
A Novel and Accelerated Genetic Algorithm

HUANG BAO-JUAN, ZHUANG JIAN, YU DE-HONG
School of Mechanical Engineering

Xi’an Jiaotong University
710049, Xi’an

CHINA
bj_huang8@163.com

Abstract: - Genetic algorithm (GA) is very helpful when the developer does not have precise domain expertise,
because GA possesses the ability to explore and learn from their domain. At present, the research of GA mainly
focuses on the three operators and devotes to improve the algorithm efficiency and avoid premature
convergence. This paper presents a cycle mutation operator and a novel selection operator; accordingly, an
improved cycle mutation genetic algorithm (ICMGA) is schemed, The experimental results compared with
other genetic algorithms validate the performance of this algorithm, such as the exploration ability in search
space, the stabilization and calculation speed, are all superior to other algorithms, and ICMGA is not sensitive
to the initial population distribution.

Keywords: - Genetic algorithm, Evolution algorithm, mutation operator, selection operator, and cycle mutation
operator

1 Introduction
Genetic algorithm is a branch of the evolutionary
algorithms which has been established based upon
the “survival of the best” and “the proliferation of
the superior species” as inspired by Darwin
evolutionary hypothesis [1]; it involves three types
of operators: selection, crossover, and mutation. By
some rules, the selection operator chooses those
individuals in the population that will transmit their
genes to next generation. The crossover exchanges
partial genes of two chosen individuals to create the
new offspring that inherit some characters of their
parents. A crossover operator manipulates a pair of
individuals (called parents) to produce two new
individuals (called offspring) by exchanging
segments from the parents’ coding. By exchanging
information between two parents, the crossover
operator provides a powerful exploration capability.
A commonly used method for crossover is called
one-point. Mutation randomly flips one or more bits
in an individual and mutates the bits to create new
offspring. The offspring created by mutation may
have some new characters or traits that not found in
the parent.

Genetic Algorithms can be described as:
1) Choose initial population
2) Evaluate the fitness of each individual in the
population
3) Repeat:

a) Select best-ranking individuals to reproduce

b) Breed new generation through crossover and
mutation (genetic operations) and give birth to
offspring

c) Evaluate the individual fitness of the
offspring

d) Replace worst ranked part of population
with offspring
4) Until termination

GA can process complex questions and finds the
optimal or near optimal solutions [1] [2] [3] [4],
Genetic Algorithms has been widely studied,
experimented and applied in many fields in
engineering worlds. Not only does GA provide an
alternative method to solving problem, it
consistently outperforms other traditional methods
in most of the problems link. Many of the real world
problems involved finding optimal parameters,
which might prove difficult for traditional methods
but ideal for GA. Its usefulness and gracefulness of
solving problems has made it the more favorite
choice among the traditional methods, namely
gradient search, random search and others. GA is
very helpful when the developer does not have
precise domain expertise, because GA possesses the
ability to explore and learn from their domain. At
present, the research of GA mainly focuses on the
three operators and devotes to improve the
algorithm efficiency and avoid premature
convergence.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
269

Issue 4, Volume 3, April 2008

mailto:bj_huang8@163.com
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Fitness_%28biology%29
http://en.wikipedia.org/wiki/Individual
http://en.wikipedia.org/wiki/Reproduce
http://en.wikipedia.org/wiki/Breed
http://en.wikipedia.org/wiki/Generation
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Offspring

2 Cycle mutation operator
Mutation can escape the local search and increase
the probability of finding global optimal solutions.
Nevertheless, the overlarge mutation probability
may lead GA to random search, thereby reducing the
searching efficiency of algorithm. The existing
mutation operators can be approximately divided
into two species: fixed probability and variable
probability. Through results of previous research it
can be concluded that the latter excels the former in
performance.

The mutations with dynamic probability are
classified into three types in [5]: dynamic parameter
control, adaptive parameter control and
self-adaptive parameter control. In dynamic
parameter control, the relationship between
mutation probability and generation number usually
accords with deterministic decreasing function.
Fogarty [6] does a lot of researches and experiments,
and finally gives the empirical exponential
functional relationship:

1 0.11375()
240 2m tp t = + (1)

Reference [7] gives the more universal functional
relationship:

31

2

exp(/ 2)()m
c tcp t

c n l
−

= (2)

Here l is the length of individual gene, n is the
population size.

Unfortunately, the value of coefficient Ci in
equation (2) should be estimated according as the
practical problem. Reference [8] gives the much
better empirical formula. And its performance is
indicated by the test results of a great deal of
difficult combinatorial optimization problems.

12() (2)
1m

lp t t
T

−−
= +

−
 (3)

Here T is the generation number.
The adaptive parameter control adjusts the size of

mutation probability according to the information of
searching results returned from optimization
procedure. An early example of this method is
Rechenberg’s 1/5 success rule [9]. It requests that at
least 20% of the generations are successful after
mutations or else increase the mutation probability.
The self-adaptive parameter control has no feedback
mechanism that can direct control the value of
mutation parameter. But it accords the rule that
individual whose mutation parameter values taking
on higher performance has evolution dominance and
will be allowed to proliferate in population. There
are many successful applications of self-adaptive
parameter control in continuous optimization of

evolution strategy and evolution programming [10]
[11].

In practice, it has been found that premature
phenomena appear when the population size is small.
To solve this question, literature [12] introduces
mutation probability adjusting scheme. But
population affinity needs to be calculated in that
method, which will increase the computational cost.
Therefore, we expect that acquired mutation
operator possesses following performance:

a) It can maintain lower mutation probability in a
relatively long period. That means the crossover
operator plays a leading role in GA. Consequently,
the algorithm almost fully searches the space
domain which population covered;

b) It can output high mutation probability in given
time periods, which enable GA to jump from local
search.

c) It can achieve the adjusting of mutation
parameter with low computation cost.

To acquire this mutation operator, we centralize
our insight on the most successful evolution
example —human evolution and analyze the rules
that followed by biological evolution. Paleontologist
demonstrates through fossil that there appears 5
times biology extinction in the organism’s
development history, and the cycle of extinction
appeared is basically between 62 million years and
65 million years [13]. In each cycle, there exist
excellent populations in evolution race, such as the
Jurassic dinosaurs. Similarly, there is no extinction
in the organism’s evolutionary process; there is no
appearance of human being. Based on this clue, a
mutation operator with cycle probabilities that
borrows the evolution experience of earth biology is
introduced; the operator is designed as follows:

[]2

2

(0.5)
() c

m
c

t k T
p t

T
α − +

= (4)

Here t is generation number, Tc is variety cycle, α is
adjustment coefficient of probability, and k is cycle
number.

In equation (4) the parameter need to be
pre-defined only Tc and α. Generally, the value of Tc
is the least expected number of evolution generation,
but the value should not be too small. The value of α
is the extremum of mutation probability Pm.
Reference [14] proves through Markov chain that
the GA with elitists reserved is convergent, and
literature [15] points out that if GA is ergodic and
the operation of elitists reserved can not alter or
affect its ergodic property, then the algorithm is
global convergent. So that the operation of elitists
reserved is added to our algorithm in order to ensure
its convergence property.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
270

Issue 4, Volume 3, April 2008

To illustrate the performance of this mutation, 22
functions are tested and the results are compared
between 4 kinds of GA. Each function is tested 1000
times and in each time the number of iteration is
most 1000. Furthermore, the parameters of 4 GA are
binary encoded and the code length is 20.

Algorithm 1: Classical genetic algorithm (SGA),
population size is 50, Pm=0.01 and Ps=0.7;

Algorithm2: GA introduced by Reference [8]
(BSGA), in which the probability of mutation can
adjust dynamically. Population size is 50, Pm=0.01
and Ps=0.7;

Algorithm3: GA introduced by Dirk Thierens [5]
(DMGA), in which the probability of mutation can
adjust adaptively. Population size is 50, Pm=0.5,

Ps=0.7, λ=1.1, ν=1.0 and ω=1.5;
Algorithm4: Cycle mutation GA of this paper

(CMGA), population size is 50, Tc=50 and α=1.0.
Table 1 presented the experimental results. It is

obvious that the performance of BSGA, DMGA and
CMGA is almost similar to each other, stability and
calculating speed of BSGA and CMGA is superior
to that of DMGA; but all of them are excels SGA in
performance. That shows that the cycle mutation,
which simulates the rules of biologic evolution, can
be applied to GA and its performance is not inferior
to that of other elaborately mutations. But it still not
reaches our expectation. What is the key to solve
this problem?

Table 1 Performance testing results

(M1: SGA, M2: BSGA, M3: DMGA, M4: CMGA)
 Times of object found Mean square deviation Average time cost (ms)
 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

F1 53 1000 997 1000 14.05 1.36 1.62 0.97 0.51 0.48 1.14 0.46
F2 0 1000 985 1000 / 2.39 3.60 2.27 / 0.48 1.13 0.48
F3 38 1000 969 1000 2.13 1.03 1.35 1.54 0.88 0.43 1.17 0.44
F4 6 1000 934 1000 0.00 1.84 6.60 2.04 0.00 0.44 1.12 0.45
F5 0 998 861 1000 / 1.08 0.88 2.72 / 0.48 1.28 0.49
F6 29 1000 998 1000 31.50 0.85 0.46 0.50 0.64 0.43 1.12 0.42
F7 0 11 150 14 / 66.11 18.82 81.11 / 0.47 1.21 0.48
F8 0 54 0 73 / 39.79 / 30.92 / 0.46 / 0.44
F9 0 0 120 0 / / 17.30 / / / 1.24 /

F10 21 793 339 806 42.97 7.92 10.21 8.66 0.36 0.52 1.06 0.48
F11 16 1000 666 1000 57.70 2.35 2.51 2.84 0.50 0.53 1.08 0.47
F12 180 1000 978 1000 5.56 0.92 1.16 0.89 0.20 0.46 1.02 0.43
F13 38 922 471 994 0.00 4.64 5.35 5.67 0.00 0.46 1.04 0.45
F14 3 1000 976 1000 0.00 1.06 1.59 2.13 0.00 0.52 1.21 0.46
F15 102 1000 995 1000 7.70 1.29 1.80 1.10 0.56 0.52 1.09 0.45
F16 0 0 0 0 / / / / / / / /
F17 0 845 191 992 / 5.49 4.52 4.98 / 0.48 1.02 0.43
F18 0 5 23 0 / 73.43 56.96 / / 0.54 1.12 /
F19 23 380 49 602 18.68 6.63 16.06 11.35 0.37 1.00 1.63 1.01
F20 0 0 0 0 / / / / / / / /
F21 0 466 8 654 / 8.41 3.39 8.83 / 0.48 1.16 0.48
F22 84 1000 998 1000 12.45 0.95 0.34 0.73 0.47 0.50 1.19 0.48

3 Selection operator
Mutation is the motivity for gaining new schemas in
GA, but the searching efficiency in local space need
to be achieved through selection and crossover
operators. Especially the selection, which directly
reflects “the Survival of the Fittest” theory of
biological evolution, determined the evolutionary
direction of GA. Selection are usually classified as
three types [16], namely stability selection, direction
selection and rupture selection. Stability selection is

also called as generalization selection for its trend to
remove individuals with extreme fitness, direction
selection can increase or decrease the average
fitness of population, and rupture selection has the
ability of eliminating individuals with middle fitness.
No matter what kinds of operator it is, the
individuals under operation with higher fitness
always have a relatively high probability in
transmitting their own genes to next generation. The
existing selection operators in GA are mainly

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
271

Issue 4, Volume 3, April 2008

composed of proportion selection [17] [18] [19],
ranking selection [20] [21], etc.; all of them can be
regarded as the evolution of direction selection.
Under the restriction of GA population size, these
selection operators induce the high fitness
individuals producing more offspring in next
generation; although that is the basic mechanism of
GA to find optimal solutions, it can lead to
premature convergence. Therefore, when designing
the selection, the best of all attention issue is how to
avoid prematurity. In GA, the most frequently used
selection is proportion selection (or be called as
roulette wheel selection), it can be described as
follows:

1

()()
()

i
i n

j
j

u xtrs x
u x

=

=

∑
 (5)

The proportion selection has the character that the
individuals with higher fitness have the higher
probability of transmitting their genes to next
generation. But practical experiments indicate that
the lower fitness ones can also transmit their genes
to next generation though proportion selection, and
the transfer probability is rather high.

Table 2 shows the statistical ranking results of the
elitists’ parents, the algorithm used in this
experiment is CMGA, population size is 50,
Tc=50,α=1.0; Function 1 in appendix1 is selected as
cost function and 10 times are tested in all.

Table 2 the ranking result of the elitist’ parents in CMGA

 Test
1

Test
2

Test
3

Test
4

Test
5

Test
6

Test
7

Test
8

Test
9

Test
10

Elitist (times) 46 23 23 10 46 22 10 46 23 10
Not-elitist (times) 38 15 15 6 38 16 6 38 15 6

From table 2 it can conclude that the GA with

roulette wheel selection whose elitists hold the
leading position in evolution process. But the
probability of other non-optimum ones being
selected as parent is close to 40%. That makes us
have to think the rationality of probability.
In order to make the selection more rational, the
probability that individual x falling into parent is
revised:

max

0.7 ()()
()trs

u xP x
u t

= (6)

Here umax(t) is the individual with maximum fitness
in t generation. u(x) is the fitness of individual x,
Ptrs(x,t) is the probability that individual x being
selected as parent in t generation.

4 An improved cycle mutation genetic
algorithm
Integrated the improved selection operator and
CMGA, a new GA named improved cycle mutation
genetic algorithm (ICMGA) is introduced as
follows:
1. Set the population size PopuSize, the probability

of crossover operator Ps, the number of reserved
elitists BackupSize;

2. Initialize population;
3. Count population, reserve the optimum
population;
3.1 First reserve the best elitist in generation, and
then reserve the BackupSize-1 individuals that are

most close to the elitist. The distance calculation
formula for parameter is defined as follows:

()2max

0

pn
i i

k k
k

d Parameter Parameter
=

= −∑ (7)

4. Set the number of iteration IterativeTimes=0;
5. Test the stop criterion, if not satisfy, continue;
Else, go to 10;
6. Set the number of generated offspring i=0;
7. Test i=PopuSize, if not, continue; Else, go to 8;

7.1 Select two parent individuals’ fi and mi by the
equation (6);

7.2 Perform crossover operation; generate two
offspring individuals’ soni and soni+1;

7.3 Calculate the probability of mutation operator
by the equation (4);

7.4 For every gene of the two offspring
individuals, operate mutation in terms of Ps.

7.5 Calculate the individual fitness value of the
two offspring individuals;

7.6 i=i+2, go back to 7;
8. Count the offspring population; update the set of
advantage population;

8.1 If there are elitists which fitness value is
higher than those in the set of advantage population,
substitute these elitists for those in the set and
update the other elitists in the scope of offspring and
the set according as the principle of nearest; Else,
release those in the set into offspring;
9. IterativeTimes=IterativeTimes+1, go back to 5;
10. Output result, stop the program.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
272

Issue 4, Volume 3, April 2008

5 Results and discussion

5.1 Comparative test in algorithm
performance
To test the performance of ICMGA, the
self-adaptation genetic algorithm (AGA) [12] and
simple immune clone algorithms (SIA) [22] are
used to compare. The basic settings of experiment
are listed: the operation system: Window XP, the
programming language: C++, the computer memory:
1GB and the dominant frequency of CPU: 3GHz. 22
functions are tested in all, each function is tested

1000 times and in each time the number of iteration
is 1000. The parameters of 3 GA are binary encoded
and the code length is 20.
Algorithm 1 (M1): SIA, population size is 50 and
clone number is 5;
Algorithm 2 (M2): AGA, population size is 50, the
number of reserved optimum population is 10,
Ps=0.7;
Algorithm 3 (M3): ICMGA, population size is 50,
the number of reserved optimum population is 10,
Ps=0.7;
The comparison result is showed in Table 3.

Table 3 Comparison results of three methods

(M1: SIA; M2: AGA; M3: ICMGA)

 Times of object
found

Mean-square
deviation

Average iteration
number

Average time
cost (ms)

 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
F1 1000 1000 1000 0.99 1.78 0.57 31.21 81.19 26.34 2.36 0.50 0.48
F2 59 1000 1000 37.54 0.38 0.17 425.93 44.96 23.04 2.84 0.49 0.49
F3 1000 998 998 2.71 5.74 2.19 69.67 117.43 49.65 2.49 0.51 0.51
F4 704 1000 1000 11.13 0.48 0.52 338.99 51.86 30.43 2.64 0.49 0.47
F5 851 905 997 8.76 2.71 3.61 258.04 176.46 108.43 3.13 0.54 0.63
F6 994 1000 1000 4.79 0.75 0.32 131.98 53.17 22.68 2.52 0.50 0.49
F7 66 10 1000 37.04 52.86 0.70 415.29 728.60 43.19 2.84 0.57 0.50
F8 551 90 992 12.64 28.28 5.01 333.05 457.24 206.02 2.63 0.55 0.50
F9 0 5 1000 / 0 0.47 / 18.00 36.34 / 0.51 0.53

F10 1000 799 998 2.06 8.88 4.62 57.22 327.26 95.56 2.30 0.56 0.48
F11 1000 998 1000 1.42 7.59 2.79 43.89 275.67 79.57 2.35 0.51 0.49
F12 1000 1000 1000 0.07 2.03 0.48 4.46 42.55 14.37 1.19 0.43 0.38
F13 1000 1000 1000 0.34 1.36 0.26 11.68 75.17 14.06 1.83 0.52 0.42
F14 700 942 1000 10.86 2.43 2.38 315.40 87.41 71.44 2.98 0.52 0.53
F15 1000 1000 1000 0.78 2.56 0.61 23.88 80.60 26.11 2.07 0.49 0.46
F16 0 0 974 / / 5.14 / / 159.22 / / 0.53
F17 924 1000 1000 8.25 2.55 2.26 239.92 100.35 61.88 3.22 0.74 0.73
F18 0 3 1000 / 0.00 0.20 / 6.00 29.09 / 0.64 0.69
F19 1000 811 991 2.27 8.67 4.03 54.07 310.77 69.57 6.42 1.02 1.02
F20 8 115 762 115.89 32.46 9.15 324.63 235.26 378.44 2.91 0.37 0.53
F21 3 977 980 165.69 9.45 4.95 626.67 203.32 115.42 3.00 0.51 0.50
F22 1000 1000 1000 2.50 0.79 0.48 70.08 37.94 22.99 2.60 0.51 0.52

It can be seen in the table3 that the performance
of ICMGA is most excellence. Its probability of
finding optimal solutions is almost above 98% (only
function 20 that the probability is 76.2%). And for
test function F9, F16, F18, F20 and F21, only
ICMGA can find the optimal solutions and the
finding times more than 760 in 1000 times test. That
means the seeking ability for optimal solutions of
ICMGA is stronger than other optimization
algorithms. The compare results in indexes, such as
mean square deviation, average iteration number

and average time cost, also shows that ICMGA is
better than other two algorithms at stability and
calculation velocity.

5.2 The effect test of initial population
distribution
To analyze the effect of initial population
distribution on performance of ICMGA, four types
of binary coding methods are used to code the
individuals in initial population. That is 0,1 random

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
273

Issue 4, Volume 3, April 2008

uniform distribution, all 1 distribution, all 0
distribution and 0,1 interval distribution, the test

environment and method are all as above, the test
results are showed in Table 4.

Table 4 Test results of ICMGA initial population in different distribution

(d1: random uniform distribution; d2: all 1; d3: all 0; d4: 0,1 interval)
 Times of object found Mean-square deviation Average time cost
 d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

F1 1000 1000 1000 1000 0.57 0.61 0.67 0.56 0.48 0.49 0.48 0.48
F2 1000 1000 1000 1000 0.17 0.00 0.00 0.11 0.49 0.00 0.18 0.49
F3 998 998 1000 1000 2.19 2.86 2.66 2.62 0.51 0.51 0.51 0.51
F4 1000 1000 1000 1000 0.52 0.58 0.55 0.56 0.47 0.42 0.43 0.48
F5 997 998 1000 1000 3.61 3.16 3.58 2.96 0.63 0.62 0.63 0.63
F6 1000 1000 1000 1000 0.32 0.25 0.43 0.50 0.49 0.49 0.49 0.49
F7 1000 1000 1000 1000 0.70 0.60 0.82 0.85 0.50 0.46 0.46 0.49
F8 992 976 994 986 5.01 6.03 5.54 5.75 0.50 0.50 0.50 0.50
F9 1000 1000 1000 1000 0.47 0.40 0.50 0.50 0.53 0.52 0.52 0.53

F10 998 998 1000 984 4.62 4.23 4.02 5.85 0.48 0.41 0.41 0.50
F11 1000 1000 1000 1000 2.79 2.32 2.61 2.62 0.49 0.45 0.43 0.50
F12 1000 1000 1000 1000 0.48 0.45 0.39 0.54 0.38 0.41 0.40 0.41
F13 1000 1000 1000 1000 0.26 0.46 0.38 0.39 0.42 0.44 0.44 0.47
F14 1000 1000 1000 1000 2.38 2.44 2.38 2.39 0.53 0.53 0.53 0.53
F15 1000 1000 1000 1000 0.61 0.83 1.14 0.70 0.46 0.48 0.48 0.46
F16 974 994 994 986 5.14 3.84 4.34 4.69 0.53 0.50 0.55 0.53
F17 1000 1000 1000 1000 2.26 2.01 2.69 3.12 0.73 0.69 0.69 0.69
F18 1000 1000 1000 1000 0.20 0.29 0.29 0.34 0.69 0.65 0.67 0.70
F19 991 997 997 993 4.03 2.48 3.04 4.46 1.02 1.03 1.03 1.04
F20 762 1000 1000 766 9.15 0.84 0.00 8.52 0.53 0.20 0.00 0.53
F21 980 992 992 994 4.96 4.75 4.87 4.30 0.50 0.50 0.50 0.51
F22 1000 1000 1000 1000 0.48 0.46 0.51 0.39 0.52 0.52 0.52 0.53

From the experiment results in table 4, it can

draw a conclusion that the initial distribution of
population is almost no effect on the performance of
ICAMA.

5.3 The performance analysis test
Compared CMGA in table 1 with ICMGA in table 4,
it can be seen that the performance of ICMGA is
significant superior to that of CMGA. And the only
difference between the two algorithms is selection
operator. So we will analyze the reason that the
selection of ICMGA improves the algorithm
performance. In order to detect the difference in
effect of selection operator on population evolution,
ICMGA and CMGA are iterated 1000 times for the
optimization of test function F1 and the times that
each individual is selected (according to ranking
order) as parent in resultant population are count
respectively. For the convenience of data regression

analysis, sets the initial population are all parents
and population size is 50. And the regression
analysis of testing data, ranking order of individuals
and the times being selected as parents are
implemented by linear function, exponential
function and power function respectively. The three
equations of regression analysis are listed as
follows:

bx

b

y ax b
y ae
y ax

= + ⎫
⎪= ⎬
⎪= ⎭

 (8)

Table 5 lists the coefficients of the above three
equations and the value of R2. From the table we can
find that the relationship between individuals’
ranking order and times being selected as parent in
CMGA is mainly consistent with linear equation
(for R2=0.9892), and that in ICMGA accords with
power format (for R2=0.7969)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
274

Issue 4, Volume 3, April 2008

Table 5 the coefficients of three equations of regression analysis and the value of R2
 CMGA ICMGA
 a b R2 a b R2

Linear fitting -35. 1020 1837.7000 0.9892 -120.2000 4026.4000 0.1098
Exponential fitting 2644.4000 -0.0469 0.8406 61.0880 -0.1190 0.4228

Power fitting 4969.9000 -0.6114 0.5512 7249.2000 -2.6293 0.7969

The results of statistical regression analysis
indicated that the population in evolution process
accord with Power Law under the selection operator
in equation (6). We consider that is the basic reason
for high efficiency of ICMGA.

6 Conclusions
In this paper, a mutation operator with cycle
probabilities is designed to solve the contradiction
of population diversity and over local search. And
combined with this mutation and improved selection,
a novel and accelerated genetic algorithm (ICMGA)
is introduced. The experimental results compared
with other genetic algorithms validate the
performance of this algorithm, such as the
exploration ability in search space, the stabilization
and calculation speed, are all superior to other
algorithms. Moreover, the statistical analysis of
individuals ranking order and times being selected
as parent all indicate that the evolution process of
ICMGA accorded with Power Law, that is the
reason for high performance.

References:
[1] B.Fahimnia, R.Molaei, M.Ebrahimi. Genetic

Algorithm Optimization of Fuel Consumption
in Compressor Stations, WSEAS
TRANSACTIONS on system and control, issue
1, volume 3,January 2008,pp. 1-10

[2] Supachate Innet, Nawat Nuntasen. University
Timetabling Using Evolutionary Computation,
WSEAS TRANSACTIONS on ADVANCES
in ENGINEERING EDUCATION, Issue 12,
Volume 4, Decmber 2007,pp. 243-250

[3] Chen, R.C., Chen, T.S., Feng, C.C., Lin, C.C.
and Lin, K.C., Application of Genetic
Algorithm on Production Scheduling of Elastic
Knitted Fabrics, Engineering and Applied
Sciences, vol. 1, no. 2, 2006, pp. 149-153.

[4] Edmary Altamiranda,Rodrigo Calderón,Eliezer
Colina Morles. An Evolutionary Algorithm for
Linear Systems Identification. Proceedings of
the 6th WSEAS International Conference on
Signal Processing, Robotics and Automation,
Corfu Island, Greece, February 16-19,
2007,pp.225-229.

[5] Dirk Thierens. Adaptive Mutation rate control
schemes in genetic algorithms. Evolutionary
Computation, 2002. CEC apos; 02. Proceedings
of the 2002 Congress on Volume 1, Issue,
12-17 May 2002,pp. 980-985

[6] Fogaty T. Varying the probability of Mutation
in the Genetic Algorithm, Proc. Of the Third
International Conference on Genetic
Algorithms, pp. 104-109, Morgan Kaufmann,
1989.

[7] Hesser J. and Manner R. towards an Optimal
Mutation Probability in Genetic Algorithms,
Proc, of 1st Parallel Problem Solving form
Nature, pp. 115-124, Springer, 1991.

[8] Back T. and Schutz M. Intelligent Mutation
Rate Control in Canonical Genetic Algorithms,
Proc. Of the International Symposium On
Methodologies for Intelligent Systems,
pp.158-167, 1996

[9] Rechenberg I. Evolutions strategie:
Optimierung technischer Systeme mach
Prinzipin der biologischen Evolution,
Frommann, 1973.

[10] Schwefel H. -P. Evolution and Optimum
Seeking. Wiley, NY, 1995.

[11] Fogel D. Evolutionary Computation: Toward a
New Philosophy of machine Intelligence, IEEE
Press, NJ, 1995

[12] Zhuang Jian, Wang Sun-an. Study on
Self-Adjusting of Gene Migration Genetic
Algorithm, Journal of Xi'an Jiaotong University,
2002, 36(11), pp.1170~1172.

[13] Rong Jia-yu, Zhan Ren-bin. Re-evaluation of
survivors, Lazarus taxa, and refugia from mass
extinction, EARTH SCIENCE FRONTIERS,
2006, 13(6), pp.187-198.

[14] Eiben A E etc. Global convergence of genetic
algorithm: an infinite markov chain analysis In:
Schwefel H P, M anner R Eds. Parallel problem
solving from Nature. Heidelberg, Berlin:
Springer-verlag, 1991, pp. 4-12.

[15] He Lin,Wang Ke-jun. Elitist preserved genetic
alorithm and its convergence analysis,
Control and Decision,2000,15(1) ,pp.63 - 66.

[16] J. J. Grefenstette and J. E. Baker, “How genetic
algorithms work A critical look at implicit
parallelism,” in Proc. Third Int. Conf on
Genetic Algorithms. San Mateo CA: Morgan

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
275

Issue 4, Volume 3, April 2008

Kaufmann. 1989, pp, 20-27.
[17] Ting Kuo and Shu-Yuen Hwang. A Genetic

Algorithm with Disruptive Selection,IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS-PART B: CYBERNETICS.
1996, 26(2), pp.299-307.

[18] M. Srinivas, and L. M. Patnaik. Adaptive
Probabilities of Crossover Genetic in Mutation
and Algorithms.IEEE TRANSACTIONS ON
SYSTEMS, MAN AND CYBERNETICS, 1994,
24(4), pp.656-667.

[19] J. E. Baker. Adaptive selection methods for
genetic algorithms. In Proc. First Int. Conf on
Genetic Algorithms and Their Applications.
Hillsdale, NJ Lawrence Erlbaum, 1985, pp.
101-111.

[20] Vlasis K. Koumousis and Christos P. Katsaras.
A Saw-Tooth Genetic Algorithm Combining
the Effects of Variable Population Size and
Reinitialization to Enhance Performance,IEEE
TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, 2006, 10(1),pp.19-28.

[21] Chang-Yong Lee. Entropy-Boltzmann
Selection in the Genetic Algorithms,IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS—PART B: CYBERNETICS,
2003, 33(1),pp.138-142.

[22] Liu Ruo-chen, Du Hai-feng,Jiao Li-chen.
Immune Monoclonal strategy based on the
Cauthy mutation. Journal of Xidian University,
2004 31(4), pp.551-556.

Appendix
Test functions and stop qualification:
Function1 (F1):

2 2

2 2 15

sin(6)
max (,) 1 sin(4) sin(4) , , [1,1]

6 10

x y
f x y x x y y x y

x y
π π π

−

+
= + × − × + + ∈ −

+ +

Stop qualification: 2.1180

Function2 (F2):

2 2max (,) , , [0,1]f x y x y x y= + ∈
Stop qualification: 1.9990

Function3 (F3):

2 2 2 3 5 2

2 2

max (,) 3(1) exp[(1)] 10() exp()
5

1 exp[(1)], , [3,3]
3

x 2f x y x x y x y x y

x y x y

= − − − + − − − − −

− − + − ∈ −

Stop qualification: 8.1040

Function4 (F4):

2 2 2 2
2 2max (,) [] () , , [5.12,5.12] 0.05, 3.0

()
bf x y x y x y a b

a x y
= + + ∈ − , =

+ +
=

Stop qualification: 3590.0

Function5 (F5):

2
30

2
30

4 lg 2(0.0667)max (,) sin(5.1 0.5) exp[]
0.64

4lg 2(0.0667) sin(5.1 0.5) exp[], , [0,1]
0.64

xf x y x

yy x

π

π

− −
= +

− −
+ y ∈

Stop qualification: 0.9960

Function 6(F6):

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
276

Issue 4, Volume 3, April 2008

1max (,) (sin() sin()), , [500,500]
2

f x y x x y y x y−
= + ∈ −

Stop qualification: 418.80

Function7 (F7):

2 2max (,) [20 10cos(2) 10cos(2)], , [5.0,5.0]f x y x x y y x yπ π= − + − + − ∈ −
Stop qualification: -0.0010

Function8 (F8):

2 2 2max (,) [100*() (1)], [8,8]f x y x y x x= − − + − ∈ −
Stop qualification: -0.0010

Function9 (F9):

2 21 1max (,) 20exp[0.2 ()] exp{ [cos(2) cos(2)]} 20 , 10 10
2 2

f x y x y x y e xπ π= − + + + − − − ≤ ≤

Stop qualification: -0.0010

Function10 (F10):

2 21max (,) [() cos() cos() 1], , [10,10]
4000 2

yf x y x y x x y= − + − + ∈ −

Stop qualification: -0.0010

Function11 (F11):

2 2 2

2 2 2 2

sin 0.5
max (,) 0.5 , , [5,5]

[1 0.001 ()]
x y

f x y x y
x y

+ −
= − − ∈ −

+ × +

Stop qualification: 0.9990

Function12 (F12):

10

2

1sin()
10max () 10 , [10,10]

(0.16) 0.1
xf x x

x
−+= + ∈ −

− +

Stop qualification: 19.7810

Function13 (F13):

2 2max (,) [0.3 cos(3) 0.3 cos(4) 0.3], , [1,1]f x y x y x y x yπ π= − + − × + × + ∈ −
Stop qualification: 0.2390

Function14 (F14):

5 5

1 1

max (,) { cos[(1)]} { cos[(1)]}, , [10,10]
i i

f x y i i x i i i y i x y
= =

= − + + × + + ∈ −∑ ∑

Stop qualification: 186.70

Function15 (F15):

max (,) 1 sin(4) sin(4), , [1,1]f x y x x y y x yπ π π= + × − × + ∈ −
Stop qualification: 2.2590

Function16 (F16):

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
277

Issue 4, Volume 3, April 2008

2 2 0.25 2 2 2 0.1max (,) () (sin 50() 1.0), , [1,1]f x y x y x y x y= − + + + ∈ −
Stop qualification: -0.010

Function17 (F17):

4 2 4 21max (,) (16 5 16 5), , [5,5]
2

f x y x x x y y y x y= − + + − + ∈ −

Stop qualification: 78.330

Function18 (F18):

max (,) (), , [10,10]f x y x y x y x y= − + + ∈ −
Stop qualification: -0.0010

Function19 (F19):

25
1

2
61

1

1 1max (,) [] , , [65.536,65.536]
()j

j i ij
i

f x y x y
K c x a

−

=

=

= − + ∈ −
+ −

∑
∑

32, 16,0,16,32, 32, 16,0,16,32, 32, 16,
0,16,32, 32, 16,0,16,32, 32, 16,0,16,32

;()
32, 32, 32, 32, 32, 16, 16, 16, 16,
16,16,16,16,16,16,32,32,32,32,32,0,0,0,0,0

j ijc j a

− − − − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥= =
⎢ ⎥− − − − − − − − −
⎢ ⎥−⎣ ⎦

; K=500

Stop qualification: -0.9990

Function20 (F20):

max (,) sin | 1 | cos | 1 |

 (1)cos | 1 | sin | 1 |, , [512,512]

f x y x y x y x

y y x y x x y

= − + − + +

+ + + − + + ∈ −

Stop qualification: 511.70

Function21 (F21):

4
2 2 2 23max (,) [(4 2.1) (4 4)], , [5.12,5.12]f x y x x x xy y y x y= − − + + + − + ∈ −

Stop qualification: 1112.145

Function22 (F22):

2 2
20 20 2max (,) sin()sin () sin()sin (), , [0,]x yf x y x y x y π

π π
= + ∈

Stop qualification: 1.80

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Huang Bao-Juan, Zhuang Jian, Yu De-Hong

ISSN: 1991-8763
278

Issue 4, Volume 3, April 2008

	F1
	F1
	F1

