
A Novel and Accelerated Genetic Algorithm  
 

HUANG BAO-JUAN, ZHUANG JIAN, YU DE-HONG 
School of Mechanical Engineering 

Xi’an Jiaotong University 
710049, Xi’an  

CHINA 
bj_huang8@163.com

 
 

Abstract: - Genetic algorithm (GA) is very helpful when the developer does not have precise domain expertise, 
because GA possesses the ability to explore and learn from their domain. At present, the research of GA mainly 
focuses on the three operators and devotes to improve the algorithm efficiency and avoid premature 
convergence. This paper presents a cycle mutation operator and a novel selection operator; accordingly, an 
improved cycle mutation genetic algorithm (ICMGA) is schemed, The experimental results compared with 
other genetic algorithms validate the performance of this algorithm, such as the exploration ability in search 
space, the stabilization and calculation speed, are all superior to other algorithms, and ICMGA is not sensitive 
to the initial population distribution.    
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1 Introduction 
Genetic algorithm is a branch of the evolutionary 
algorithms which has been established based upon 
the “survival of the best” and “the proliferation of 
the superior species” as inspired by Darwin 
evolutionary hypothesis [1]; it involves three types 
of operators: selection, crossover, and mutation. By 
some rules, the selection operator chooses those 
individuals in the population that will transmit their 
genes to next generation. The crossover exchanges 
partial genes of two chosen individuals to create the 
new offspring that inherit some characters of their 
parents. A crossover operator manipulates a pair of 
individuals (called parents) to produce two new 
individuals (called offspring) by exchanging 
segments from the parents’ coding. By exchanging 
information between two parents, the crossover 
operator provides a powerful exploration capability. 
A commonly used method for crossover is called 
one-point. Mutation randomly flips one or more bits 
in an individual and mutates the bits to create new 
offspring. The offspring created by mutation may 
have some new characters or traits that not found in 
the parent.  

Genetic Algorithms can be described as: 
1) Choose initial population
2) Evaluate the fitness of each individual in the 
population 
3) Repeat:  

a) Select best-ranking individuals to reproduce  

b) Breed new generation through crossover and 
mutation (genetic operations) and give birth to 
offspring  

c) Evaluate the individual fitness of the 
offspring  

d) Replace worst ranked part of population 
with offspring  
4) Until termination  

GA can process complex questions and finds the 
optimal or near optimal solutions [1] [2] [3] [4], 
Genetic Algorithms has been widely studied, 
experimented and applied in many fields in 
engineering worlds. Not only does GA provide an 
alternative method to solving problem, it 
consistently outperforms other traditional methods 
in most of the problems link. Many of the real world 
problems involved finding optimal parameters, 
which might prove difficult for traditional methods 
but ideal for GA. Its usefulness and gracefulness of 
solving problems has made it the more favorite 
choice among the traditional methods, namely 
gradient search, random search and others. GA is 
very helpful when the developer does not have 
precise domain expertise, because GA possesses the 
ability to explore and learn from their domain. At 
present, the research of GA mainly focuses on the 
three operators and devotes to improve the 
algorithm efficiency and avoid premature 
convergence.  
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2 Cycle mutation operator 
Mutation can escape the local search and increase 
the probability of finding global optimal solutions. 
Nevertheless, the overlarge mutation probability 
may lead GA to random search, thereby reducing the 
searching efficiency of algorithm. The existing 
mutation operators can be approximately divided 
into two species: fixed probability and variable 
probability. Through results of previous research it 
can be concluded that the latter excels the former in 
performance. 

The mutations with dynamic probability are 
classified into three types in [5]: dynamic parameter 
control, adaptive parameter control and 
self-adaptive parameter control. In dynamic 
parameter control, the relationship between 
mutation probability and generation number usually 
accords with deterministic decreasing function. 
Fogarty [6] does a lot of researches and experiments, 
and finally gives the empirical exponential 
functional relationship:  
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Reference [7] gives the more universal functional 
relationship: 
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Here l is the length of individual gene, n is the 
population size. 

Unfortunately, the value of coefficient Ci in 
equation (2) should be estimated according as the 
practical problem. Reference [8] gives the much 
better empirical formula. And its performance is 
indicated by the test results of a great deal of 
difficult combinatorial optimization problems. 
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Here T is the generation number. 
The adaptive parameter control adjusts the size of 

mutation probability according to the information of 
searching results returned from optimization 
procedure. An early example of this method is 
Rechenberg’s 1/5 success rule [9]. It requests that at 
least 20% of the generations are successful after 
mutations or else increase the mutation probability.  
The self-adaptive parameter control has no feedback 
mechanism that can direct control the value of 
mutation parameter. But it accords the rule that 
individual whose mutation parameter values taking 
on higher performance has evolution dominance and 
will be allowed to proliferate in population. There 
are many successful applications of self-adaptive 
parameter control in continuous optimization of 

evolution strategy and evolution programming [10] 
[11]. 

In practice, it has been found that premature 
phenomena appear when the population size is small. 
To solve this question, literature [12] introduces 
mutation probability adjusting scheme. But 
population affinity needs to be calculated in that 
method, which will increase the computational cost. 
Therefore, we expect that acquired mutation 
operator possesses following performance: 

a) It can maintain lower mutation probability in a 
relatively long period. That means the crossover 
operator plays a leading role in GA. Consequently, 
the algorithm almost fully searches the space 
domain which population covered; 

b) It can output high mutation probability in given 
time periods, which enable GA to jump from local 
search. 

c) It can achieve the adjusting of mutation 
parameter with low computation cost. 

To acquire this mutation operator, we centralize 
our insight on the most successful evolution 
example —human evolution and analyze the rules 
that followed by biological evolution. Paleontologist 
demonstrates through fossil that there appears 5 
times biology extinction in the organism’s 
development history, and the cycle of extinction 
appeared is basically between 62 million years and 
65 million years [13]. In each cycle, there exist 
excellent populations in evolution race, such as the 
Jurassic dinosaurs. Similarly, there is no extinction 
in the organism’s evolutionary process; there is no 
appearance of human being. Based on this clue, a 
mutation operator with cycle probabilities that 
borrows the evolution experience of earth biology is 
introduced; the operator is designed as follows: 

[ ]2

2

( 0.5)
( ) c

m
c

t k T
p t

T
α − +

=         (4) 

Here t is generation number, Tc is variety cycle, α is 
adjustment coefficient of probability, and k is cycle 
number. 

In equation (4) the parameter need to be 
pre-defined only Tc and α. Generally, the value of Tc 
is the least expected number of evolution generation, 
but the value should not be too small. The value of α 
is the extremum of mutation probability Pm. 
Reference [14] proves through Markov chain that 
the GA with elitists reserved is convergent, and 
literature [15] points out that if GA is ergodic and 
the operation of elitists reserved can not alter or 
affect its ergodic property, then the algorithm is 
global convergent. So that the operation of elitists 
reserved is added to our algorithm in order to ensure 
its convergence property. 
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To illustrate the performance of this mutation, 22 
functions are tested and the results are compared 
between 4 kinds of GA. Each function is tested 1000 
times and in each time the number of iteration is 
most 1000. Furthermore, the parameters of 4 GA are 
binary encoded and the code length is 20. 

Algorithm 1: Classical genetic algorithm (SGA), 
population size is 50, Pm=0.01 and Ps=0.7; 

Algorithm2: GA introduced by Reference [8] 
(BSGA), in which the probability of mutation can 
adjust dynamically. Population size is 50, Pm=0.01 
and Ps=0.7; 

Algorithm3: GA introduced by Dirk Thierens [5] 
(DMGA), in which the probability of mutation can 
adjust adaptively. Population size is 50, Pm=0.5, 

Ps=0.7, λ=1.1, ν=1.0 and ω=1.5;  
Algorithm4: Cycle mutation GA of this paper 

(CMGA), population size is 50, Tc=50 and α=1.0. 
Table 1 presented the experimental results. It is 

obvious that the performance of BSGA, DMGA and 
CMGA is almost similar to each other, stability and 
calculating speed of BSGA and CMGA is superior 
to that of DMGA; but all of them are excels SGA in 
performance. That shows that the cycle mutation, 
which simulates the rules of biologic evolution, can 
be applied to GA and its performance is not inferior 
to that of other elaborately mutations. But it still not 
reaches our expectation. What is the key to solve 
this problem?

 
Table 1 Performance testing results 

(M1: SGA, M2: BSGA, M3: DMGA, M4: CMGA) 
 Times of object found Mean square deviation Average time cost (ms)
 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

F1 53 1000 997 1000 14.05 1.36 1.62 0.97 0.51 0.48 1.14 0.46
F2 0 1000 985 1000 / 2.39 3.60 2.27 / 0.48 1.13 0.48
F3 38 1000 969 1000 2.13 1.03 1.35 1.54 0.88 0.43 1.17 0.44
F4 6 1000 934 1000 0.00 1.84 6.60 2.04 0.00 0.44 1.12 0.45
F5 0 998 861 1000 / 1.08 0.88 2.72 / 0.48 1.28 0.49
F6 29 1000 998 1000 31.50 0.85 0.46 0.50 0.64 0.43 1.12 0.42
F7 0 11 150 14 / 66.11 18.82 81.11 / 0.47 1.21 0.48
F8 0 54 0 73 / 39.79 / 30.92 / 0.46 / 0.44
F9 0 0 120 0 / / 17.30 / / / 1.24 / 

F10 21 793 339 806 42.97 7.92 10.21 8.66 0.36 0.52 1.06 0.48
F11 16 1000 666 1000 57.70 2.35 2.51 2.84 0.50 0.53 1.08 0.47
F12 180 1000 978 1000 5.56 0.92 1.16 0.89 0.20 0.46 1.02 0.43
F13 38 922 471 994 0.00 4.64 5.35 5.67 0.00 0.46 1.04 0.45
F14 3 1000 976 1000 0.00 1.06 1.59 2.13 0.00 0.52 1.21 0.46
F15 102 1000 995 1000 7.70 1.29 1.80 1.10 0.56 0.52 1.09 0.45
F16 0 0 0 0 / / / / / / / / 
F17 0 845 191 992 / 5.49 4.52 4.98 / 0.48 1.02 0.43
F18 0 5 23 0 / 73.43 56.96 / / 0.54 1.12 / 
F19 23 380 49 602 18.68 6.63 16.06 11.35 0.37 1.00 1.63 1.01
F20 0 0 0 0 / / / / / / / / 
F21 0 466 8 654 / 8.41 3.39 8.83 / 0.48 1.16 0.48
F22 84 1000 998 1000 12.45 0.95 0.34 0.73 0.47 0.50 1.19 0.48

 
 
3 Selection operator 
Mutation is the motivity for gaining new schemas in 
GA, but the searching efficiency in local space need 
to be achieved through selection and crossover 
operators. Especially the selection, which directly 
reflects “the Survival of the Fittest” theory of 
biological evolution, determined the evolutionary 
direction of GA. Selection are usually classified as 
three types [16], namely stability selection, direction 
selection and rupture selection. Stability selection is 

also called as generalization selection for its trend to 
remove individuals with extreme fitness, direction 
selection can increase or decrease the average 
fitness of population, and rupture selection has the 
ability of eliminating individuals with middle fitness. 
No matter what kinds of operator it is, the 
individuals under operation with higher fitness 
always have a relatively high probability in 
transmitting their own genes to next generation. The 
existing selection operators in GA are mainly 
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composed of proportion selection [17] [18] [19], 
ranking selection [20] [21], etc.; all of them can be 
regarded as the evolution of direction selection. 
Under the restriction of GA population size, these 
selection operators induce the high fitness 
individuals producing more offspring in next 
generation; although that is the basic mechanism of 
GA to find optimal solutions, it can lead to 
premature convergence. Therefore, when designing 
the selection, the best of all attention issue is how to 
avoid prematurity. In GA, the most frequently used 
selection is proportion selection (or be called as 
roulette wheel selection), it can be described as 
follows: 

1
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The proportion selection has the character that the 
individuals with higher fitness have the higher 
probability of transmitting their genes to next 
generation. But practical experiments indicate that 
the lower fitness ones can also transmit their genes 
to next generation though proportion selection, and 
the transfer probability is rather high.  

Table 2 shows the statistical ranking results of the 
elitists’ parents, the algorithm used in this 
experiment is CMGA, population size is 50, 
Tc=50,α=1.0; Function 1 in appendix1 is selected as 
cost function and 10 times are tested in all. 

Table 2 the ranking result of the elitist’ parents in CMGA 

 Test 
1 

Test 
2 

Test 
3 

Test 
4 

Test 
5 

Test 
6 

Test 
7 

Test 
8 

Test 
9 

Test 
10 

Elitist  (times) 46 23 23 10 46 22 10 46 23 10 
Not-elitist (times) 38 15 15 6 38 16 6 38 15 6 

 
From table 2 it can conclude that the GA with 

roulette wheel selection whose elitists hold the 
leading position in evolution process. But the 
probability of other non-optimum ones being 
selected as parent is close to 40%. That makes us 
have to think the rationality of probability.  
In order to make the selection more rational, the 
probability that individual x falling into parent is 
revised: 

max

0.7 ( )( )
( )trs

u xP x
u t

=              (6) 

Here umax(t) is the individual with maximum fitness 
in t generation. u(x) is the fitness of individual x, 
Ptrs(x,t) is the probability that individual x being 
selected as parent in t generation. 
 
 
4 An improved cycle mutation genetic 
algorithm 
Integrated the improved selection operator and 
CMGA, a new GA named improved cycle mutation 
genetic algorithm (ICMGA) is introduced as 
follows: 
1. Set the population size PopuSize, the probability 

of crossover operator Ps, the number of reserved 
elitists BackupSize; 

2. Initialize population; 
3. Count population, reserve the optimum 
population; 
3.1 First reserve the best elitist in generation, and 
then reserve the BackupSize-1 individuals that are 

most close to the elitist. The distance calculation 
formula for parameter is defined as follows: 

( )2max

0

pn
i i

k k
k

d Parameter Parameter
=

= −∑  (7) 

4. Set the number of iteration IterativeTimes=0; 
5. Test the stop criterion, if not satisfy, continue; 
Else, go to 10; 
6. Set the number of generated offspring i=0; 
7. Test i=PopuSize, if not, continue; Else, go to 8; 

7.1 Select two parent individuals’ fi and mi by the 
equation (6); 

7.2 Perform crossover operation; generate two 
offspring individuals’ soni and soni+1; 

7.3 Calculate the probability of mutation operator 
by the equation (4); 

7.4 For every gene of the two offspring 
individuals, operate mutation in terms of Ps. 

7.5 Calculate the individual fitness value of the 
two offspring individuals; 

7.6 i=i+2, go back to 7; 
8. Count the offspring population; update the set of 
advantage population; 

8.1 If there are elitists which fitness value is 
higher than those in the set of advantage population, 
substitute these elitists for those in the set and 
update the other elitists in the scope of offspring and 
the set according as the principle of nearest; Else, 
release those in the set into offspring;  
9. IterativeTimes=IterativeTimes+1, go back to 5; 
10. Output result, stop the program. 
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5 Results and discussion 
 
5.1 Comparative test in algorithm 
performance  
To test the performance of ICMGA, the 
self-adaptation genetic algorithm (AGA) [12] and 
simple immune clone algorithms (SIA) [22] are 
used to compare. The basic settings of experiment 
are listed: the operation system: Window XP, the 
programming language: C++, the computer memory: 
1GB and the dominant frequency of CPU: 3GHz. 22 
functions are tested in all, each function is tested 

1000 times and in each time the number of iteration 
is 1000. The parameters of 3 GA are binary encoded 
and the code length is 20.  
Algorithm 1 (M1): SIA, population size is 50 and 
clone number is 5; 
Algorithm 2 (M2): AGA, population size is 50, the 
number of reserved optimum population is 10, 
Ps=0.7; 
Algorithm 3 (M3): ICMGA, population size is 50, 
the number of reserved optimum population is 10, 
Ps=0.7; 
The comparison result is showed in Table 3.

 
Table 3 Comparison results of three methods  

(M1: SIA; M2: AGA; M3: ICMGA) 

 Times of object 
found 

Mean-square 
deviation 

Average iteration 
number 

Average time 
cost (ms) 

 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
F1 1000 1000 1000 0.99 1.78 0.57 31.21 81.19 26.34 2.36 0.50 0.48
F2 59 1000 1000 37.54 0.38 0.17 425.93 44.96 23.04 2.84 0.49 0.49
F3 1000 998 998 2.71 5.74 2.19 69.67 117.43 49.65 2.49 0.51 0.51
F4 704 1000 1000 11.13 0.48 0.52 338.99 51.86 30.43 2.64 0.49 0.47
F5 851 905 997 8.76 2.71 3.61 258.04 176.46 108.43 3.13 0.54 0.63
F6 994 1000 1000 4.79 0.75 0.32 131.98 53.17 22.68 2.52 0.50 0.49
F7 66 10 1000 37.04 52.86 0.70 415.29 728.60 43.19 2.84 0.57 0.50
F8 551 90 992 12.64 28.28 5.01 333.05 457.24 206.02 2.63 0.55 0.50
F9 0 5 1000 / 0 0.47 / 18.00 36.34 / 0.51 0.53

F10 1000 799 998 2.06 8.88 4.62 57.22 327.26 95.56 2.30 0.56 0.48
F11 1000 998 1000 1.42 7.59 2.79 43.89 275.67 79.57 2.35 0.51 0.49
F12 1000 1000 1000 0.07 2.03 0.48 4.46 42.55 14.37 1.19 0.43 0.38
F13 1000 1000 1000 0.34 1.36 0.26 11.68 75.17 14.06 1.83 0.52 0.42
F14 700 942 1000 10.86 2.43 2.38 315.40 87.41 71.44 2.98 0.52 0.53
F15 1000 1000 1000 0.78 2.56 0.61 23.88 80.60 26.11 2.07 0.49 0.46
F16 0 0 974 / / 5.14 / / 159.22 / / 0.53
F17 924 1000 1000 8.25 2.55 2.26 239.92 100.35 61.88 3.22 0.74 0.73
F18 0 3 1000 / 0.00 0.20 / 6.00 29.09 / 0.64 0.69
F19 1000 811 991 2.27 8.67 4.03 54.07 310.77 69.57 6.42 1.02 1.02
F20 8 115 762 115.89 32.46 9.15 324.63 235.26 378.44 2.91 0.37 0.53
F21 3 977 980 165.69 9.45 4.95 626.67 203.32 115.42 3.00 0.51 0.50
F22 1000 1000 1000 2.50 0.79 0.48 70.08 37.94 22.99 2.60 0.51 0.52

It can be seen in the table3 that the performance 
of ICMGA is most excellence. Its probability of 
finding optimal solutions is almost above 98% (only 
function 20 that the probability is 76.2%). And for 
test function F9, F16, F18, F20 and F21, only 
ICMGA can find the optimal solutions and the 
finding times more than 760 in 1000 times test. That 
means the seeking ability for optimal solutions of 
ICMGA is stronger than other optimization 
algorithms. The compare results in indexes, such as 
mean square deviation, average iteration number 

and average time cost, also shows that ICMGA is 
better than other two algorithms at stability and 
calculation velocity. 
 
 
5.2 The effect test of initial population 
distribution 
To analyze the effect of initial population 
distribution on performance of ICMGA, four types 
of binary coding methods are used to code the 
individuals in initial population. That is 0,1 random 
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uniform distribution, all 1 distribution, all 0 
distribution and 0,1 interval distribution, the test 

environment and method are all as above, the test 
results are showed in Table 4. 

 
Table 4 Test results of ICMGA initial population in different distribution 

(d1: random uniform distribution; d2: all 1; d3: all 0; d4: 0,1 interval) 
 Times of object found Mean-square deviation Average time cost 
 d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4 

F1 1000 1000 1000 1000 0.57 0.61 0.67 0.56 0.48 0.49 0.48 0.48
F2 1000 1000 1000 1000 0.17 0.00 0.00 0.11 0.49 0.00 0.18 0.49
F3 998 998 1000 1000 2.19 2.86 2.66 2.62 0.51 0.51 0.51 0.51
F4 1000 1000 1000 1000 0.52 0.58 0.55 0.56 0.47 0.42 0.43 0.48
F5 997 998 1000 1000 3.61 3.16 3.58 2.96 0.63 0.62 0.63 0.63
F6 1000 1000 1000 1000 0.32 0.25 0.43 0.50 0.49 0.49 0.49 0.49
F7 1000 1000 1000 1000 0.70 0.60 0.82 0.85 0.50 0.46 0.46 0.49
F8 992 976 994 986 5.01 6.03 5.54 5.75 0.50 0.50 0.50 0.50
F9 1000 1000 1000 1000 0.47 0.40 0.50 0.50 0.53 0.52 0.52 0.53

F10 998 998 1000 984 4.62 4.23 4.02 5.85 0.48 0.41 0.41 0.50
F11 1000 1000 1000 1000 2.79 2.32 2.61 2.62 0.49 0.45 0.43 0.50
F12 1000 1000 1000 1000 0.48 0.45 0.39 0.54 0.38 0.41 0.40 0.41
F13 1000 1000 1000 1000 0.26 0.46 0.38 0.39 0.42 0.44 0.44 0.47
F14 1000 1000 1000 1000 2.38 2.44 2.38 2.39 0.53 0.53 0.53 0.53
F15 1000 1000 1000 1000 0.61 0.83 1.14 0.70 0.46 0.48 0.48 0.46
F16 974 994 994 986 5.14 3.84 4.34 4.69 0.53 0.50 0.55 0.53
F17 1000 1000 1000 1000 2.26 2.01 2.69 3.12 0.73 0.69 0.69 0.69
F18 1000 1000 1000 1000 0.20 0.29 0.29 0.34 0.69 0.65 0.67 0.70
F19 991 997 997 993 4.03 2.48 3.04 4.46 1.02 1.03 1.03 1.04
F20 762 1000 1000 766 9.15 0.84 0.00 8.52 0.53 0.20 0.00 0.53
F21 980 992 992 994 4.96 4.75 4.87 4.30 0.50 0.50 0.50 0.51
F22 1000 1000 1000 1000 0.48 0.46 0.51 0.39 0.52 0.52 0.52 0.53

 
From the experiment results in table 4, it can 

draw a conclusion that the initial distribution of 
population is almost no effect on the performance of 
ICAMA. 

 
 

5.3 The performance analysis test 
Compared CMGA in table 1 with ICMGA in table 4, 
it can be seen that the performance of ICMGA is 
significant superior to that of CMGA. And the only 
difference between the two algorithms is selection 
operator. So we will analyze the reason that the 
selection of ICMGA improves the algorithm 
performance. In order to detect the difference in 
effect of selection operator on population evolution, 
ICMGA and CMGA are iterated 1000 times for the 
optimization of test function F1 and the times that 
each individual is selected (according to ranking 
order) as parent in resultant population are count 
respectively. For the convenience of data regression 

analysis, sets the initial population are all parents 
and population size is 50. And the regression 
analysis of testing data, ranking order of individuals 
and the times being selected as parents are 
implemented by linear function, exponential 
function and power function respectively. The three 
equations of regression analysis are listed as 
follows: 

bx

b

y ax b
y ae
y ax

= + ⎫
⎪= ⎬
⎪= ⎭

               (8) 

Table 5 lists the coefficients of the above three 
equations and the value of R2. From the table we can 
find that the relationship between individuals’ 
ranking order and times being selected as parent in 
CMGA is mainly consistent with linear equation 
(for R2=0.9892), and that in ICMGA accords with 
power format (for R2=0.7969)
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Table 5 the coefficients of three equations of regression analysis and the value of R2 
 CMGA ICMGA 
 a b R2 a b R2

Linear fitting -35. 1020 1837.7000 0.9892 -120.2000 4026.4000 0.1098 
Exponential fitting 2644.4000 -0.0469 0.8406 61.0880 -0.1190 0.4228 

Power fitting 4969.9000 -0.6114 0.5512 7249.2000 -2.6293 0.7969 
 

The results of statistical regression analysis 
indicated that the population in evolution process 
accord with Power Law under the selection operator 
in equation (6). We consider that is the basic reason 
for high efficiency of ICMGA.  

 
 

6 Conclusions  
In this paper, a mutation operator with cycle 
probabilities is designed to solve the contradiction 
of population diversity and over local search. And 
combined with this mutation and improved selection, 
a novel and accelerated genetic algorithm (ICMGA) 
is introduced. The experimental results compared 
with other genetic algorithms validate the 
performance of this algorithm, such as the 
exploration ability in search space, the stabilization 
and calculation speed, are all superior to other 
algorithms. Moreover, the statistical analysis of 
individuals ranking order and times being selected 
as parent all indicate that the evolution process of 
ICMGA accorded with Power Law, that is the 
reason for high performance. 
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Appendix 
Test functions and stop qualification: 
Function1 (F1):  

2 2

2 2 15

sin(6 )
max ( , ) 1 sin(4 ) sin(4 ) , , [ 1,1]

6 10

x y
f x y x x y y x y

x y
π π π

−

+
= + × − × + +   ∈ −

+ +
 

Stop qualification: 2.1180 
 
Function2 (F2):  

2 2max ( , ) , , [0,1]f x y x y x y= +   ∈  
Stop qualification: 1.9990 
 
Function3 (F3):  

2 2 2 3 5 2

2 2

max ( , ) 3(1 ) exp[ ( 1) ] 10( ) exp( )
5

1                       exp[ ( 1) ], , [ 3,3]
3

x 2f x y x x y x y x y

x y x y

= − − − + − − − − −

− − + −   ∈ −
 

Stop qualification: 8.1040 
 
Function4 (F4):  

2 2 2 2
2 2max ( , ) [ ] ( ) , , [ 5.12,5.12] 0.05, 3.0

( )
bf x y x y x y a b

a x y
= + +   ∈ − , =

+ +
=  

Stop qualification: 3590.0 
 
Function5 (F5):  

2
30

2
30

4 lg 2( 0.0667)max ( , ) sin(5.1 0.5) exp[ ]
0.64

4lg 2( 0.0667)                      sin(5.1 0.5) exp[ ], , [0,1]
0.64

xf x y x

yy x

π

π

− −
= +

− −
+  y ∈

 

Stop qualification: 0.9960 
 
Function 6(F6):  
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1max ( , ) ( sin( ) sin( )), , [ 500,500]
2

f x y x x y y x y−
= +   ∈ −  

Stop qualification: 418.80 
 
Function7 (F7):  

2 2max ( , ) [20 10cos(2 ) 10cos(2 )], , [ 5.0,5.0]f x y x x y y x yπ π= − + − + −   ∈ −  
Stop qualification: -0.0010 
 
Function8 (F8):  

2 2 2max ( , ) [100*( ) (1 ) ], [ 8,8]f x y x y x x= − − + −   ∈ −  
Stop qualification: -0.0010 
 
Function9 (F9):  

2 21 1max ( , ) 20exp[ 0.2 ( )] exp{ [cos(2 ) cos(2 )]} 20 , 10 10
2 2

          

f x y x y x y e xπ π= − + + + − −     − ≤ ≤  

Stop qualification: -0.0010 
 
Function10 (F10):  

2 21max ( , ) [ ( ) cos( ) cos( ) 1], , [ 10,10]
4000 2

yf x y x y x x y= − + − +   ∈ −  

Stop qualification: -0.0010 
 
Function11 (F11):  

2 2 2

2 2 2 2

sin 0.5
max ( , ) 0.5 , , [ 5,5]

[1 0.001 ( ) ]
x y

f x y x y
x y

+ −
= − −   ∈ −

+ × +
 

Stop qualification: 0.9990 
 
Function12 (F12):  

10

2

1sin( )
10max ( ) 10 , [ 10,10]

( 0.16) 0.1
xf x x

x
−+= +   ∈ −

− +
 

Stop qualification: 19.7810 
 
Function13 (F13): 

2 2max ( , ) [ 0.3 cos(3 ) 0.3 cos(4 ) 0.3], , [ 1,1]f x y x y x y x yπ π= − + − × + × +   ∈ −  
Stop qualification: 0.2390 
 
 
Function14 (F14):  

5 5

1 1

max ( , ) { cos[( 1) ]} { cos[( 1) ]}, , [ 10,10]
i i

f x y i i x i i i y i x y
= =

= − + + × + +   ∈ −∑ ∑  

Stop qualification: 186.70 
 
Function15 (F15):  

max ( , ) 1 sin(4 ) sin(4 ), , [ 1,1]f x y x x y y x yπ π π= + × − × +   ∈ −  
Stop qualification: 2.2590 
 
Function16 (F16):  
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2 2 0.25 2 2 2 0.1max ( , ) ( ) (sin 50( ) 1.0), , [ 1,1]f x y x y x y x y= − + + +   ∈ −  
Stop qualification: -0.010 
 
Function17 (F17):  

4 2 4 21max ( , ) ( 16 5 16 5 ), , [ 5,5]
2

f x y x x x y y y x y= − + + − +   ∈ −  

Stop qualification: 78.330 
 
Function18 (F18):  

max ( , ) ( ), , [ 10,10]f x y x y x y x y= − + +   ∈ −  
Stop qualification: -0.0010 
 
Function19 (F19):  

25
1

2
61

1

1 1max ( , ) [ ] , , [ 65.536,65.536]
( )j

j i ij
i

f x y x y
K c x a

−

=

=

= − +   ∈ −
+ −

∑
∑

 

32, 16,0,16,32, 32, 16,0,16,32, 32, 16,
0,16,32, 32, 16,0,16,32, 32, 16,0,16,32

;( )
32, 32, 32, 32, 32, 16, 16, 16, 16,
16,16,16,16,16,16,32,32,32,32,32,0,0,0,0,0

j ijc j a

− − − − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥= =
⎢ ⎥− − − − − − − − −
⎢ ⎥−⎣ ⎦

; K=500 

Stop qualification: -0.9990 
 
Function20 (F20):  

max ( , ) sin | 1 | cos | 1 |

                       ( 1)cos | 1 | sin | 1 |, , [ 512,512]

f x y x y x y x

y y x y x x y

= − + − + +

+ + + − + +   ∈ −
 

Stop qualification: 511.70 
 
Function21 (F21):  

4
2 2 2 23max ( , ) [(4 2.1 ) ( 4 4 ) ], , [ 5.12,5.12]f x y x x x xy y y x y= − − + + + − +   ∈ −  

Stop qualification: 1112.145 
 
Function22 (F22):  

2 2
20 20 2max ( , ) sin( )sin ( ) sin( )sin ( ), , [0, ]x yf x y x y x y π

π π
= +   ∈  

Stop qualification: 1.80 
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