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Abstract: This work deals with the problems of the Weakly Structurable Continuous Dynamic System
(WSCDS) optimal control and briefly discuss the results developed by G. Sirbiladze [17]. Sufficient and
necessary conditions are presented for the existence of an extremal fuzzy optimal control processes, for
which we use R. Bellman’s optimality principle and take into consideration the gain-loss fuzzy process. A
separate consideration is given to the case where an extremal fuzzy control process acting on the WSCDS
(1) depends and (2) does not depend on an WSCDS state.
Applying Bellman’s optimality principle and assuming that the gain-loss process exists for the WSCDS,
a variant of the fuzzy integral representation of an optimal control is given for the WSCDS. This variant
employs the instrument of extended extremal fuzzy composition measures constructed in [16].
The questions of defining a fuzzy gain relation for the WSCDS are considered, taking into account the avail-
able expert knowledge on the WSCDS subject-matter.
An example of constructing of the WSCDS optimal control is presented.

Key–Words:Fuzzy Optimal Control, Fuzzy Dynamic Systems, WSCDS, Extended Extremal Fuzzy Mea-
sures, Sugeno Type Extremal Integrals, Fuzzy Gain-Loss Process, Bellman’s Optimality Principle

1 Introduction

In recent years, both the dynamics of fuzzy system
and the modeling issue received an increased atten-
tion. Dynamics is an obvious problem in control;
moreover, its interest goes far beyond control applica-
tions. Applications of the dynamics of fuzzy systems
and of the modeling of dynamic systems by fuzzy sys-
tems range from physics to biology to economics to
pattern recognition and to time series prediction.

Evidence exists that fuzzy models can explain co-
operative processes, such as in biology, chemistry,
material sciences, or in economy. Relationships be-
tween dynamics of fuzzy systems and the perfor-
mance of decision support systems were found, and
chaotic processes in various classes of fuzzy systems
were shown as a powerful tool in analyzing complex,
weakly structurable systems, as anomal and extremal

processes.

To make the decision-making effective in the
framework of computer systems supporting this pro-
cess, we must solve analytic problems of state evalu-
ation, model identification, complex dynamic system
control, optimal control, filtering and so on.

It is well recognized that optimization and other
decision support technologies have been playing an
important role in improving almost every aspect of
human society. Intensive study over the past several
years has resulted in significant progress in both the
theory and applications of optimization and decision
science.

Optimization and decision-making problems are
traditionally handled by either the deterministic or
probabilistic approaches. The former provides an ap-
proximate solution, completely ignoring uncertainty,
while the latter assumes that any uncertainty can be
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representedasa probability distribution. Of course,
both approaches only partially capture reality uncer-
tainty (such as stock price, commodity, cost, natural
resource availability and so on) that indeed exist but
not in the form of known probability distributions.

In alternative classical approaches to modeling
and when working with complex systems the main
accent is placed on the assumption of fuzziness. As
the complexity of systems increases, our ability to de-
fine exactly their behaviour drops to a certain level,
below which such characteristics of information as
exactness and definiteness become mutually exclud-
ing. In such situations an exact quantitative analysis
of real complex systems is apt to be not quite plausi-
ble. Hence, a conclusion comes to mind that problems
of this kind should be solved by means of analytic-
fundamental methods of fuzzy mathematics, while the
system approach to constructing models of complex
systems with fuzzy-statistical uncertainty guarantees
the creation of computer-aided systems forming the
instrumental basis of the solutions intelligent technol-
ogy of expert-analytic problems. It is obvious that the
source of fuzzy-statistical samples is the population
of fuzzy characteristics of our knowledge. Fuzziness
arises from observations of time moments as well as
from other expert measurements.

In the Preface of the Journal of Fuzzy Optimiza-
tion and Decision Making (vol. I, 2002, pp. 11–12)
Professor L. A. Zadeh had said: “My 1970 paper with
R.E. Bellman, “Decision-Making in a Fuzzy Environ-
ment” was intended to suggest a framework based on
the theory of fuzzy sets for dealing with imprecision
and partial truth in optimization and decision analy-
sis. In the intervening years, a voluminous literature
on applications of fuzzy logic to decision analysis has
come into existence.”

Problems of making an optimal solution for sys-
tems with fuzzy uncertainty are difficult because it fre-
quently happens that the controllable object possesses
conflicting properties which might include:

1) imperfection of a control process due to informa-
tion uncertainty;

2) unreliable elements of a control system;

3) nonuniqueness and the applicability of many cri-
teria encountered in a control process;

4) restriction of possibilities (resources) of a control
system;

5) loss of the ability of a control system to solve
arising control problems.

Fuzzy programming problems have been dis-
cussed widely in literature ([2], [3], [6], [11], [17],

[10] and so on) and applied in such various dis-
ciplines as operations research, economic manage-
ment, business administration, engineering and so on.
Liu B. (Liu [10], 2002) presents a brief review on
fuzzy programming models, and classifies them into
three broad classes: expected value models, chance-
constrained programming and chance-dependent pro-
gramming.

Our further study belongs to the first class, where
we use the instrument of fuzzy measures ([4], [5],
[16], [17], [18], [19], [20], [24]) or, speaking more ex-
actly, extremal fuzzy measures and Sugeno integrals
along with extremal fuzzy expected values.

Our attention is focused on the rapidly developing
theory of fuzzy measures and integrals [4], [16], [19].
The application of fuzzy measures and integrals as
an instrument of constructing of intelligent decision-
making systems is not a novel idea [4], [16]. We em-
ploy the part of the theory of fuzzy measures which
concerns extremal fuzzy measures [16] and which, in
our opinion, is rather seldom used. We have con-
structed a new instrument of a fuzzy measure [16],
the extension of which is based on Sugeno lower and
upper integrals [24].

We will deal with the fuzzy control problems of
fuzzy dynamic systems (WSCDS) [16], [17], where
fuzzy uncertainty arises with time and time structures
are monotone classes of measurable sets. On such
structures the extremal fuzzy measures play the role
of measures of uncertainty.

In the present paper, we continue to investigate
the controllable extremal fuzzy processes defined in
[16]. The subject/matter of our investigation is the
existence of an optimal control for WSCDS’s. Sec-
tion 2 contains some necessary preliminary concepts
presented in [16]. Section 3 deals with problems
of WSCDS optimization when the control parameter
depends or does not depend on a state in which an
WSCDS is. Questions of the existence of an optimal
control are studied, and variants of their fuzzy integral
representation are proposed. Section 4 contains anal-
ysis of the definition of the gain-loss fuzzy process
for WSCDS’s, which is carried out using the avail-
able expert knowledge on the WSCDS subject/matter.
Section 5 contains an example in which the WSCDS
fuzzy optimal control process is constructed.

2 Preliminary Concepts

All definitions and results see in [16].
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2.1 On the space of extended extremal fuzzy
measures

Definition 1 Let X be some nonempty set.
a) We call some classB∗ ⊂ 2X of subsets

X an upperσ∗-monotone class if (i)∅, X ∈ B∗;
(ii) ∀A,B ∈ B∗ ⇒ A ∪ B ∈ B∗; (iii) ∀{An} ∈ B∗,
n = 1, 2, . . . , An ↑ A ⇒ A ∈ B∗.

b) We call some classB∗ ⊂ 2X of subsets
X a lower σ∗-monotone class if (i)∅, X ∈ B∗;
(ii) ∀A,B ∈ B∗ ⇒ A ∩ B ∈ B∗; (iii) ∀{An} ∈ B∗,
n = 1, 2, . . . , An ↓ A ⇒ A ∈ B∗.
Definition 2 We call the classesB∗ andB∗ extremal
if and only if

∀A ∈ B∗ ⇔ A ∈ B∗.
Remark 1 Let B ⊆ 2X be someσ-algebra. ThenB
is both aσ∗-monotone class and aσ∗-monotone class.

Definition 3 1) (X,B∗) is called an upper measur-
able space;

2) (X,B∗) is called a lower measurable space;
3) If B∗ andB∗ are extremalσ∗- andσ∗-monotone

classes, then(X,B∗,B∗) is called an extremal mea-
surable space.

Example 1

B∗1 ∆=
{
A ⊂ R+

0 | A=(α; +∞), α ∈ R+
0

} ∪
∪{∅} ∪ {R+

0 } is aσ∗-monotone class,

B1∗
∆=

{
A ⊂ R+

0 | A = [0;α], α ∈ R+
0

} ∪
∪{∅} ∪ {R+

0 } is aσ∗-monotone class.

B∗1 and B1∗ are respectively called a Borelσ∗-
monotone class and a Borelσ∗-monotone class of first
kind. Clearly,B∗1 andB1∗ are extremal.

Example 2

B∗2 ∆=
{
A ⊂ R+

0 | A = [0;α), α ∈ R+
0

} ∪
∪{∅} ∪ {R+

0 } is aσ∗-monotone class,

B2∗
∆=

{
A ⊂ R+

0 | A=[α; +∞), α ∈ R+
0

} ∪
∪{∅} ∪ {R+

0 } is aσ∗-monotone class.

B∗2 andB2∗ are respectively called a Borelσ∗- and a
Borelσ∗-monotone class of second kind. It is obvious
thatB∗2 andB2∗ are extremal.

Definition 4 Let (X,B∗) be some upper measurable
space. A functiong∗ : B∗ → [0; 1] is called an up-
per fuzzy measure if: (i)g∗(∅) = 0, g∗(X) = 1;
(ii) ∀A,B ∈ B∗, A ⊂ B ⇒ g∗(A) ≤ g∗(B);
(iii) ∀{An} ∈ B∗, n = 1, 2, . . . , An ↑ A ⇒ g∗(A) =
lim

n→∞ g∗(An).

Definition 5 Let (X,B∗) be some lower measurable
space. A functiong∗ : B∗ → [0; 1] is called a
lower fuzzy measure if: (i)g∗(∅) = 0, g∗(X) = 1;
(ii) ∀A,B ∈ B∗, A ⊂ B ⇒ g∗(A) ≤ g∗(B);
(iii) ∀{An} ∈ B∗, n = 1, 2, . . . , An ↓ A ⇒ g∗(A) =
lim

n→∞ g∗(An).

Definition 6 Let (X,B∗,B∗) be some extremal mea-
surable space,g∗ be a lower andg∗ an upper fuzzy
measure.

Then:
a) g∗ : B∗ → [0; 1] andg∗ : B∗ → [0; 1] is called

extremal if and only if

∀A ∈ B∗ : g∗(A) = 1− g∗(A).

b) (X,B∗,B∗, g∗, g∗) is called a space of extremal
fuzzy measures.

Definition 7 Let (X1,B′∗,B′∗) and(X2,B′′∗ ,B′′∗) be
some extremal measurable spaces;h : X1 → X2 is
called measurable if

∀A ∈ B′′∗, B ∈ B′′∗ : h−1(A) ∈ B′∗, h−1(B) ∈ B′∗.
Definition 8 Let (X,B∗,B∗) be some extremal mea-
surable space. Then:

a) The functionh : X → R∗0 is called upper mea-
surable if and only ifh is measurable with respect to
the spaces(X,B∗,B∗) and(R+

0 ,B1∗,B∗1). Then

∀α ≥ 0 h−1 ((α; +∞)) ∈ B∗, h−1 ([0;α]) ∈ B∗.
b) The functionh : X → R+

0 is called lower
measurable if and only ifh is measurable with respect
to the spaces(X,B∗,B∗) and(R+

0 ,B2∗,B∗2). Then

∀α ≥ 0 h−1 ([0;α)) ∈ B∗, h−1 ([α; +∞)) ∈ B∗.
Definition 9 Let (X,B∗,B∗) be some extremal mea-
surable space.

a) The class of fuzzy subsets̃A ⊂ X with lower
measurable compatibility functions

B̃∗ =
{

Ã ⊂ X | µ eA is lower measurable
}

=

=
{

Ã ∈ X | ∀ 0 ≤ α ≤ 1, µ−1eA ([0;α)) ∈ B∗,

µ−1eA ([α; +∞)) ∈ B∗
}

is called an extension of theσ∗-monotone classB∗.
b) The class of fuzzy subsets̃A ⊂ X with upper

measurable compatibility functions

B̃∗ =
{

Ã ⊂ X | µ eA is upper measurable
}

=

=
{

Ã ∈ X | ∀ 0 ≤ α ≤ 1, µ−1eA ([0;α]) ∈ B∗,

µ−1eA ((α; +∞)) ∈ B∗
}

is called an extension of theσ∗-monotone classB∗.
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Definition 10 An extremal measurable space
(X, B̃∗, B̃∗) is called an extension of an extremal
measurable space(X,B∗,B∗).

Using the Sugeno integral, we next introduce the
notion of extension of fuzzy extremal measures.

Definition 11 Let (X,B∗,B∗, g∗, g∗) be some space
of extremal fuzzy measures, and(X, B̃∗, B̃∗) be an ex-
tension of the extremal measurable space(X,B∗,B∗).
Then:

a) the function

g̃∗(Ã) ≡ �
∫

∗
X

µ eA(x) ◦ g∗(·) ∆=

∆= ∨
0<α≤1

[
α ∧ g∗([Ã]ᾱ)

]
, ∀Ã ∈ B̃∗; (1)

is called an extension of the fuzzy measureg∗ on B̃∗;
b) the function

g̃∗(Ã) ≡ �
∫ ∗

X

µ eA(x) ◦ g∗(·) ∆=

∆= ∧
0<α≤1

[
α ∨ g∗([Ã]α)

]
, ∀Ã ∈ B̃∗, (2)

is called an extension of the fuzzy measureg∗ on B̃∗.
Here [Ã]α = {x ∈ X | µ eA(x) > α}, [Ã]ᾱ =

{x ∈ X | µ eA(x) ≥ α}, 0 < α ≤ 1.

Definition 12 A space of extremal fuzzy measures
(X, B̃∗, B̃∗, g̃∗, g̃∗) is called an extension of the space
(X,B∗,B∗, g∗, g∗).

Let (X,B∗,B∗, g∗, g∗) be some space of extremal
fuzzy measures and(X, B̃∗, B̃∗, g̃∗, g̃∗) be its exten-
sion.

Definition 13 a) Let Ã, B̃ ∈ B̃∗ be any fuzzy sets.
Then the lower fuzzy Sugeno integral of the compat-
ibility function µ eB on the fuzzy set̃A is defined with
respect to a lower fuzzy measureg̃∗ by the formula

�
∫

∗eA
µ eB(x) ◦ g̃∗(·) ∆≡ ∨

0<α≤1

[
α ∧ g̃∗(Ã ∩ [B̃]ᾱ)

]
. (3)

b) Let Ã, B̃ ∈ B̃∗ be any fuzzy sets. Then the up-
per fuzzy Sugeno integral of the compatibility func-
tion µ eB on the fuzzy set̃A is defined with respect to a
upper fuzzy measurẽg∗ by the formula

�
∫ ∗

eA µ eB(x) ◦ g̃∗(·) ∆≡ ∧
0<α≤1

[
α ∨ g̃∗(Ã ∪ [B̃]α)

]
. (4)

Definition 14 Let (X,B∗,B∗, g∗, g∗) be some space
of extremal fuzzy measures.

a) Leth ∈ B̃∗ be some fuzzy set. The measure

∀A ∈ B̃∗ : g̃h∗(Ã) ∆= �
∫

∗eA
µh(x) ◦ g̃∗(·) =

= �
∫

∗
h

µ eA(x) ◦ g̃∗(·) = �
∫

∗
X

µ
h∩ eA(x) ◦ g̃∗(·) (5)

is called the lower extension ofg∗ on B̃∗ with respect
to h.

b) Leth ∈ B̃∗ be some fuzzy set. The measure

∀A ∈ B̃∗ : g̃∗h(Ã) ∆= �
∫ ∗

eA µh(x) ◦ g̃∗(·) =

= �
∫ ∗

h

µ eA(x) ◦ g̃∗(·) = �
∫ ∗

X

µ
h∪ eA(x) ◦ g̃∗(·) (6)

is called the upper extension ofg∗ on B̃∗ with respect
to h.

Let (X1,B′∗,B′∗, g′∗, g′∗) and (X2,B′′∗ ,B′′∗,
g′′∗ , g′′∗) be any two spaces of extremal fuzzy
measures.

We have constructed [16] the compositional space
of extremal extended fuzzy measures(X1×X2, B̃′∗⊗
B̃′′∗ , B̃∗′ ⊗ B̃∗′′, g̃′∗ ⊗ g̃′′∗ , g̃∗′ ⊗ g̃∗′′).

2.2 On the algebraic structure of the fuzzy
time intervals

A person who makes a decision always gives an “in-
complete” prognosis about a time moment for ex-
tremal, crisis, anomalous and other situations that may
occur in the future. The person (expert) who makes a
decision connects all such situations with future fuzzy
time moments and intervals. Clearly, his/her progno-
sis is of possibilistic character and the corresponding
optimal decisions should be obtained by possibilistic-
statistical analysis or, speaking more exactly, by anal-
ysis of monotone fuzzy time intervals, for which we
need to construct a new fuzzy mathematical instru-
ment.

Definition 15 a) Any fuzzy positive number̃r ≡
[̃0, τ) ∈ B̃∗2 is called an extended fuzzy current time
interval.

b) Any fuzzy positive number̃r ≡ ˜[τ ; +∞) ∈
B̃2∗ is called an extended fuzzy future time interval.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
 
ISSN: 1991-8763 940 

Gia Sirbiladze, Anna Sikharulidze, Natia Sirbiladze 
 
Issue 11, Volume 3, November 2008 



Definition 16 The classof current fuzzy time inter-
vals is called the class of fuzzy nonnegative numbers
F̃I

∗
(T ) with the properties(r̃ ∈ F̃I

∗
(T )):

(i) µer(0) = 1;
(ii) ∀τ0 ≥ 0, µer(τ0) = ∨

τ>τ0
µer(τ);

(iii) µer is nonincreasing onT = R+
0 .

It is not difficult to verify thatF̃I
∗
(T ) is a sub-

class of the space of extended fuzzy current time in-
tervalsF̃I

∗
(T ) ⊂ B̃∗2.

Analogously, we introduce the definition of the
classF̃I∗(T ), which is extremal tõFI

∗
(T ), i.e.,

r̃ ∈ F̃I∗(T ) ⊂ B̃2∗ ⇔ r̃ ∈ F̃I
∗
(T ) ⊂ B̃∗2.

Now let us consider the algebraic structures
of the classes of extremal fuzzy time intervals
〈F̃I

∗
(T ), F̃I∗(T )〉.

On the semilattice{F̃I
∗
(T ),¹}we introduce the

algebraic sum operatioñr1

∗⊕ r̃2:

µer1

∗⊕er2

(τ) ∆= ∧{µer1
(τ1) ∨ µer2

(τ2) |
τ1, τ2 ∈ T, τ1 + τ2 = τ}. (7)

It is not difficult to verify that the structure

{F̃I
∗
(T ),¹,

∗⊕} is a partially ordered commutative
semigroup.

The algebraic sum operation
∗⊕ in F̃I

∗
(T ) in-

duces inF̃I∗(T ) another operation (conjugate to
∗⊕)

⊕
∗

:

∀r̃1, r̃2 ∈ F̃I∗(T ) : r̃1 ⊕∗ r̃2 = r̃1

∗⊕ r̃2. (8)

On F̃I∗(T ), the induced structure
{FI∗(T ),º,⊕

∗
} is a partially ordered commuta-

tive semigroup.
We call the pair of structures

〈{F̃I
∗
(T ),¹,

∗⊕}, {F̃I∗(T ),º,⊕
∗
}〉 (9)

an extremal partially ordered commutative semigroup
[16].

2.3 On the composition product of spaces of
extremal fuzzy measures

Let (X1,B′∗,B′∗, g′∗, g′∗) and (X2,B′′∗ ,B′′∗, g′′∗ , g′′∗)
be any two spaces of extremal fuzzy measures.

Definition 17 Let some subsetH ⊂ X1 × X2 be a
binary relation. We introduce the following mappings
∀x0 ∈ X1 and∀y0 ∈ X2:

EH(x0, ·) ∆= {y ∈ X2 | (x0, y) ∈ H} ,

EH(·, y0)
∆= {x ∈ X1 | (x, y0) ∈ H} .

(10)

a) A binary relationH ⊂ X1×X2 is called lower
measurable if∀A ∈ B′′∗ and ∀B ∈ B′∗ there exist
sequences{xn}n∈N ⊂ B, {yn}n∈N ⊂ A such that
EH(xn, ·) ⊃ EH(xn+1), EH(·, yn) ⊃ EH(·, yn+1),
n = 1, 2, . . . . We have

ΓH∗(A) ∆= {x ∈ X1 | ∀y ∈ A : (x, y) ∈ H} ≡

≡
⋂

y∈A

EH(·, y) =
∞⋂

n=1

EH(·, yn) ∈ B′∗ (11)

and

Γ′H∗(B) ∆= {y ∈ X2 | ∀x ∈ B : (x, y) ∈ H} ≡

≡
⋂

x∈B

EH(x, ·) =
∞⋂

n=1

EH(xn, ·) ∈ B′′∗ . (12)

b) Denote byB′∗ ⊗ B′′∗ the set of all binary lower
measurable relations fromX1 × X2 and call it the
composition product of measurable spacesB′∗ andB′′∗ .

a′) A binary relationH ⊂ X1×X2 is called upper
measurable if∀A ∈ B′′∗ and∀B ∈ B′∗ there exist
sequences{xn}n∈N ⊂ B, {yn}n∈N ⊂ A such that
EH(xn, ·) ⊂ EH(xn+1), EH(·, yn) ⊂ EH(·, yn+1),
n = 1, 2, . . . . We have

Γ∗H(A) ∆= {x ∈ X1 | ∃y ∈ A : (x, y) ∈ H} ≡

≡
⋃

y∈A

EH(·, y) =
∞⋃

n=1

EH(·, yn) ∈ B′∗ (13)

and

Γ′∗H(B) ∆= {y ∈ X2 | ∃x ∈ B : (x, y) ∈ H} ≡

≡
⋃

x∈B

EH(x, ·) =
∞⋃

n=1

EH(xn, ·) ∈ B′′∗. (14)

b′) Denote byB′∗ ⊗ B′′∗ the set of all binary up-
per measurable relations fromX1 × X2 and call it
the composition product of measurable spacesB′∗ and
B′′∗.

It is not difficult to verify that B′∗ ⊗ B′′∗ is a
lower σ∗-monotone class andB′∗ ⊗ B′′∗ is a upper
σ∗-monotone class.
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Theorem1 Let (X1,B′∗, g′∗) and(X2,B′′∗ , g′′∗) be two
spaces of lower fuzzy measures. Then on the compo-
sition lower measurable space(X1×X2,B′∗⊗B′′∗) the
measureg∗ : ∀H ∈ B′∗ ⊗ B′∗ defined by

g∗(H) ≡ g′∗ ⊗ g′′∗(H) ∆=
∆= ∨

E∈B′∗

{
g′∗(E) ∧ g′′∗(Γ

′
H∗(E))

} ≡

≡ ∨
F∈B′′∗

{
g′∗(ΓH∗(F )) ∧ g′′∗(F )

}
(15)

is a lower fuzzy measure.

Theorem 2 Let (X1,B′∗, g′∗) and(X2,B′′∗, g′′∗) be
two spaces of upper fuzzy measures. Then, on the
composition upper measurable space(X1×X2,B′∗⊗
B′′∗), the measureg∗ : ∀H ∈ B′∗ ⊗ B′′∗ defined by

g∗(H) ≡ g′∗ ⊗ g′′∗(H) ∆=
∆= ∧

E∈B′∗
{
g′∗(E) ∨ g′′∗(Γ′∗H(E))

}
=

= ∧
F∈B′′∗

{
g′∗(Γ∗H(F )) ∨ g′′∗(F )

}
(16)

is an upper fuzzy measure.

Theorem 3 a) LetH ∈ B′∗⊗B′′∗ be some binary lower
measurable relation(H ⊂ X1 ×X2). Then the value
of the measureg′∗ ⊗ g′′∗ on H is represented through
g′∗ andg′′∗ as the following composition:

g′∗ ⊗ g′′∗(H) = �
∫

∗
X2

g′∗(EH(·, y)) ◦ g′′∗(·) =

= �
∫

∗
X1

g′′∗(EH(x, ·)) ◦ g′∗(·); (17)

b) Let H ∈ B′∗ ⊗ B′′∗ be some binary upper
measurable relation. Then the value of the measure
g′∗ ⊗ g′′∗ on H is represented throughg′∗ andg′′∗ as
the following composition:

g′∗ ⊗ g′′∗(H) = �
∫ ∗

X2

g′∗(EH(·, y)) ◦ g′′∗(·) =

= �
∫ ∗

X1

g′′∗(EH(x, ·)) ◦ g′∗(·). (18)

Now let us proceed to defining fuzzy binary rela-
tions onX1 ×X2.

Definition 18 a) A fuzzy setH̃ ⊂ X1×X2 is called a
lower fuzzy binary relation if the compatibility func-
tion µ eH : X1 ×X2 → [0; 1] is lower measurable;

b) A fuzzy setH̃ ⊂ X1 × X2 is called an upper
fuzzy binary relation if the compatibility functionµ eH
is upper measurable.

We have constructed the compositional space of
extremal extended fuzzy measures(X1 × X2, B̃′∗ ⊗
B̃′′∗ , B̃∗′ ⊗ B̃∗′′, g̃′∗ ⊗ g̃′′∗ , g̃∗′ ⊗ g̃∗′′).

2.4 On the weakly structurable continuous
dynamic system

In [16], [21] we described objects of a fuzzy dynamic
system. LetX (X 6= ∅) be the set of states of some
system to be investigated. Let(X,B, g) be the space
of a fuzzy measure on the measurable space(X,B),
whereB is a σ-algebra inX (fuzzy restrictions on
states).

Let the time structure of fuzzy dynamic systems is
represented by some space of extended extremal fuzzy
measures

〈T, F̃I∗(T ), F̃I
∗
(T ), g̃T∗, g̃∗T 〉, T = R∗0, (19)

whereg̃T∗ andg̃∗T are some extremal fuzzy measures
on B̃T∗ ≡ B̃2∗ andB̃∗T ≡ B̃∗2, respectively.

Definition 19 a) A family {r̃∗τ}τ≥0, r̃∗τ ∈ B̃∗T , τ ≥ 0,
of monotonically increasing upper fuzzy time inter-
vals, i.e.,

∀τ2 > τ1 ≥ 0, r̃∗τ1 ¹ r̃∗τ2

is called a process of current fuzzy time intervals.

b) A family {r̃τ∗}τ≥0, r̃τ∗ ∈ B̃T∗, τ ≥ 0, of
monotonically decreasing lower fuzzy time intervals,
i.e.,

∀τ2 > τ1 ≥ 0, r̃τ1∗ º r̃τ2∗

is called a process of future fuzzy time intervals.
c) A pair of processes of future and current fuzzy

time intervals{r̃τ∗, r̃∗τ}τ≥0 is called a process of ex-
tremal fuzzy time intervals.

Definition 20 A process of extremal fuzzy time inter-
vals(r̃τ∗, r̃∗τ ) is called ergodic if there exist the limits

lim
τ→+∞ r̃τ∗ = r̃∞∗ ∈ B̃T∗, lim

τ→+∞ r̃∗τ = r̃∗∞ ∈ B̃∗T .

A relation between the spaces(X,B,B, g, g∗)
and (T,BT∗,B∗T , gT∗, g∗T ) and their extensions
through conditional measures can be represented as
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follows: ∀r∗ ∈ BT∗, r∗ ∈ B∗T , r̃∗ ∈ B̃T∗, r̃∗ ∈ B̃∗T

gT∗(r∗) = �
∫

X

gt∗(r∗ | x) ◦ g(·),

g∗T (r∗) = �
∫

X

g∗t (r
∗ | x) ◦ g∗(·),

g̃T∗(r̃∗) = �
∫

X

g̃t∗(r̃∗ | x) ◦ g(·),

g̃∗T (r̃∗) = �
∫

X

g̃∗t (r̃
∗ | x) ◦ g∗(·),

(20)

For any lower and upper fuzzy time intervalsr̃∗ ∈
B̃T∗ and r̃∗ ∈ B̃∗T there exist fuzzy sets̃Aer∗ ∈ B̃,
Ãer∗ ∈ B̃ such that∀x ∈ X

µ eAer∗ (x)= g̃t∗(r̃∗ | x), µ eAer∗ (x)= g̃∗t (r̃
∗ | x). (21)

Definition 21 For extremal fuzzy time intervals
(r̃∗, r̃∗) the fuzzy sets̃Aer∗ andÃer∗ ∈ B̃ from the ex-
tended measurable space of system states are called
the expert knowledge reflections of extremal fuzzy
time intervals with respect to extended extremal con-
ditional fuzzy measures̃gt∗(· | x) andg̃∗t (· | x).

Let us formulate a theorem that describes the er-
godicity of a reflection process in an ergodic process
of extremal fuzzy time intervals.

Theorem 4 An ergodic process(r̃τ∗, r̃∗τ )τ≥0 of ex-
tremal fuzzy time intervals on the measurable space
(X, B̃) of states of the system induces an ergodic re-
flection process(R̃∗, R̃∗) ≡ (Ãerτ∗ , Ãer∗τ )τ≥0.

Let the initial time momentt = 0 the fuzzy state
of the fuzzy dynamic system be represented by a pair
of fuzzy setsÃ0∗, Ã∗0 ∈ B̃.

Now assume that the Fuzzy Dynamic System is
represented by some operator(ρ̃∗, ρ̃∗) describing the
system state change dynamics.

Definition 22 a) Let (r̃τ∗, r̃∗τ )τ≥0 be some process of
extremal fuzzy time intervals. A pair(Q̃∗, Q̃∗) of
lower and upper measurable binary relationsQ̃∗ ∈
˜B ⊗ BT∗ andQ̃∗ ∈ B̃ ⊗ B∗T is called a fuzzy process

describing the system state dynamics in the process of
extremal fuzzy time intervals(r̃τ∗, r̃∗τ )τ≥0 if the fol-
lowing representation holds∀(x, τ) ∈ X × T :

µ eQ∗(x, τ) ∆=�
∫

∗erτ∗

[
�
∫

eA0∗

µeρ∗(x, x′, t) ◦ g(·)
]
◦ g̃T∗(·) ≡

≡ �
∫

∗erτ∗

µeρ′∗(x, t) ◦ g̃T∗(·), (22)

µ eQ∗(x, τ) ∆=�
∫ ∗

er∗τ
[
�
∫

eA∗0
µeρ∗(x, x′, t) ◦ g∗(·)

]
◦ g̃∗T (·)≡

≡ �
∫ ∗

er∗τ µeρ′∗(x, t) ◦ g̃∗T (·).

b) Fuzzy Dynamic System represented by the fol-
lowing cortege

〈X,B, g, T, {r̃τ∗}, {r̃∗τ}, (ρ̃∗, ρ̃∗), (g̃T∗, g̃∗T ),

(R̃∗, R̃∗), (Q̃∗, Q̃∗)〉
is called the weakly structurable continuous dynamic
system if extremal processes are ergodic.

Now let us consider an important theorem, in
which a relation between the processes(Q̃∗, Q̃∗) and
(R̃∗, R̃∗) is defined.

Theorem 5 Let (r̃τ∗, r̃∗τ )τ≥0 be some ergodic pro-
cess of extremal fuzzy time intervals, and(R̃∗, R̃∗)
be a process of expert knowledge reflection of ex-
tremal fuzzy time intervals on(X, B̃) with respect to
some extended extremal conditional fuzzy measures
g̃t∗(· | x) andg̃∗t (· | x). Then

a) the process(Q̃∗, Q̃∗) describing the WSCDS
state dynamics in the process of extremal fuzzy time
intervals (r̃τ∗, r̃∗τ )τ≥0 has the following representa-
tion: ∀(x, τ) ∈ X × T

µ eQ∗(x, τ) = �
∫

∗
T

µeρ′∗(x, t) ◦ g̃EeR∗ (·,τ)(·),

µ eQ∗(x, τ) = �
∫ ∗

T

µeρ′∗(x, t) ◦ g̃EeR∗ (·,τ)(·),
(23)

where on the right-hand sides of lower and upper
Sugeno integrals the integration measures are the ex-
tremal fuzzy measures extended with respect to the
process(R̃∗, R̃∗) on the measurable spaces̃BT∗ and
B̃∗T , respectively.

b) The process(Q̃∗, Q̃∗) is ergodic.

3 The Fuzzy Dynamic Programming
Problem in WSCDS

3.1 Case when a fuzzy control does not de-
pend on the WSCDS state

All definitions and results see in [17], [21].
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In alternative classical approaches to modeling
and when working with the weakly structurable sys-
tems the main accent is placed on the assumption
of fuzzyness [2], [3], [6], 1[5], [21]. We will deal
with fuzzy dynamic systems (WSCDS), where fuzzy
uncertainty arises with time and time structures are
monotone classes of measurable sets [16].

We start describing objects of a controllable
WSCDS. LetX (X 6= ∅) be the set of states of some
system (WSCDS) to be investigated. Let(X,B, g) be
the space of a fuzzy measure on the measurable space
(X,B), whereB is a σ-algebra inX (fuzzy restric-
tions on states).

Let the time structure of a WSCDS is represented
by (9) and some space of extended extremal fuzzy
measures

(T, B̃T∗, B̃∗T , g̃T∗, g̃∗T ), T = R∗0,

whereg̃T∗ andg̃∗T are some extremal fuzzy measures
on B̃T∗ ≡ B̃2∗ andB̃∗T ≡ B̃∗2, respectively.

Let U (U 6= ∅) be the set of all admissible con-
trols (of external factors) acting on the WSCDS. As-
sume that controls are subjected to restrictions of un-
certain character in the form of some space of a fuzzy
measure(U,BU , gU ), whereBU is the measurable
space of controls, while the fuzzy measuregU de-
scribes the restrictions imposed on controls.

We consider the optimization problems of a con-
trollable WSCDS when the model of the continuous
extremal fuzzy process is described by the system of
fuzzy integral equations [16], [21]:

µ eQ∗(x, τ)=�
∫

∗
U×T

{
µEeu∗ (·,τ)(u)∧µEeρ′∗ (x,·,·)(u, t)

}
◦

◦ g̃U ⊗ ˜gEeR∗ (·,τ)(·), (24)

µ eQ∗(x, τ)=�
∫ ∗

U×T

{
µEeu∗ (·,τ)(u)∨µEeρ′∗ (x,·,·)(u, t)

}
◦

◦ g̃∗U ⊗ ˜gEeR∗ (·,τ)(·),

where(Q̃∗, Q̃∗) is a fuzzy extremal process describ-
ing the system state dynamics;(R̃∗, R̃∗) is an extremal
fuzzy process of expert reflections in extremal fuzzy
time intervals (the expert reflections on the states of
WSCDS in the extremal fuzzy time intervals);(ρ̃∗, ρ̃∗)
is the operator of the WSCDS states change dynamics;
on right-hand sides of Sugeno extended lower and up-
per integrals the integration measures are the extremal
compositional fuzzy measures extended with respect
to the process(R̃∗, R̃∗) (Definition 21);E is a symbol
of projector of Galois indexing mapping.

We say that the effectiveness of WSCDS control
is defined by some set of CriteriaK, on which fuzzy

restrictions are given for measurable subsets ofK, i.e.
the fuzzy measure space(K,BK , gK) (fuzzy restric-
tion on the criteria) is defined onK [17].

Let L̃ ∈ ˜BK ⊗ BU be some fuzzy binary relation
of “losses” with respect to each of the criteriav ∈ K
in the choice of controlu ∈ U . Note thatµeL is a
BK ⊗ BU -measurable compatibility function

µeL(v, u) : K × U → [0, 1]. (25)

Then the complement̃L is calledthefuzzy relation of
WSCDS “gain” and the values

µeL(v, u) = 1− µeL(v, u) (26)

define the measure of gain in the choice of controlu ∈
U for a criterionv ∈ K.

Definition 23 a) Given all criteria, aBU ⊗ B∗T -
measurable function:∀(u, t) ∈ U × T

PKeu∗(u, t) ∆=
∆= �

∫

K

{
µEeu∗ (·,t)(u) ∨ µ∗0(u) ∨ µeL(v, u)

}
◦

◦ g̃∗K(·), (27)

where the extended fuzzy measureg̃∗K : BK → [0, 1]
is the dual fuzzy measure ofg̃K (∀S̃ ∈ B̃K : g̃∗K(S̃) =

1 − g̃K(S̃)), is calleda gain with respect to a current

(upper) fuzzy control process̃u∗ ∈ ˜BU ⊗ B∗T with
respect to the initial fuzzy controlµEeu∗ (·,τ0)(u) ≡
µ∗0(u).

b) Given all criteria, aBU⊗BT∗-measurable func-
tion: ∀(u, t) ∈ U × T

qKeu∗(u, t) ∆=

∆= �
∫

K

{
µEeu∗ (·,t)(u) ∧ µ0∗(u) ∧ µeL(v, u)

}
◦

◦ g̃K(·) (28)

is called a loss with respect to a future (lower) fuzzy

control process̃u∗ ∈ ˜BU ⊗ BT∗ with respect to the
initial fuzzy controlµEeu∗ (·,τ0)(u) ≡ µ0∗(u).

Definition 24 a) A B ⊗ B∗T -measurable function:
∀(u, τ) ∈ U × T

Ieu∗(u, τ) ∆= �
∫ ∗

T

PKeu∗(u, t) ◦ g̃EeR∗ (·,τ)(·) (29)

is called an integral current gain with respect to a cur-

rent (upper) fuzzy control process̃u∗ ∈ ˜BU ⊗ B∗T on
a current fuzzy time interval̃r∗τ ∈ B̃∗T .
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b) A BU ⊗ BT∗-measurablefunction: ∀(u, τ) ∈
U × T

Jeu∗(u, τ) ∆= �
∫

∗
T

qKeu∗(u, t) ◦ g̃EeR∗ (·,τ)(·) (30)

is called an integral future loss with respect to a future

(upper) fuzzy control process̃u∗ ∈ ˜BU ⊗ BT∗ on a
future fuzzy time interval̃rτ∗ ∈ B̃T∗.

We have thus defined, onU , an extremal fuzzy
“gain-loss” process(Iu∗ , J̇u∗). Further, for model
(24) we will consider, in terms of (29) and (30), the
problem of formation of an optimal control (in the
sense of minimization of the future loss and maxi-
mization of the current gain) of an extremal process:
∀(u, t) ∈ U × T

�
∫ ∗

T

PKeu∗(u, t) ◦ g̃EeR∗ (·,τ)(·) ⇒ maxeu∗ ,

�
∫

∗
T

qKeu∗(u, t) ◦ g̃EeR∗ (·,τ)(·) ⇒ mineu∗ .

(31)

Functional equations by means of which we can
define an extremal fuzzy optimal control in the sense
of extremalization of criteria (31) can be written in the
following form,∀(u, τ ′) ∈ U × [τ0, τ ]:

J̇e◦
u∗

(u, τ ′) = ∧eu∗∈ ^BU⊗BT∗
J̇eu∗(u, τ ′) =

= ∧eu∗∈ ^BU⊗BT∗
�
∫

∗
T

qKeu∗(u, t) ◦ g̃EeR∗ (·,τ ′)(·),
Ie◦
u∗

(u, τ ′) = ∨eu∗∈ ^BU⊗B∗T
Ieu∗(u, τ ′) =

= ∨eu∗∈ ^BU⊗B∗T
�
∫ ∗

T

PKeu∗(u, t) ◦ g̃EeR∗ (·,τ ′)(·),

(32)

with the initial control conditions

Ee◦
u∗

(·, τ0) ≡ ũ0∗ ∈ BU ,

Ee◦
u∗

(·, τ0) ≡ ũ∗0 ∈ BU

(33)

and the WSCDS initial statesE eQ∗(·, τ0) and
E eQ∗(·, τ0).

Definition 25 An extremal fuzzy control process

(
e◦
u∗,

e◦
u∗), τ0 ≤ τ ′ ≤ τ , with the initial conditions (33)

is called an optimal for WSCDS (24) in the sense of
Bellman’s optimality principle if criterion (32) is sat-
isfied.

The following theorem which gives the optimality
condition (an analogue of Bellman’s equation [1]) is
valid.

Theorem 6 Let a controllable WSCDS be described
by system(24). Then an extremal fuzzy control pro-

cess(
e◦
u∗,

e◦
u∗), τ0 ≤ τ ′ ≤ τ , is optimal in the sense of

criterion(32) if and only if the following inequalities
are fulfilled:∀(u, τ ′) ∈ U × [τ0, τ ]

J̇e◦
u∗

(u, τ ′)≤
(
�
∫

K

µeL(v, u) ◦ g̃K(·)
)
∧

∧µEe◦
u∗

(·,τ0)(u),

Ie◦
u∗

(u, τ ′)≥
(
�
∫

K

µeL(v, u) ◦ g̃∗K(·)
)
∨

∨µEe◦
u∗

(·,τ0)(u);

(34)

Theorem 7 An extremal fuzzy optimal control pro-

cess(
e◦
u∗,

e◦
u∗) for the WSCDS(24) in the sense of

criterion (32) not depending on a WSCDS state can
be defined by the following system of fuzzy-integral
equations:∀(u, τ ′) ∈ U × [τ0, τ ]

µe◦
u∗

(u, τ ′)=µe◦
u∗

(u, τ0)∧

∧
(
�
∫

K

µeL(v, u) ◦ g̃K(·)
)
∧ g̃EeR∗ (·,∆(τ0,τ ′))(T ),

µe◦
u∗

(u, τ ′)=µe◦
u∗

(u, τ0)∨
∨

(
�
∫

K

µeL(v, u) ◦ g̃∗K(·)
)
∨ g̃EeR∗ (·,∆(τ0,τ ′))(T ).

(35)

Remark 2 Expressions in (35) of an extremal opti-

mal fuzzy control process(
e◦
u∗,

e◦
u∗), τ0 ≤ τ ′ ≤ τ ,

are a variant of the solution of inequalities (34), but
this fuzzy-integral representation of an optimal con-
trol gives a good analogue of the solution of the prob-
lem of stochastic dynamic programming, where the
expression of an optimal control contains “direct”
analogues to (35):�

∫
K

µeL(v, u) ◦ gK(·) is the Bell-

man functional which is an analogue of the kernel in
the representation of a stochastic optimal control or,
more exactly, an analogue of the signal of a stochas-
tic model or its deterministic part, while the values of
the extended fuzzy measuresg̃EeR∗ (·,∆(τ0,τ ′))(T ) and

g̃EeR∗ (·,∆(τ0,τ ′))(T ) are analogues of stochastic mea-
sure in the representation of stochastic optimal con-
trols.

It is studied the case when a fuzzy control of
WSCDS depends not only on timeτ ′ ∈ [0, τ ] but also
on a WSCDS statex ∈ X.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
 
ISSN: 1991-8763 945 

Gia Sirbiladze, Anna Sikharulidze, Natia Sirbiladze 
 
Issue 11, Volume 3, November 2008 



3.2 Case when a fuzzy control depends on
the WSCDS state

Now let us consider a more difficult case, where a
fuzzy control of a controllable WSCDS depends not
only on time τ ′ ∈ [τ0, τ ], but also on a WSCDS
statex ∈ X. Then the fuzzy control is considered

as ũ′ ∈ B̃U ⊗ B, a future fuzzy control process as

ũ′∗ ∈ (B̃U ⊗ B)⊗B̃T∗, a current fuzzy control process

as ũ′∗ ∈ (B̃U ⊗ B) ⊗ B̃∗T or µeu′ : U × X → [0, 1],
µeu′∗ : (U ×X)× T → [0, 1], µeu′∗ : (U ×X)× T →
[0, 1].

In this situation WSCDS model (24) changes and
we obtain:∀(x, τ) ∈ X × T

µ eQ∗(x, τ) =

= �
∫

∗
U×T

{
µEeu′∗ (·,x,τ)(u)∧µEeρ′∗ (x,·,·)(u, t)

}
◦

◦ g̃U⊗ ˜gE eR∗ (·,τ)(·),
µ eQ∗(x, τ) =

= �
∫ ∗

U×T

{
µEeu′∗ (·,x,τ)(u)∨µEeρ′∗ (x,·,·)(u, t)

}
◦

◦ g̃U⊗ ˜gE eR∗ (·,τ)(·).

(36)

The maximal gain and the minimal loss for a fuzzy

control ũ′ ∈ B̃U ⊗ B change as follows:∀(v, x) ∈
K ×X

Ieu′(v, x) ∆= ∨
u∈U

{
µEeu(·,x)(u) ∧ µeL′(v, u, x)

}
,

J̇eu′(v, x) ∆= ∧
u∈U

{
µEeu(·,x)(u) ∧ µeL′(v, u, x)

}
.

(37)
whereL̃′ is a fuzzy loss taking into account the state
x ∈ X.

a) a maximal gainPeu′∗ is calculated by

Peu′∗(v, x, t) ∆=
∆= ∨

u∈U

{(
µEeu′∗ (·,x,t)(u)∨µEeu′∗ (·,x,τ0)(u)

)∧

∧ µeL′(v, u, x)
}

. (38)

and b) a minimal lossqeu′∗ is calculated by

qeu′∗(v, x, t) ∆=
∆= ∧

u∈U

{ (
µEeu′∗ (·,x,t)(u)∧µEeu′∗ (·,x,τ0)(u)

)
∨

∨ µeL′(v, u, x)
}

. (39)

In Definition 23, a gain and a loss for all criteria
are calculated as follows:∀(u, x, t) ∈ U×X× [τ0, τ ]





PKeu′∗(u, x, t) ∆=

∆= �
∫

K

[
µEeu′∗ (·,x,t)(u) ∨ µEeu′∗ (·,x,τ0)(u)∨

∨ µeL′(v, u, x)
]
◦ g̃∗K(·),

qKeu′∗(u, x, t) ∆=

∆= �
∫

K

[
µEeu′∗ (·,x,t)(u) ∧ µEeu′∗ (·,x,τ0)(u)∧

∧ µeL′(v, u, x)
]
◦ g̃K(·).

(40)

In Definition 24, the integral current gainIeu′∗
and the future lossJ̇eu′∗ are calculated as follows:
∀(u, x, t) ∈ U ×X × [τ0, τ ]





Ieu′∗(u, x, τ) ∆= �
∫ ∗

T

PKeu′∗(u, x, t) ◦ g̃E eR∗ (·,τ)(·),

Jeu′∗(u, x, τ) ∆= �
∫

∗
T

qKeu′∗(u, x, t) ◦ g̃E eR∗ (·,τ)(·).

(41)
The optimization problem (31) can be now rewritten
as





Opt∗(ũ′∗)eu′∗∈(B̂U⊗B)⊗fB∗T :max=⇒

�
∫ ∗

T

PKeu′∗(u, x, t) ◦�
∫ ∗

T

µeΓ∗τ (t′) ◦ g̃∗T (·),

Opt∗(ũ
′
∗)eu′∗∈(B̂U⊗B)⊗gBT∗

: min=⇒

�
∫

∗
T

qKeu′∗(u, x, t) ◦�
∫

∗
T

µeΓτ∗(t
′) ◦ g̃T∗(·).

(42)

with the initial control conditions

Ee◦
u′∗

(·, τ0) ≡ ũ0∗ ∈ B̃U ⊗ B̃,

Eeu′∗(·, τ0) ≡ ũ∗0 ∈ B̃U ⊗ B̃,
(43′)

and the initial state conditions

E eQ∗(·, τ0) and E eQ∗(·, τ0) ∈ B̃. (43′′)

We can reformulate Definition 25 as follows.

Definition 26 If the fuzzy control depends on a
WSCDS statex ∈ X, then an extremal fuzzy control
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process(
e◦
u∗,

e◦
u∗), τ0 ≤ τ ′ ≤ τ , with the initial con-

ditions (43) is called an optimal control (an extremal
optimal control process) in the sense of Bellman’s op-
timality principle provided that criteria (42) are satis-
fied.

Suppose we are given some fuzzy conditional
measuregx(· | v) that connects the fuzzy measure
spaces(X,B, g) and(K,BK , gK):

g(A) = �
∫

K

gx(A | v) ◦ gK(·), ∀A ∈ B, (44)

where∀v ∈ K, gx(· | v) : B → [0, 1] is a fuzzy
measure and∀A ∈ B, gx(A | ·) : K → [0, 1] is aBK-
measurable function. Note that the conditional fuzzy
measuregx(· | v) takes into account the influence of
a WSCDS statex ∈ X in terms of an estimate by a
criterionv ∈ K.

We introduce the following definitions.

Definition 27 The process(
e◦
u∗,

e◦
u∗),

e◦
u∗ ∈ ˜BU ⊗ BT∗,e◦

u∗ ∈ ˜BU ⊗ B∗T defined as∀u ∈ U





µe◦
u∗

(u, τ ′) =

= �
∫

X

{
µE eQ∗ (·,τ ′)(x) ∧ µEe◦

u′∗
(u,·,τ ′)(x)∧

∧ µEe◦
u′∗

(u,·,τ0)(x)
}
◦ g(·),

µe◦
u∗

(u, τ ′) =

= �
∫

X

{
µE eQ∗ (·,τ ′)(x) ∨ µEe◦

u′∗
(u,·,τ ′)(x)∨

∨ µEe◦
u′∗

(u,·,τ0)(x)
}
◦ g∗(·).

(45)

is called an extremal fuzzy WSCDS control process
in fuzzy extremal states(E eQ∗(·, τ ′),E eQ∗(·, τ ′)) (τ0 ≤
τ ′ ≤ τ).

Definition 28 A fuzzy loss L̃ is defined with a
WSCDS state taken into account through the condi-
tional fuzzy measure

µeL(v, u) ∆= �
∫

X

µeL′(v, u, x) ◦ gx(· | v), (46)

whereL̃′ ∈ B̃K ⊗ B̃U ⊗ B̃ is a fuzzy WSCDS loss
for a choiceu ∈ U with a strategyv ∈ K in a state
x ∈ X.

The following theorem is true.

Theorem 8 An optimal fuzzy extremal control pro-

cess(
e◦
u∗,

e◦
u∗) for WSCDS(36) in the sense of criterion

(42) depending on a WSCDS state, can be defined by
the system of fuzzy-integral equations

µe◦
u∗

(u, τ ′) =

= µe◦
u∗

(u, τ0) ∧ �
∫

X2×K

µEeρ′′∗ (·,·,·,u,τ ′)(x
′, x′′, v)◦

◦
(
˜gx(· | v)⊗ g̃(·)⊗ g̃K(·)

)
∧

∧ g̃E eR∗ (·,∆(τ0,τ))(T ),

µe◦
u∗

(u, τ ′) =

= µe◦
u∗

(u, τ0) ∨ �
∫

X2×K

µEeρ′′∗(·,·,·,u,τ ′)(x
′, x′′, v)◦

◦
(
˜g∗x(· | v)⊗ g̃∗(·)⊗ g̃∗K(·)

)
∨

∨ g̃E eR∗ (·,∆(τ0,τ))(T ),

(47)

where the fuzzy relations̃ρ′′∗ and ρ̃′′∗ are defined as
follows:

ρ̃′′∗=Q̃′
∗ ∩ L̃′, ρ̃′′∗ ∈ ˜B2 ⊗ BK⊗( ˜BU ⊗ BT∗),

ρ̃′′∗=Q̃′∗ ∩ L̃′, ρ̃′′∗∈ ˜B2 ⊗ BK⊗( ˜BU ⊗ B∗T ),
(48)

while the fuzzy relations̃Q′∗ and Q̃′∗ are cylindrical
continuations of the relations(Q̃∗, Q̃∗). The process
(Q̃∗, Q̃∗) describes WSCDS state dynamics onB̃K

and∀τ ′ ∈ [τ0, τ ], ∀(v, x) ∈ K ×X

µE eQ′∗ (·,·,v)(x, τ ′) ∆= µ eQ∗(x, τ ′), µE eQ′∗(·,·,v)(x, τ ′) ∆=

∆= µ eQ∗(x, τ ′).

Proof. Using certain properties of the extremal
Sugeno integrals and the composition properties of
extremal extended fuzzy measures (see [16]), we ob-
tain: ∀(u, τ ′) ∈ U × [τ0, τ ]

µe◦
u∗

(u, τ ′) = �
∫

X

[
µE eQ∗ (·,τ ′)(x′) ∧ µEe◦

u∗
(·,τ0)(u)∧

∧
{
�
∫

K

[
�
∫

X

µEeL′ (·,u,·)(v, x′′)◦

◦ gx(· | v)
]
◦ g̃K(·)

}]
◦ g(·) ∧ g̃E eR∗ (·,∆(τ0,τ ′))(T ) =

= µe◦
u∗

(u, τ0) ∧�
∫

X

{
µE eQ∗ (·,τ ′)(x′)∧
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∧
[
�
∫

X×K

µEeL′ (·,u,·)(v, x′′) ◦
(
˜gx(· | v)⊗ g̃K(·)

)]}
◦

◦ g(·) ∧ g̃E eR∗ (·,∆(τ0,τ ′))(T ) = µe◦
u∗

(u, τ0)∧

∧�
∫

X

{
�
∫

X×K

[
µE eQ′∗ (·,τ ′,·)(x′, v) ∧ µEeL′ (·,u,·)(x′′, v)

]
◦

◦
(
˜gx(· | v)⊗ g̃K(·)

)}
◦ g(·)∧

∧ g̃E eR∗ (·,∆(τ0,τ ′))(T ) = µe◦
u∗

(u, τ0)∧

∧ �
∫

X2×K

[
µE eQ′∗ (·,τ ′,·)(x′, v) ∧ µEeL′ (·,u,·)(x′′, v)

]
◦

◦
(
˜gx(· | v)⊗ g̃K(·)⊗ g̃(·)

)
∧ g̃E eR∗ (·,∆(τ0,τ ′))(T ) =

= µe◦
u∗

(u, τ0) ∧ �
∫

X2×K

[
µEeρ′′∗ (·,·,·,u,τ ′)(x

′, x′′, v)
]
◦

◦
(
˜gx(· | v)⊗ g̃(·)⊗ g̃K(·)

)
∧ g̃E eR∗ (·,∆(τ0,τ ′))(T ),

where

Eeρ′′∗ (·, ·, ·, u, τ ′) = E eQ′∗(·, τ ′, ·) ∩ EeL′(·, u, ·).

We have thereby proved the first equality in (47). The
second equality in (47) is easy to prove by applying
the properties of the extremal Sugeno integrals for
complementary fuzzy relations and dual fuzzy mea-
sures.

The theorem is proved. ¤

4 Definition of Fuzzy Relations of a
Future Loss and a Current Gain in
the WSCDS Optimization Problem

Proceeding from the results obtained in the preceding
section on an optimal WSCDS control, we see that
this control is defined by fuzzy relations of a future
loss and a current gain (Theorems 6–8). Their com-
patibility functions are analogues of Bellman’s func-
tions in the classical dynamic programming method.
Thus we need to obtain a fuzzy relation of a lossL̃ (or

L̃) taking into account a state in which the controlled
WSCDS is. Here we will consider the case only for
L̃, using the processed available information on the
WSCDS structure and characteristics. The setK de-
fines the set of criterion estimates of the WSCDS,
whileU is the set of all possible controlling influences
on the system. To obtain the compatibility function
µeL(v, u) we should additionally consider the set of
WSCDS characteristicsΩ (for instance, of WSCDS

state characteristics, external disturbances, additional
restrictions and so on). Each characteristicω ∈ Ω
takes its own values in some universal setAω (most
frequently,Aω is a numerical set). It is assumed that
these characteristics may be fuzzy or have fuzzy val-
ues inAω, the distribution of which is known.

It is advisable to choose such characteristics of
the setΩ that define to a maximal extent an estimate
obtained by a criterionv ∈ K. To define the val-
uesµEeL(·,v)(u), we first restore by various methods
(expert evaluation, processing of available observa-
tion data and so on (see, e.g., [18])) the conditional
fuzzy measuregω(· | v) that preassigns “a degree of
desirability” of a valuea ∈ Aω of a characteristic
ω ∈ Ω, and b)gΩ(· | v) that defines “the impor-
tance of taking into account the value” of a charac-
teristicω ∈ Ω for an estimate obtained by a criterion
v ∈ K. It is assumed that the fuzzy measure spaces
〈Ω,BΩ, gΩ(· | v)〉, 〈Aω,BAω , gω(· | v)〉 are given
ones, and also that the fuzzy measuresgω(· | v) and
gΩ(· | v) define some knowledge base on the WSCDS
subject-matter. The WSCDS knowledge base is de-
fined by the train

〈K,U,Ω, {Aω}ω∈Ω, gω(· | v), gΩ(· | v)〉. (49)

All components of the WSCDS knowledge base are
assumed to be described a priori. To describe the func-
tion µEeL(·,v)(u) it is necessary to measure (or to prog-
nose or estimate) possible (most probably fuzzy) val-
ues of the characteristics ofΩ for a choice of control
u ∈ Ω.

Suppose that as a result of measurements we
have, for a concreteu ∈ Ω, some compatibility func-
tion

hω : X ×Aω × U → [0, 1], (50)

that defines possible valuesa ∈ Aω of a characteristic
ω ∈ Ω for a chosen control. Then the fuzzy gain func-
tion µEeL(·,v)(u) is definedby a double fuzzy integral
of the form

µEeL(·,v)(u) =

= �
∫

Ω

[
�
∫

Aω

h(ω, a, u) ◦ gω(· | v)
]
◦ gΩ(·, | v). (51)

This integral is interpreted as follows: after taking the
first integral, for a fixed criterionv ∈ K of a control
choice we have a gainu ∈ U for each characteris-
tic from Ω. The second integral defines a generalized
gain degree of a choice of controlu ∈ U for each
criterionv ∈ K.

The use of (51) in the case of (35) for defining
an optimal WSCDS control allows us to solve “static”
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problemsof an optimal choice in the possibility un-
certainty conditions.

If an expert groupE takes part in the estimation
of WSCDS states and the possibility distribution of
experts’ competence isπE(e), e ∈ E, then for each
experte ∈ E the functionh naturally depends one so
that the integral definition (51) can be replaced by

µEeL(·,v)(u) = �
∫

E

{
�
∫

Ω

[
�
∫

Aω

h(ω, a, u, e) ◦ gω(· | v)
]
◦

◦ gΩ(·, | v)
}
◦Poss(·). (52)

wherePoss is a fuzzy possibility measure on(E, 2E)
with the possibility distributionπE(·).

5 Example

Let the set of WSCDS states be finite,X =
{1, 2, 3, 4}; g∗ : 2X → [0, 1] be the possibility mea-
sure with the possibility distribution onX

Π(i) ∆=
i

4
, i = 1, 2, 3, 4

(
∀B ∈ 2X : g∗(A) = ∨

i∈A
π(i)

)
.

Let the WSCDS be subjected to the influence of
an external control factor with the finite setU =
{u1, u2} (for example,u1

∆=“+1”, u2
∆=“−1”). Let

the uniform probability distribution play the role of
the fuzzy measuregU : 2U → [0, 1], i.e. gU ({u1}) =
gU ({u2}) = 1

2 . Thetwo-element setK = {v1, v2} is
taken as the set of chosen criteria, while the uniform
probability distributiongK({v1}) = gK({v2}) = 1

2
is consideredasplaying the role of the fuzzy measure
gK : 2K → [0, 1]. Thus we have the fuzzy mea-
sure spaces(X, 2X , g), (K, 2K , gK) and(U, 2U , gU ).
The dual measureg∗ on 2X is the necessity measure
g(A) = 1 − ∨

i/∈A
π(i). Since the fuzzy measuresgU

andgK are the probability ones, we know they are au-
todual and

g∗U = gU , g∗K = gK .

It is assumed that the initial moment of WSCDS
observation isτ0 ≡ 0. Let the initial extremal fuzzy
distributions of an optimal control be

µe◦
u∗

(u1, 0) =
1
2

= µe◦
u∗

(u1, 0);

µe◦
u∗

(u2, 0) =
1
4

= µe◦
u∗

(u2, 0).

Let thebinaryfuzzy loss relatioñL onU ×K be de-
fined as follows:

µeL(u1, v1) = µeL(u2, v2)=
1
2
,

µeL(u1, v2) = µeL(u2, v1)=
1
4
.

Thedistributionsof extremal fuzzy time intervals are
given as

µerτ∗(t) =

{
0, 0 ≤ t ≤ τ,

1− τ
t , t > τ,

µer∗τ (t)=

{
1, 0 ≤ t < τ,
τ
t , t ≥ τ.

(53)

Let the initial distribution (τ0 ≡ 0) of the WSCDS
state description process look like

Ã0∗∼
(

1 2 3 4
1
4

1
4

1
2

1
2

)
,

Ã∗0∼
(

1 2 3 4
1
2

1
2

1
2

1
2

)
.

(54)

We consider the example of the space
(T, B̃T∗, B̃∗T , g̃∗T , g̃∗T ) where

gT∗([t, +∞)) ∆=
1

1 + t
, [t, +∞) ∈ BT∗,

g∗T ([0, t)) ∆=
t

1 + t
, [0, t) ∈ B∗T , t > 0.

(55)

Further, we introduce the conditional fuzzy mea-
sures onBT∗ andB∗T with respect to the setX =
{1, 2, 3, 4}:

gt∗(rτ∗| i)= 1
1+iτ

, wherei∈X, rτ∗∈BT∗,

g∗t (r
∗
τ | i) =

iτ

1+iτ
, wherei∈X, r∗τ ∈ B∗T .

(56)

Thus the WSCDS state description process can be rep-
resented as follows:

µ eQ∗(x, τ)= �
∫

∗
U×T

{
µEeu∗ (·,τ)(u)∧µEeρ′∗ (x,·,·)(u, t)

}
◦

◦g̃U⊗ ˜gEeR∗ (·,τ)(·),

µ eQ∗(x, τ)=�
∫ ∗

U×T

{
µEeu∗ (·,τ)(u)∨µEeρ′∗ (x,·,·)(u, t)

}
◦

◦g̃U⊗ ˜gEeR∗ (·,τ)(·),
(57)
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whereÃ0∗ ≡ E eQ∗(·, 0), Ã∗0 ≡ E eQ∗(·, 0), (R̃∗, R̃∗)
is the extremal fuzzy reflection process (see [16]),
∀(x, τ) ∈ X × T , ∀(x, t) ∈ U × T :





µeR∗(x, τ) ∆= g̃t∗(r̃τ∗ | x) = µ eAτ∗(x),

µeR∗(x, τ) ∆= g̃∗t (r̃
∗
τ | x) = µ eA∗τ (x),

(58)

and





µeρ′∗(x, u, t) ∆= �
∫

eA0∗

µeρ∗(x, u, x′, t) ◦ g̃(·),

µeρ′∗(x, u, t) ∆= �
∫

eA∗0
µeρ∗(x, u, x′, t) ◦ g̃∗(·),

(59)

whereÃτ∗ ∈ B̃ and Ã∗τ ∈ B are expert reflections
on the WSCDS states in the fuzzy extremal inter-
vals r̃τ∗ ∈ B̃T∗ and r̃∗τ ∈ B̃∗T , respectively;(ρ̃∗, ρ̃∗)
is the WSCDS input-output operator (see [16]). As
is known the operator(ρ̃′∗, ρ̃′∗) is restored from the
experimental-expert knowledge base on the WSCDS
so that if we fix some admissible extremal control pro-
cess(ũ∗, ũ∗) (including an optimal control too), then,
using the calculation procedure for Sugeno extremal
integrals [16], we can write expressions for the pro-
cess(Q̃∗, Q̃∗). However we pursue a different aim
here: using WSCDS data, we are to construct the ex-

tremal optimal control process(
e◦
u∗,

e◦
u∗) by formulas

(35).

Since the setsX, U , K are finite, it is not difficult
to establish that the conditions (34) for an optimal ex-
tremal control process to exist are satisfied. By virtue
of the results of Theorems 6 and 7, we can write one
of the variants for an extremal optimal fuzzy control
process as follows:∀(u, τ) ∈ (X,T )

µe◦
u∗

(u, τ)=µe◦
u∗

(u, 0) ∧
(
�
∫

K

µeL(u, v) ◦ g̃K(·)
)
∧

∧g̃EeR∗ (·,τ)(T ),

µe◦
u∗

(u, τ)=µe◦
u∗

(u, 0) ∨
(
�
∫

K

µeL(u, v) ◦ g̃∗K(·)
)
∨

∨g̃EeR∗ (·,τ)(T ),
(60)

whereu ∈ {“+1 ”, “− 1”}, v ∈ {v1, v2}; µe◦
u∗

(u, 0)

andµe◦
u∗

(u, 0) are already defined, while the extended

extremal fuzzy measures are defined in the form [16]




g̃EeR∗ (·,τ)(T ) = �
∫

∗
T

µerτ∗(t) ◦ g̃T∗(·) ∆=

∆= �
∫

∗
T

µerτ∗(t) ◦�
∫

X

gt∗(· | x) ◦ g(·),

g̃EeR∗ (·,τ)(T ) = �
∫ ∗

T

µer∗τ (t) ◦ g̃∗T (·) ∆=

∆= �
∫ ∗

T

µer∗τ (t) ◦�
∫

X

g∗t (· | x) ◦ g∗(·).

(61)

Now we are to calculate the Sugeno integrals in for-
mulas (60) and the values of extremal fuzzy measures
(61).

Let us calculate the values of�
∫

K

µeL(u, v) ◦ g̃K(·):
1) u = u1 ≡“+1 ”:

�
∫

K

µeL(u1, v) ◦ g̃K(·) =

= ∧
0<α≤1

{
α ∨ gK(v ∈ K | µeL(u1, v) ≥ α

}
=

=
[

∧
0≤α≤ 1

4

(α ∨ gK(K))
]
∧

∧
[

∧
1
4
≤α≤ 1

2

(α ∨ gK({v2}))
]
∧

∧
[

∧
1
2
<α≤1

(α ∨ gK(∅))
]

= 1 ∧ 1
2
∧ 1

2
=

1
2
.

2) u = u2 =“−1”:

�
∫

K

µeL(u2, v) ◦ g̃K(·) =

= ∧
0<α≤1

{
α ∨ gK(v ∈ K | µeL(u2, v) ≥ α

}
=

=
[

∧
0≤α≤ 1

4

(α ∨ gK(K))
]
∧

∧
[

∧
1
4
≤α≤ 1

2

(α ∨ gK({v1}))
]
∧

∧
[

∧
1
2
<α≤1

(α ∨ gK(∅))
]

=

= 1 ∧
[

∧
1
4
≤α≤ 1

2

(
α ∨ 1

2

)]
∧

[
∧

1
2
≤α<1

(α)
]

=

= 1 ∧ 1
2
∧ 1

2
=

1
2
.

Since

�
∫

K

µeL(u, v) ◦ g̃∗K(·) = 1−�
∫

K

µeL(u, v) ◦ g̃K(·),
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wehave

�
∫

K

µeL(u1, v) ◦ g̃∗K(·) = �
∫

K

µeL(u2, v) ◦ g̃K(·) =
1
2

.

Therefore∀τ > 0

µe◦
u∗

(u1, τ)= 1
2 ∧ 1

2 ∧ g̃EeR∗ (·,τ)(T )= 1
2 ∧ g̃EeR∗ (·,τ)(T ),

µe◦
u∗

(u2, τ)= 1
4 ∧ 1

2 ∧ g̃EeR∗ (·,τ)(T )= 1
4 ∧ g̃EeR∗ (·,τ)(T ),

µe◦
u∗

(u1, τ)= 1
2 ∨ 1

2 ∨ g̃EeR∗ (·,τ)(T )= 1
2 ∨ g̃EeR∗ (·,τ)(T ),

µe◦
u∗

(u2, τ)= 1
4 ∨ 1

2 ∨ g̃EeR∗ (·,τ)(T )= 1
2 ∨ g̃EeR∗ (·,τ)(T ).

Now we are to calculate the values of the so-
called extremal fuzzy “white noise” (61):

g̃EeR∗ (·,τ)(T ) = �
∫

∗
T

µerτ∗(t) ◦�
∫

X

gt∗(· | x) ◦ g(·) =

= ∨
0<α≤1

{α ∧ g̃T∗([r̃τ∗]α)} =

= ∨
0<α≤1

{
α ∧�

∫

X

g̃t∗([r̃τ∗]α | x) ◦ g(·)
}

.

From (53) weobtain the expression for anα-cut for
r̃τ∗:

[r̃τ∗]α =





T if α = 0,[
τ

1−α , +∞
)

if 0 < α < 1,

∅ if α = 1,




∈ BT∗.

Now (56) implies

g̃t∗([r̃τ∗]α | i) =





1 if α = 0,
1

1+i τ
1−α

if 0 < α < 1,

∅ if α = 1,

∀i ∈ X and

�
∫

X

g̃t([r̃τ∗]α | i) ◦ g(·) =

= ∨
0<β≤1

{
β ∧ g

({
i ∈ X | 1

1 + i τ
1−α

≥ β

})}
.

It is notdifficult to verify that(0 < α < 1, τ > 0)
{

i ∈ X | 1
1 + i τ

1−α

≥ β

}
=

=





∅ if 1 ≥ β > 1−α
1−α+τ ,

{1} if 1−α
1−α+τ ≥ β > 1−α

1−α+2τ ,

{1, 2} if 1−α
1−α+2τ ≥ β > 1−α

1−α+3τ ,

{1, 2, 3} if 1−α
1−α+3τ ≥ β > 1−α

1−α+4τ ,

X if 1−α
1−α+4τ ≥ β > 0.

Denote B0 ≡
(

1−α
1−α+τ ; 1

]
, B1 ≡(

1−α
1−α+2τ ; 1−α

1−α+τ

]
, B2 ≡ (

1−α
1−α+3τ ; 1−α

1−α+2τ

]
,

B3 ≡
(

1−α
1−α+4τ ; 1−α

1−α+3τ

]
, B4 ≡

(
0; 1−α

1−α+4τ

]
.

Then

�
∫

X

g̃t∗([r̃τ∗]α | x) ◦ g(·) =
[
∨

β∈B0

(β ∧ g(∅))
]
∨

∨
[
∨

β∈B1

(β ∧ g({1})
]
∨

[
∨

β∈B2

(β ∨ g({1, 2}))
]
∨

∨
[
∨

β∈B3

(β ∨ g({1, 2, 3}))
]
∨

[
∨

β∈B4

(β ∧ g(X))
]

=

=0 ∨
[
∨

β∈B1

(β ∧ 0)
]
∨

[
∨

β∈B2

(β ∧ 0)
]
∨

∨
[
∨

β∈B3

(β ∧ 0)
]
∨

[
∨

β∈B4

(β ∧ 1)
]

=

= ∨
β∈B4

β =
1− α

1−α+4τ
.

We finally obtain

g̃EeR∗ (·,τ)(T ) =

= ∨
0<α<1

{
α ∧�

∫

X

g̃t∗([r̃τ∗]α | x) ◦ g(·)
}

=

= ∨
0<α<1

{
α ∧ 1− α

1− α + 4τ

}
.

After studying the function in the braces with re-
spect toα, we can continue calculations:

g̃EeR∗ (·,τ)(T ) =





∨
0<α<1

{α} = 1 if 0 < τ ≤ 1,

∨
α∈[1;2τ−1−2

√
τ(τ−1)]

{α}=

= 2τ−1−2
√

τ(τ − 1) if τ >1.

Sinceg̃EeR∗ (·,τ)(·) andg̃EeR∗ (·,τ)(·) are extended ex-
tremal measures, we have

g̃EeR∗ (·,τ)(T ) =

{
0 if 0 < τ ≤ 1,

2 + 2
√

τ(τ − 1) if τ > 1.

For an optimal control we obtain the following expres-
sions:

µe◦
u∗

(u1, τ) =





1
2 , 0 < τ ≤ 1,
1
2 ∧ (2τ − 1− 2

√
τ(τ − 1)),

τ > 1,

µe◦
u∗

(u2, τ) =





1
4 , 0 < τ ≤ 1,
1
4 ∧ (2τ − 1− 2

√
τ(τ − 1)),

τ > 1,
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µe◦
u∗

(u1, τ) =





1
2 , 0 < τ ≤ 1,
1
2 ∨ (2 + 2

√
τ(τ − 1)− 2τ),

τ > 1

= µe◦
u∗

(u2, τ).

Note that whenτ → +∞ a current description
process of fuzzy time intervals extends unlimitedly,
while a future description process of fuzzy time inter-
vals vanishes. The latter fact is reflected in the expres-
sions for the fuzzy optimal extremal controls:

{
lim

τ→∞µe◦
u∗

(u, τ) → 1, u ∈ U = {u1, u2},
lim

τ→∞µe◦
u∗

(u, τ) → 0, u ∈ U = {u1, u2}.

i.e. the uncertainty for a current fuzzy control process
vanishes, while a future fuzzy optimal control process
is not considered.

We have thereby finished the consideration of the
example.

6 Conclusion

Problems of optimization of a continuous controllable
extremal fuzzy process are considered using R. Bell-
man’s optimality principle. An extremal fuzzy “gain-
loss” process is defined, which plays the role of Bell-
man’s function in the classical variant of the dynamic
programming problem. Theorems 6–8 allow one to
write variants of an optimal control for the WSCDS. A
fuzzy gain relation is defined using the expert knowl-
edge base on the WSCDS subject-matter.

A practical example is given to illustrate the re-
sults obtained.
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