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Abstract: - Firstly the authors explain the nature of contracts between primary suppliers of gas and local 
suppliers. They then describe and investigate an effect observed frequently in the field of gas volume and flow 
control. Instead of running a straight line, the volume controller opens or closes the control valve dramatically 
at the end of the accounting period. The effect turns out to be caused by a relative deviation of the measured 
value of the gas flow rate from the actual value, and it is explained by solving an easy differential equation. 
Rounding errors occurring during necessary calculations may lead to the same effect. In section 2 of their paper 
the authors introduce a more general linear differential equation to describe various kinds of perturbations 
simultaneously: relative and absolute deviations of the measured values from the actual values of the gas flow 
rate and pulses disturbing the pulses counting the standard volume flown so far. By solving the differential 
equation and analyzing the solution, the authors then explain the influence of the perturbations on the behaviour 
of the control valve. They too discuss the risk of running a peak load, i.e. of exceeding the contracted amount of 
gas.     
 
 
Key-Words: - Gas Distribution System, Gas Supplier, Third Party Contract, electronic corrector systems, 
Standard Volume, Volume Control,  Control Valve, flow rate, PID Control, Internal Set Point  
 
1 Introduction 
Local gas suppliers, like municipal utility 
companies or public supply companies, purchase the 
gas to be distributed from primary suppliers, big 
companies purchasing the gas from petroleum and 
gas producing countries or from other primary 
suppliers. They then sell the gas to final consumers 
or to sub providers. Local suppliers negotiate 
contracts with primary suppliers, allowing them to 
draw gas up to a fixed amount W within a certain 
accounting period T. Customary accounting periods 
are T = 1 hour or T = 1 day. It is on this fixed 
amount that the so called demand charge depends.  
The demand charge is the price, which the local 
suppliers have to pay for the provision of the gas. Of 
course they also have to pay an energy rate. The 
energy rate is the price to pay for the amount of gas 
actually purchased.  
     It is the aim of a local supplier to exhaust its 
fixed amount W in each period T, i.e. to draw an 
amount of gas within the period T approaching W as 
close as possible. In particular, this is important at 
the end of cold winter nights, when in the morning a 
high amount of gas is needed to heat the flats and 
the schools and the factories and so on. If, on the 

other hand the actual amount of the gas purchased 
surmounts W, the local supplier risks suffering high 
losses: The fixed amount W will be raised up to the 
actual amount of gas purchased, an effect, which 
may cause an expensive experience. This is what 
they call “running a peak load”.  
     To fulfill those different requirements, PLCs 
(programmable logic controllers) are applied, 
controlling the flow rate of the gas by means of a 
control valve. They contain step controllers 
actuating the drive of the control valve or analogous 
controllers piloting a valve positioner. Normally a 
PI controller is sufficient for this task, whereas 
pressure controllers may require a derivative term 
(PID controller). In case of some special valves self 
tuning controllers are necessary. For new 
developments in the field of self tuning controllers 
see [7] and [8]whereas the design of PID control “in 
View of Controller Location in the Plant” is treated 
in [15] and [16]. The controller compares the actual 
flow rate with an internal set point and then 
determines the length of the pulses actuating the 
valve by pulse-width modulation. It is desirable that 
the control task is done with a minimum of pulses. 
Some valve manufacturers use to limit the number 
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of pulses positioning the valve within a certain time 
period. A frequently observed phenomenon is that at 
the end of a gas accounting period the volume 
controller closes the control valve completely to 
avoid running a peak load. Or, in contrary, it opens 
the valve widely in order to achieve the contracted 
amount of gas. Gas suppliers do not like such a 
behaviour of their valves.  
     It seems to the authors that, until now, no one 
tried to explain those effects by mathematical 
methods. And so it is the aim of this paper to 
investigate the nature of the phenomena by means of 
a differential equation. The methods used are 
described in [4], [5], and [6]. Especially in [4] and 
[6] a lot of examples can be found were physical, 
chemical, biological, technical, military and 
technical processes investigated by means of 
differential equations or by systems of differential 
equations.  
      It will turn out in section 2 that, for example, a 
small difference between the actual gas flow rate 
and the measured value of the gas flow rate (coming 
from an electronic corrector system) may cause such 
behaviour. Corrector systems or volume converters 
are microcomputers converting raw data (pulses 
coming from high frequency turbine-type meters) 
into standard flow rates and standard volumes at 
base conditions according to the ideal gas law 
(USA: pressure 14.73 psi absolute, temperature 60 ° 
F).  
      Apart from measured (analog) values counter 
pulses play an important role in gas volume control. 
They count the volume of the gas flown through the 
control valve, and they have to be summed up by 
the controller in order not to exceed the contracted 
amount of gas. If there are disturb pulses interfering 
with the regular pulses, there is a risk of running a 
peak load. Those phenomena are investigated in 
section 3, where a more general initial value 
problem is stated. By solving this problem the risk 
of running a peak load and the behaviour of the 
valve are discussed. 
      Last but not least the calculations, which have to 
done to perform the control task, may be afflicted by 
rounding errors. In this case the same behaviour of 
the control valve can be observed.  
      There is one more specialty in the gas business 
(as all over the energy market): Third party 
contracts. The “third party law” allows a consumer 
to purchase the energy he needs from a provider 
different from his local supplier. The gas is then 
conveyed to the final consumer through the gas 
pipes of the local supplier. This fact has to be taken 
care of when calculating the internal set point of the 
controller.  

      Other issues are uncontrolled inlets: Apart from 
the gas inlet equipped with a controlled valve, there 
may be uncontrolled inlets. This fact too has to be 
taken in account. A typical distribution system of a 
local supplier is shown in Fig.1 below.  
      A detailed analysis of gas distribution systems 
can be found in [1] or [2]. Methods to integrate data 
coming from the different inlets and outlets via a 
DSfG-Interface according to IEC 60870-5-101 can 
be found in [9]. The consequences of the 
liberalisation of the energy market in Europe are 
investigated in [10], [11], [12], [13], and [14]. 
Approaches to optimize gas distribution system are 
developed in [3]. 

 

Fig. 1 

 
 
2 Volume and Flow Control of Gas 
 
 
2.1 The Internal Set Point 
The PLC containing the gas controller receives 
counter pulses from an electronic corrector system. 
The pulses are detected either by digital (counter) 
inputs, or the pulse rate is transmitted by a field bus 
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system. They are counting the standard volume of 
the gas flown so far at base conditions. We 
distinguish the number of pulses received at a 
certain time τk according to their origin: 
 
cc(τk)  = Number of pulses from controlled inlets, 
cuc(τk) = Number of pulses from uncontrolled inlets, 
ctp(τk) = Number of pulses from third party outlets. 
 
Then the volume of gas flown from the beginning of 
the accounting period up to the time τ ≤ T is given 
by 
 

).(τ-)(τ)(τ

)(τ)(τ)(τΣ(τ)

tpucc

ττ
ktp

ττ
kuc

ττ
kc

kkk

ΣΣ+Σ=

−+= ∑∑∑
≤≤≤

ccc
  

 
Therefore the remaining volume allowed to be 
drawn until the end of the accounting period is equal 
to  
 
                 . Σ(τ)-W
 
The internal set point of the gas controller is then 
determined by the quotient of remaining volume 
divided by remaining time: 
 

τ
Σ(τ)-)(τint -T

WW =  . 

 
The functions  
 

)(τ),(τ)(τ tpucc ΣΣΣ ,   
 
are step functions. To set up a differential equation, 
let us replace them by continuously differentiable 
functions 
 

)(τσ),(τσ)(τσ tpucc ,   
 
and 
 

)(τσ-)(τσ)(τσ)σ( tpucc +=t  , 
 
a condition, being always achievable by 
interpolating the step functions (by spline functions 
for example). The internal set point is then replaced 
by 
 

τ
)σ(τ)(τωint -T

-W
=  .  

 
2.2 The Differential Equation 
The instantaneous value of the gas flow rate at the 
time τ is equal to the derivative of the volume flown 
so far 

       
dτ

)(τdσ
. 

 
The gas controller insures that the instantaneous 
flow rate is equal to the internal set point 
 

      )(τω
dτ

)(τdσ
int= . 

 
In reality they are not equal; there is always a 
control deviation depending on the quality of the 
controller. But for our purposes (a qualitative 
explanation of some phenomena) we may assume 
that they are equal. And therefore, because of the 
definition of the internal set point, σ(τ) has to be a 
solution of the initial value problem 
 

(1) 0)(τσ ,
τ

)σ(τ
dτ

)(τdσ
==

-T
-W

. 

 
     The differential equation can be solved by 
separating the variables (cf. [5]): 
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The graph of σ(τ) is shown Fig.2. It visualizes the 
ideal case; in reality σ(τ) is not a straight line. But 
for our qualitative considerations, we may assume 
the ideal case.  
     Now, during the startup of a gas controller and 
sometimes even during normal operation, the 
following phenomenon can be observed frequently: 
There is a difference between the measured value Q 
of the gas flow rate (coming from the electronic 
corrector system or determined by the controller  
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Fig. 2 α =1 

 
itself from the raw data) and the theoretical value 
dσ/dτ: 
 

            1α,
dτ

)(τdσα ≠=Q              . 

 
Those differences may result from a bad adjusting 
of the transducers in operation.  
    The new situation is described by the initial value 
problem 
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When solving this differential equation, we get 
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As was to be expected 
 
           , W

T
=

→
)(τσlim

τ

 
i.e. the contracted amount of gas within the 
accounting period is held. A typical graph of the 
solution (α = 0,5) is shown in Fig. 3.  

     Next we shall investigate the derivative of σ(τ): 
 

.τ0for τ
α
1

dτ
)(τdσ 
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⎞

⎜
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The case α < 1 means that the actual flow rate of gas 
is always a little bit higher than the measured flow 
rate (actual value of the controller): The controller 
passes a too high amount of gas per each time unit. 
Therefore, at the end of the period, the controller 
closes the valve in order to not violate the 
contracted bound. 
 

  
Fig. 3 α =0.5 

 
At time T we have 
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meaning that the controller has to close the valve 
completely. This effect, though extremely 
undesirable, can be observed frequently when 
operating a gas control system. As for Fig.3, we 
took the somewhat disproportionate value of α = 0,5 
to demonstrate the effect more dramatically. But the 
effect itself remains the same, even if the deviation 
is very small. 
     If, on the other hand, we have α > 1, than the 
actual flow rate of gas is always a little bit lower 
than the measured flow rate: The controller passes a 
too low amount of gas. Therefore, at the end of the 
period, the controller opens the valve in order to 
achieve the contracted amount. Contrarily to the 
above case, we have 
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meaning that the controller has to open the valve 
completely.  A typical graph of the solution in the 
case of  α = 2 is shown in Fig.4.  
      Let us now finally take a glance at the 
calculations providing the internal set point. Those 
calculations always are afflicted by rounding errors.  
But suppose now for the moment that these 
rounding errors are of such a kind that they cause a 
permanent deviation of the calculated set point from 
the actual set point: either always in the positive 
direction or always in the negative one. Then the 
same effect can be observed and explained by 
equation (2). Rounding errors of this kind may also 
be observed, when the actual standard flow rate is 
calculated by the PLC and not by volume converter. 
 

   
 

Fig. 4 α =2  
 
But  however  bad the behaviour of the control valve 
is, in each case of this section the contracted amount 
of gas is held. This situation will change in the next 
section. 
 
3 The General Case 
 
3.1 The Differential Equation 
Let us, in this section, assume that the input values 
of the controller are affected by more than only one 
kind of perturbations. Suppose, in detail, that: 
a) The measured value Q of the actual gas flow rate 
is disturbed by a relative deviation α(τ) (similar to 
section 2) and, in addition, by an absolute deviation 
-γ(τ): 
 

            γ(τ)
dτ

)(τdσα(τ)Q −=  

    
b) The sum Σ(τ) of the counter values is interfered 
by disturb pulses. For our purposes only the sum of 
these pulses at time τ from the beginning of the 
accounting period is important. We call this sum 
β(τ). Hence  
 
         β(τ))σ(τΣ(τ) +=              
 
is the sum of all pulses registered and processed by 
the controller to perform the control task.  
      Therefore, in total, the situation is described by 
the initial value problem 
 

(3) 0)(τσ  γ(τ),
τ
β(τ)-)σ(τ

dτ
)(τdσα(τ) =+=

-T
-W

, 

 
replacing (2).  
      The initial value problem (3) is solvable under 
rather general conditions on α(τ), γ(τ) and β(τ) (α(τ), 
γ(τ) and β(τ) continuous, α(τ) ≠ 0 for example). But 
to get an qualitative idea of some situations, which 
may occur, and to simplify matters, it is sufficient to 
investigate the following special case: 
   

         
γγ(τ)
τββ(τ)

 0αα,α(τ)

=
⋅=
≠=

 

 
The condition on β(τ) means that the flow of 
disturbing counter pulses is constant in time.  
      Hence, the differential equation we have to solve 
is 
 

(4) 0)(τσ γ,
τ

τβ-)σ(τ
dτ
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⋅

=
-T

-W
 

 
or, after division by α, 
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α
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α
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The general solution of (5) is given by 
 
       , )(τσ)(τσ    )σ(τ ph +=
 
where σh is the general solution of the homogenous 
equation 
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(6)
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and σp is a particular solution of the inhomogeneous 
equation (5) (see [5]).  
      The homogenous equation (6) can be solved by 
separating the variables: 
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A particular solution of (5) can be found by 
variation of the constant: 
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Inserting these expressions in (5) yields 
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For the rest of the calculations, have to consider to 
different cases α ≠ 1 and α = 1. 
In the case α ≠ 1, by integration, we find a primitive 
of C’ 
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and a particular solution of (5) is therefore given by  
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Hence the general solution of (5) is 
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and setting τ = 0 yields the value of the constant C: 
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I.e., in the case α ≠ 1 the initial value problem (4) is 
solved by 
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or in a more compact version 
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In the case α = 1 we get 
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and as a primitive of C’ we find 
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A particular solution of (5) is therefore given by 
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Hence the general solution of (5), in the case α = 1, 
is 
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Setting τ = 0 yields 
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and thus, in the case α = 1, the initial value problem 
(4) is solved by the function 
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3.2 The Contracted Amount of Gas 
Let us now first check, in which manner the 
contracted amount of gas W is affected by the 
perturbations investigated by us, i.e. we have to 
determine 
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whereas in the case α = 1 
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Hence, in case of  β < 0, the contracted amount of 
gas is not held, which causes a peak load in the 
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actual accounting period. This was to be expected, 
because β < 0 means that counter pulses are lost, 
and the controller registers a too low amount of 
standard volume drawn from the primary supplier.  
 

 
 

Fig. 5 α = 1, β = -0.5, γ = 0 
The typical graph of such a solution is shown in 
Fig.5 above. 
      If, however, β > 0, than additional counter pulse 
are registered and processed by the controller. 
Hence less gas then the allowed amount is drawn. 
This may cause a peak load after a cold winter 
night, if there is not gas enough in the distribution 
system to guarantee the supply of all the consumers. 
The distributor may then be forced to draw more gas 
than its contract allows. Fig.6 shows the typical 
graph of such a solution:  
 

 
 

Fig.6 α = 1, β = 0.5, γ = 0 
 
Evidently σ(τ) has a maximum in the interval [0, T]. 
This behaviour is characteristic in the case α = 1, β 
> 0, γ = 0.  To see this let us calculate the roots of 

the derivative of σ(τ). To simplify the calculations, 
we assume that T = 1. The equation 
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I.e. σ(τ) has a local maximum in μ.  
      The sum σ(μ) is the sum of pulses caused by gas 
actually drawn from the primary supplier, whereas 
βμ is the sum of pulses coming from fictitiously 
drawn gas. The pulses contained in βμ are only 
disturb pulses and do not register gas which was 
actually purchased. Nevertheless the controller takes 
them into account when calculating the internal set 
point of the system. For the sum of all counter 
pulses at time μ the following equation holds. 
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I.e., at time μ the controller closes the valve 
completely because the contracted amount of gas W 
is reached by σ(μ) + βμ . 
      Because normally a negative flow of gas is 
impossible, the valve remains closed for τ > μ until 
the end of the accounting period. Hence, for τ > μ, 
the function σ(τ) is no longer a solution of the initial 
value problem (4), and it is no longer represented by 
equation (7). In Fig. 6 this situation is demonstrated 
by the horizontal dashed red line on the right hand 
side of μ.  
      Actually in a few old gas distribution systems it 
may happen that there is a negative flow of gas, i.e. 
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a backward flow from the end consumers into the 
net of the local distributor. In those distribution 
systems special care has to be taken that this 
situation never occurs, for example by minimum 
pressure control. Otherwise it could happen that air 
is flowing back from the environment into the gas 
distribution system and this would cause a highly 
explosive mixture. 
 
 
3.3 The Behaviour of the Valve 
To investigate the behaviour of the valve towards 
the end of the accounting period, we now determine 
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In the case α ≠ 1 we get 
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This result resembles the result described in 
subsection 2.2: If α > 1 the controller opens the 
valve completely towards the end of the period. If α 
< 1 the behaviour of the valve depends on the 
modulus and the sign of β + γ. Here, as elsewhere, it 

has always to be kept in mind that in regions with a 
non positive derivative of σ(τ) (non positive flow of 
gas) the valve is completely closed and remains 
closed until the end of the period. In such regions 
σ(τ) is no longer a solution of the initial value 
problem (4) (see the end of subsection 3.2). 
      In the case α = 1 we get:  
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I.e., in this case too the behaviour of the valve 
depends strongly on the sign of β + γ. As above  
 

0
dτ

)(τdσ 1α ≤=  

 
means that the valve is closed and remains closed. 
 
 
3.4 The Case of a Disturbed Ground 
The case  β = 0 can be handled similar to the initial 
value problems (1) and (2) examined in subsection 
2.2. Nevertheless, we shall throw a short glance 
onto the case α = 1 and β = 0. It describes the 
situation, where the measured value Q of the gas 
flow rate is disturbed by an absolute deviation -γ(τ), 
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i.e. the situation of a disturbed ground. In this case 
we get   
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For reasons of simplicity let again T = 1, i. e. 
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As in subsection 3.2, it turns out that for γ > 0 σ(τ) 
has a maximum in the interval [0, 1]: The roots of 
the derivative of σ(τ) are given by the equation 
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and as in subsection 3.2 we have 
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I.e. σ(τ) is maximal in 
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Consequently, in this case, a peak load can not be 
avoided. The contracted amount W is surmounted at 

 
1

γ
W

e-1λ
−−

=  
 
The typical graph of such a solution is shown in 
Fig.7. Here again, we chose the somewhat  
disproportionate value of γ = 1,5, because otherwise 
the effect would have been difficult to observe. But 
the effect itself remains the same, even if γ is very 
small.  
 

 
 

Fig.7 α = 1, β = 0, γ = 1.5  
 

      As in subsection 3.2 at time μ, the controller 
closes the valve completely, and the valve remains 
closed for τ > μ until the end of the accounting 
period. In Fig. 7 this situation is demonstrated by 
the dashed red line. In the case of γ < 0, there is no 
danger of a peak load. This case is similar to the 
case α > 1, β = 0, γ = 0. The typical graph of such a 
situation is shown in Fig.8.  
 

 
 

Fig.8 α = 1, β = 0, γ = -0.5 
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4 Conclusion 
The authors investigated phenomena observed 
frequently when operating gas flow and volume 
control systems. The effect has been explained by 
introducing a differential equation and solving it. 
The reason may be a false measured value of the 
actual gas flow rate. Then the effect of disturb 
pulses was examined interfering the counter pulses 
coming from a volume converter. To this end a 
more general differential equation was introduced. 
Rounding errors may lead to the same effect. It 
could be an issue of future investigations to replace 
the present differential equation (1) by an equation 
with lagging argument, taking account of the fact 
that the actual value of the flow follows the set point 
with a time delay. May be that the methods 
described in [17] or [18] will help to attack this 
problem. 
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