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where Ay, = Ej (-,0), 45 = Eg.(0), (R.,R*)
is the extremal fuzzy reflection process (see [16]),
V(z,7) € X x T,V(x,t) e U x T

pz (2,7) 2 GoulTre | 2) = pz_(2), 58)

A o
,LL]E*(.%‘,T) =0 (TT | .TJ) = Mg:_(x)v

and

>3

A 5., 0) 030,
Ao.

pg (2, u, 1) a

A

Hp, (:E, u, t)

(59)
K= (l’, u, :L‘lv t) ° ﬁ*(),

where A,. € B and AX € B are expert reflections
on the WSCDS states in the fuzzy extremal inter-
vals 7., € Br andr: € B, respectively;(p., p*)

is the WSCDS mput output operator (see [16]). As
is known the operatofp.,, p™*) is restored from the
experimental-expert knowledge base on the WSCDS
so that if we fix some admissible extremal control pro-
cess(us, u*) (including an optimal control too), then,
using the calculation procedure for Sugeno extremal
integrals [16], we can write expressions for the pro-
cess(Q., Q*). However we pursue a different aim
here: using WSCDS data, we are to construct the ex-

tremal optimal control proces@t,, u*
(35).

Since the setX, U, K are finite, it is not difficult
to establish that the conditions (34) for an optimal ex-
tremal control process to exist are satisfied. By virtue
of the results of Theorems 6 and 7, we can write one
of the variants for an extremal optimal fuzzy control
process as follows?(u, 1) € (X, T)

) by formulas

pe (1) =gtz (u,0) A (fuz(u,v) O§K(->>A

K
/\gE]ﬁ* (-y7) (T),
i ) =g (0.0 (f bzt 0) 0 ) v
K

\/gE]ﬁ* (,T) (T)’
(60)
1"}, v € {vr,ve}; ps (u,0)

anduo (u,0) are already defined, while the ‘extended

whereu € {"+1”, “—

950
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extremal fuzzy measures are defined in the form [16]

11>

T (o T) = f 15,0 2T ()

T

fre. 00 f 151090,

T . (61)

,Ur:( )ogr(-)
f* pis (t) ©

T

A

>

[1>2

i l2)og™ ().

Now we are to calculate the Sugeno integrals in for-
mulas (60) and the values of extremal fuzzy measures
(61).
Let us calculate the values ¢fy; (u, v) o g (-):
K

l)u—u1 u+1n
() o 5ic() =
K
= T > -
0<§§1 {a V(v e K | pz(u,v) > a}

- [0<2§1(av9K(K))} A
A[;SQS;(O‘VQK({Uz}))} A
/\[%<a§1(a\/gK(@))] —1A % A % _ %

%“E(“% )ogx ()
K
- 0<§§1 {QVQK(U € K | pg(uz,v) > a} —
= {ogaglmng(K))} A
AL, A @V artmp)] A
[, v a®)] -
=1 [;<ﬁ<; (a\/ %)} A L<a<1(0z)} —
- _221/\1/\1:12_
2 2 2"
Since
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we have
— - 1
fuz(ul,v)ogK(J —fui(uw)ogK(-) =5
K K
Thereforevr > 0
Mz (Ulﬂ'):% N % N GE. ( r)(T):% AgE@*( »(T),
Mz (Uzﬂ'):% A % /\515@*( H(T)=17 /\ﬁE@ (1),
pe (w1, m) =3V 3V G (,)(T) =3V Grg. () (T),
Mg* <u27 T) :% \ % \ gEﬁ* (-y7) (T) =3 \% gE]ﬁ*( ,T) (T)

951

Now we are to calculate the values of the so-

called extremal fuzzy “white noise” (61):

G (o) T) = f 1.0 0 f gua(- | 2) 0 9() =

T X
v e AGr(Frda)}

= e Xf G (ol ) 90 -

From (53) weobtain the expression for amcut for

T

T if a=0,
Frda =3 | o) i 0<a<1, §€Br.
0 if a=1,
Now (56) implies
1 if =0,
gt*([?‘r*]a | Z) = '11 If 0 <a< 1’

0 ifa=1,
V¢ € X and

f Gu([Fraler | ) 0 9(-) =

X

) 1
‘Wl{mg({ld = M})}-

It is notdifficult to verify that(0 < o < 1,7 > 0)

) 1
{ZGXWEﬁ}:

0 if 1>08>

- 1— a—i—T ’1
1 —Q
{1} if —otr = > B> 1—oter Olz—l-QT’
— T o]
- {1’2} if 1 1a+2‘r > B > 1 1a+37' ’
H —
{1,2,3) 1f i 26> =75
X if e > g

l—a+4r
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Denote B, = 1), B =
l-a . 1-« — l-a« . l1—«
<1—o¢+2'r’ 1—a+7}’ 32 - (1 a+377 1— oz+2'r]

— l-a . _1 — ._1-a
B3 = <1 ()c+47" 1- O!fSTi| By = <0’ m}
Then

%gt*([ﬁ-*]a | x)og(-) = [

X

v,y Brg] V] v 8V a{Lan)] v
V{BEVBS(ﬁvg({LZ?)}))] VLY (BAg(X))
:ov[ (m()) v[ﬁe&(mm]

BEB1
V[, Br 0] v [y, @A) =

_ l—«
 l—a+t4r’

(B Ag0)] v

B€Bo

V
Be€By
We finally obtain

gy (,)(T) =

SR Xf i (el | 2) 090}
- o fon i

11—«
1—a+4r

After studying the function in the braces with re-

spect ton,, we can continue calculations:

vV {a} =1

0<ax<l1

\ {
a€[l;21—1-24/7(7—1)]
=27—1-2/7(7—1) if 7>1.

Sincegy.. ¢ () andg%*(,ﬂ(-) are extended ex-
tremal measures, we have

if 0<7<1,

if 0<7<1,

0
e (T) = i
. ) (T) {2—}-2«/7‘(7’—1) if 7> 1.

For an optimal control we obtain the following expres-

sions:
%, 0<r<,
ps (u1,7) = ¢ 3 A 27 —1-2/7(1 — 1)),
U
T>1,
%, 0<r <1,
ps (ug,7) =4 2 A (21 —1-2/7(1 — 1)),
U
T>1,
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%, O0<7<,
ps (u1,7) = q 3V (2+2y/7(T — 1) — 27),
T>1
— iy (u2,7)

Note that whenr — +o0 a current description
process of fuzzy time intervals extends unlimitedly,
while a future description process of fuzzy time inter-
vals vanishes. The latter fact is reflected in the expres-
sions for the fuzzy optimal extremal controls:

lim ps (u,7) — 1, welU={u,u},
T—00  u*
lim ps (u,7) =0, weU={up,us}.
T—00 Uk

i.e. the uncertainty for a current fuzzy control process
vanishes, while a future fuzzy optimal control process
is not considered.

We have thereby finished the consideration of the
example.

6 Conclusion

Problems of optimization of a continuous controllable
extremal fuzzy process are considered using R. Bell-
man’s optimality principle. An extremal fuzzy “gain-
loss” process is defined, which plays the role of Bell-
man’s function in the classical variant of the dynamic
programming problem. Theorems 6-8 allow one to
write variants of an optimal control for the WSCDS. A
fuzzy gain relation is defined using the expert knowl-
edge base on the WSCDS subject-matter.

A practical example is given to illustrate the re-
sults obtained.
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