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Abstract: - This paper describes the  modeling of a two-vehicle convoy and the design of a vehicle following 
controller that tracks the trajectory of the vehicle ahead with prescribed inter-vehicle distance. Kinematic 
equations of the system are formulated applying standard robotic methodology. We consider autonomous 
vehicle following without any information obtained from road infrastructure or communicated from the lead 
vehicle. Assuming that the leader linear and angular velocities, as well the curvature radius of the path traveled 
by the lead vehicle, are unknown constant parameters, an adaptive tracking controller is proposed. With only 
the current inter-vehicle relative position and orientation available for feedback control, the control velocities 
of the following vehicle are computed using the leader velocity estimates obtained from the dynamic (adaptive) 
part of the proposed controller. For constant velocity maneuvers of the leader, at steady state, the two-vehicle 
convoy will travel concentric arcs of same radii with prescribed inter-vehicle spacing. For time-varying lead 
vehicle velocities, the proposed controller achieves ultimate boundness of the closed-loop system in error 
coordinate. Various simulation results demonstrating the performance of the controller are included. 
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1 Introduction 
          In recent years, the problem of automatic 
vehicle following in a convoy-like fashion, where 
each vehicle tracks the path taken by the preceding 
car at a desired separation distance, has attracted a 
considerable interest. The research effort into 
vehicle platooning and automatic vehicle following 
is based on the fact that often multiple vehicles have 
the possibility of solving transportation problems 
more efficiently than a single vehicle. This scenario 
is very useful in the case of military convoys [1]-
[3], convoys of commercial vehicles [4], [7], 
personal vehicles [6] or in the public urban transport 
[5], [8]. 
          Lateral (steering) control and longitudinal 
(spacing and speed) control were initially designed 
as two separate control systems. Each controller 
was designed as if the longitudinal and   the   
steering   vehicle   dynamics   were   
independent. Much research has been done in the 
study of longitudinal control of a platoon of 
vehicles on a straight line with different spacing 
policies [9].  For the lateral control of a vehicle 
convoy two basic concepts are studied. In [10], the 
lateral control is focused on the concept of 
cooperation between the vehicle and the road. The 

lane keeping performance relies on suitable 
reference markers and communication infrastructure 
to supply the vehicle with information about the 
road geometry. As an alternative, the concept of 
autonomous vehicle following [6], implies that the 
ego-vehicle tracks the trajectory of the vehicle 
ahead instead of the road by using on-board sensors 
that detect the vehicle relative position with respect 
to the lead vehicle. One of the principle issues in 
designing controllers for autonomous vehicle 
following is to determine the desired trajectory of 
the following vehicle. Previous work in generating 
the desired trajectory for the ego-vehicle has used 
several approaches including “trajectory-based 
approach”, [11] that uses the time history of the lead 
vehicle, i.e., the ego-vehicle has to follow the path 
of the leader, not the lead vehicle itself. In [7], a 
tracking method involves using a contour of 
constant curvature to interpolate a trajectory 
between the following and the lead vehicle. In [12], 
a direct control of the following vehicle using 
information from on-board sensing without inter-
vehicle communication has been proposed. A 
different approach to vehicle following   control by 
using inter-vehicle communication has also been 
used, [13]. An interesting solution is the use of   
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RTK GPS sensors, which can provide in real time 
localization with high accuracy, [14]. In 
combination with inter-vehicle communication, 
these sensors permit to interchange absolute 
localization measurements.  
          In this paper, we consider the problem of 
autonomous vehicle following without the use of 
road infrastructure or inter-vehicle communication. 
The only information the following (robot) vehicle 
can use for feedback control is the current relative  
position and orientation with respect to the lead 
vehicle obtained from onboard sensors, which 
monitor the rear end of the lead vehicle.  
          Our contributions in this paper are two-fold: 
the control algorithms and the use of robotic 
oriented approach to mathematical leader/follower 
modeling that allow the following vehicle to track 
the path taken by the lead vehicle at a specific 
position in the plan with respect to the leader, and in 
the presence of   unknown leader linear and angular 
velocities, as well the curvature radius of the path 
traveled by the lead vehicle.  
          One of the objectives of this paper is to 
develop a mathematical model of a vehicle convoy 
suitable for feedback control design. We formulate 
the kinematic equations of a two-vehicle convoy in 
error coordinates applying standard robotic 
methodology.  
          One of the challenges in designing controllers 
for automatic vehicle tracking is to decide on the 
desired   trajectory of the following vehicle.  On  a 
curved road section, traveling  an arc concentric to 
that traveled by the lead car but with bigger or 
smaller radius  may be unacceptable from a 
practical point of view, (for example, the problem 
of “cutting the corner”). Assuming that the lead 
vehicle linear and angular velocities are unknown 
constant parameters, and the curvature radius of the 
path taken by the lead vehicle is also unknown, we 
are interested in designing a controller for the 
following vehicle, such that, at steady state, the 
following vehicle tracks the path taken by the lead 
vehicle with prescribed   inter-vehicle distance. The 
approach used in this paper is closely related to that  
presented in [12] in the sense that  it consists in 
tracking a reference virtual point, which is 
positioned at a desired known distance behind the 
lead vehicle with a virtual   reference point located 
at a desired distance ahead of the following vehicle. 
This approach has been inspired from our previous 
work [15] concerning the problem of controlling a 
LHD (Load-Haul-Dump) vehicle. At steady-state, 
the two linked units of the LHD vehicle with equal 

unit length will travel concentric arcs of same radii. 
In this paper, the adaptive control designed is based 
on a reduced order dynamics and achieves 
asymptotic stabilization of the closed-loop system 
in error coordinates. The control velocities (control 
inputs) of the following vehicle are computed using 
the leader velocity estimates obtained from the 
dynamic (adaptive) part of the controller, which was 
designed as a parameter update law. The stability of 
the internal dynamics is also analyzed. There has 
also been attention paid to the evaluation of the 
performance of the adaptive controller, if the 
velocities of the lead vehicle are time-varying 
instead of constant parameters. Throughout this 
paper, feedback control design and stability analysis 
are performed via Lyapunov techniques.  
          The organization of this paper is as follows: 
in Section II, the development of the mathematical 
model of the vehicle convoy suitable for feedback 
control is presented. The problem formulation is 
given in Section III. In Section IV, the adaptive 
tracking controller of the two-vehicle convoy is 
proposed. Section V contains simulation results 
which illustrate the effectiveness of the proposed 
controller. Conclusions are presented in Section VI. 
 
 
2 Kinematic Modeling 
 
 
2.1  Vehicle Kinematic Model 
 
 
2.1.1  Coordinate System Assignments 
          In this section, we apply standard robotic 
nomenclature for translational and rotational 
displacements and velocities, and methodology 
[16] to model the kinematics of the vehicle in the 
convoy. Fig. 1 depicts the schematic of the vehicles   
considered in this paper. From now on, the index 
i=1 corresponds to the lead vehicle, and i=2 
corresponds to the following vehicle in the platoon. 
The vehicle has four non-deformable wheels. The 
wheels are assumed to roll on a horizontal plane 
without slipping. The longitudinal base AiBi of the 
vehicle is denoted by li , (i=1,2),  To simplify the 
derivation of the vehicle control algorithms, we a 
use a planar bicycle 2DOFs vehicle model where 
two virtual wheels are located at the midpoints of 
the front and rear wheel axles, (Fig. 1). Although 
these two wheels do not exist, it is assumed that 
they comply with the wheel rolling without 
slipping conditions. 
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           To describe the position and orientation of 
the vehicle in the plane, we assign the following 
coordinate frames (Fig. 1). 
   -  AixAiyAi: Vehicle coordinate system located at 
the center of the rear vehicle axle and stationary 
with respect to the vehicle body; the xAi axis is 
along the longitudinal base of the vehicle, (i=1, 2). 
   -  Bixiyi:  Wheel coordinate system with origin 
placed at the center of the front steering wheel; the 
xi axis is in the direction of the wheel orientation, 
(i=1, 2). 
   -   Fxy denotes an inertial coordinate frame in the 
plane to travel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
                   
              Fig. 1.  Schematic of the vehicle  
 
          The coordinates of a reference point Ai 
placed at the center of the rear vehicle axle, with 
respect to an inertial frame Fxy, are denoted by 
(FxAi,FyAi). The angle θi  is the orientation angle of 
the vehicle with respect to the frame Fxy. The angle 
αi,  is the front wheel steering angle.  The steering 
angle is measured with respect to the vehicle body. 
The reference points R1r and R2f located on the 
longitudinal vehicle axle are   associated with the 
lead and following vehicle, respectively. The point 
R1r is placed a L1 distance behind   point A1 of the 
lead vehicle and point R2f is placed a L2 distance in 
front of  point A2 of the following  vehicle.    
          Since the vehicle is assumed to move on a 
planar surface, in what follows, we use 3x3 rather 
than 4x4 homogeneous transformation matrices ATB 
to transform the coordinates of a point S in 
coordinate frame B denoted by BpS to its 
corresponding coordinates ApS in the coordinate 
frame A.  

           Using the above notations, the assignment of 
the coordinate frames results in the following   
transformation matrices between coordinate 
systems 
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          The transformation matrices (1) and (2) are 
applied to determine the position kinematics of the 
vehicle.  
          Using (1) and (2), the position of point Bi in 
the inertial frame F   is 
 
                            
 
 
 
 
                                                                                                       
                                                                            
                                 .                                          (3)                       
 
 
 
          Using (2), the homogeneous coordinates of 
the rear reference point R1r associated with the lead 
vehicle in frame Fxy are   
 
 
                
                                                                  .         (4) 
 
         
 
Similarly, the homogeneous coordinates of the 
front reference point R1r associated with the 
following vehicle in frame Fxy  are   
 
 
 
                                                                   .    .   (5) 
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2.1.2 Non-holonomic constaraints 
          If the rotation of the wheels with respect to 
their proper axes is ignored, the vehicle 
configuration can be described   by four 
generalized coordinates qi=[FxAi,FyAi, θi, αI ]T∈ℜ4.   
          Differentiating (3), the components of the 
velocity of point Bi with respect to the inertial 
frame Fxy and expressed in Fxy are  
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          In order to derive the non-holonomic 
constraints of the front virtual wheel, the velocity 
of point Bi relative to frame Fxy is expressed in 
frame Bixiyi 
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where the terms indicated by (*) are irrelevant in 
the computation. Based on the assumption of 
rolling without lateral sliding, one has 0=

Bii

i
yB

B v , 

where 
Bii

i
yB

B v is the component of the velocity of 
point Bi along the yBi axis of frame BixBiyBi. From 
the second line of equality (7) and by using 
expressions (6) for

iB
F p& , the non-holonomic 

constraint for the front virtual wheel can be written 
in the form 
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          Likewise, using (2), the non-holonomic 
constraint imposed on the rear virtual wheel can be 
derived from the second line of the following   
expression 
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Expressing the fact that the wheel cannot move in 
lateral direction ( 0=
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constraint is derived from second line of (9) as 
follows 
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          Combining equations (8) and (10), the 
vehicle non-holonomic  constraints  can  be  written 
in  the form 
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is the vector of generalized velocities. The 
constraint equation (11) can be converted into an 
affine driftless control system 
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form a basis of the null space of Ci(qi). The control 
input [ ]TixA

A
i Aii

i v αωη ,=  is a 2 x 1 vector of 
independent quasi-velocities which parameterize 
the degree of freedom of the system, where 

Aii

i
xA

A v  
is the velocity of point Ai (the mid-point of the rear 
virtual wheel) and ωαi is the steering angular 
velocity of the front wheel.  
          Differentiating (4) and using the first two 
equations of  (15) for i=1, a kinematic model of the 
lead vehicle can be written in the form 
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where 11 : θω &=  is the angular velocity of the vehicle. 
          Similarly, differentiating (5) and using the 
first two equations of (15) for i=2, a kinematic 
model of the following vehicle is obtained in the 
form 
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where  22 : θω &=  is the angular velocity of the vehicle. 
In this paper, the vehicle angular velocity (the front 
wheel steering angle α2, respectively) is considered 
as a control input instead of the steering angle 
velocity. From the third equation of (15) for i=2 , 
the front wheel steering angle can be expressed in 
terms of  the vehicle angular velocity as follows 
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2.2 Relative Kinematics 
          A plan view of a  two-vehicle convoy 
moving on a horizontal plan is shown in Fig.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 Fig. 2.   System configuration for autonomous 
following 
 

          A virtual reference points R1r associated with 
the lead vehicle is defined on the longitudinal 
vehicle axle at a distance L1 behind the rear vehicle 
axle. A virtual reference point R2f is located on the 
longitudinal vehicle axle at a distance L2 in front of 
the rear vehicle axle of the following vehicle. Two 
coordinate systems R1rxy and R2fxy whose origins 
are located at the vehicle reference points R1r and 
R2f, respectively, (the x-axes are oriented along the 
longitudinal vehicle axles) are defined to describe 
the relative position and orientation of the vehicles.  
          The coordinates and orientation of the frame 
R2fxy in the coordinates frame R1rxy can be 
expressed as follows  
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where e = [ex,  ey, eθ]T∈ℜ3  is the error posture. 
 
  
 Remark 1:  It should be noted that the vehicle-to-
vehicle distance and the relative inter-vehicle 
orientation eθ are measured by sensors that monitor 
the rear end of the lead vehicle. Since we know the 
position and the orientation of the sensors and the 
frame R2fxy relative to the following vehicle frame 
A2xA2yA2, as well as the position and the orientation 
of R1rxy with respect to A1x1yA1, using geometric 
argument, we can calculate the position (ex, ey) and 
orientation eθ of the frame R2f with respect to the 
coordinate frame R1r.                                            ◊                       
                                                                              
        Differentiating (18) with respect to time and 
taking   into account Eqs. (4) and (5), after some 
work,  the inter-vehicle kinematics in error 
coordinates  is obtained as 
 
 
 
 
 
 
 
                                                                                        
                                                                          (20) 
 
where    ( )1,

11

1 ω
AxA

A v  and ( )2,
22

2 ω
AxA

A v  are the 
linear and angular velocities of the lead and 
following vehicle, respectively. From now on, to 
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simplify the notations, the vehicle linear velocities 
will be denoted as follows: 

11

1:1 AxA
A

A vv =  and 

22

2:2 AxA
A

A vv =  for the lead and the following 
vehicle, respectively. The linear and angular 
velocities of the following vehicle are the control 
inputs of the system (20). 
 
 
3 Problem Formulation 
          One of the challenges in designing controllers 
for automatic vehicle tracking is to decide on the 
desired   trajectory of the following vehicle.  On  a 
curved road section, traveling  an arc concentric to 
that traveled by the lead car but with bigger or 
smaller radius  may be unacceptable from a 
practical point of view, (for example, the problem 
of “cutting the corner”), (Fig. 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
             Fig. 3.  Circular motion  with L1 ≠  L2 
 
 
          Assuming constant velocity maneuvers for 
forward driving of the lead vehicle, we are 
interested in a tracking scenario where the two-
vehicle convoy will travel concentric arcs of same 
radii, (Fig. 4), with prescribed inter-vehicle distance 
depending on the curvature radius of the path taken 
by the lead vehicle and an a priori known desired 
inter-vehicle spacing, which is defined for the case 
of straight line driving.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
           Fig. 4. Circular motion  with L1 = L2 
 
 
           In the case of straight line motion of the lead 
vehicle, (Fig.5), the desire inter-vehicle distance is 
defined to be: 
 
          ( )2221121 2 lBPSALPSd des ++−==      (21) 
 
where L=L1=L2 is a known constant distance 
determined from consideration of safety driving, 
sensor requirements, look-ahead visibility during 
the turning maneuver.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    
 
          
          Fig. 5.  Desired inter-vehicle spacing 
 
          At steady state, the inter-vehicle distance 
during circular motion of constant radius is a little 
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smaller, and has different value for different 
curvature radius of the leader path, and in that way, 
the requirement of circular motion of same radii is 
satisfied. Using trigonometric argument, the inter-
vehicle distance S1P2 at steady state is obtained as 
follows 
 

]cos)(222[ 22
21 sseLblbLbLsqrtPS θ−++−=  (22) 

 
where b=l2 + B2P2. For rectilinear motion of the 
lead vehicle et steady state, the inter-vehicle 
orientation is eθss=0, and for the inter-vehicle 
distance S1P2 the expression (21) follows readily.                             
          Given the inter-vehicle kinematics in error 
coordinates (20), and assuming that the linear and 
angular velocities of the lead vehicle (vA1, ω1) are 
unknown constant parameters and are not available 
for feedback control, the control objective is to 
asymptotically track the virtual reference point R1r 
the lead vehicle with the  reference point  R2f of the 
following vehicle. 
 
 
4 Adaptive Control Design 
          First, we consider the problem of controlling 
the motion of the following vehicle during   
constant velocity maneuvers for forward driving of 
the lead vehicle. Since the leader velocities are not 
available for feedback control design, we propose 
an adaptive control law, which achieves asymptotic 
stabilization of the closed-loop system in error 
coordinates. The control velocities of the following 
vehicle are computed using the leader velocity 
estimates )ˆ,ˆ( 11 ωAv  obtained from the dynamic 
(adaptive) part of the proposed controller.  For this 
purpose,  let us consider the following change of   
inputs  in (20)  
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cossin
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ωθθ

θθ Av
eLe
eLe

u
u

.          (23) 

 
One easy verifies that the transformation matrix in 
(23) is nonsingular when L2 ≠ 0. 
          Using the input transformations (23), the 
inter-vehicle kinematic equations in error 
coordinates (20) can be written in the form 
 
                                                                                    
 
                                                                          (24)  
 

The adaptive control design is based on a reduced-
order system composed of the first two equations of 
(24) 
 
                                                                          (25)                      
                                                   
           
          Consider the subsystem (25) and assume that 
the leader velocities vA1 = cte> 0 and ω1 = cte,   are 
unknown constant parameters. The control problem 
consists in finding an adaptive feedback control 
law for the system (25) with inputs (u1, u2) such 
that   
 
          ( ) 0)(lim =

∞→
te xt

 and  ( ) 0)(lim =
∞→

te yt
.        (26) 

 
         Assume that L2 ≠ 0 and consider the control  
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where kx and ky are positive gains. We consider the 
following Lyapunov function candidate 
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where  1

~
Av  and 1

~ω  are the parameter errors 
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and γv = cte  > 0 , and  γω = cte  >  0 are the 
adaptation gains.  
Using (29), the derivative of V is obtained in the 
form 
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where all the terms containing 1

~
Av , as well as 1

~ω , 
have been grouped together. To eliminate them, the 
update law is chosen as 
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and the derivative of  V is obtained as 
                     

                              02
1

2
1 ≤−−= yx ecekV& .        (32) 

 
The resulting closed-loop adaptive system in error 
coordinates becomes  
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     Proposition 1: Assume that lead vehicle linear 
and angular velocities (vA1, ω1) are bounded 
unknown constant parameters,  vA1>cv=cte>0 and 
L1 ≠ 0 . If the control law given by (27) is applied 
to (25) where the lead vehicle velocity estimates 

)ˆ,ˆ( 11 ωAv are obtained from the parameter update law 
(31), the origin 0]~,~,,[ 11 == T

Ayx veex ω  of the 
closed-loop system in error coordinates (33) is 
asymptotically stable.  
     Proof.   The system has an equilibrium point at 
the origin. The function (28) is continuously 
differentiable and positive definite.  From (32), it 
follows that (28) is non-increasing, (V(t) ≤ V(0)), 
and this in turn implies that )(~),(),( 1 tvtete Ayx and 

)(~
1 tω are uniformly bounded with respect to the 

initial conditions. By application of the LaSalle-
Yoshizawa Theorem [17, p.24, Theorem 2.1],   
 
                    0lim 2

1
2

1 =−−=
∞→ yxt

ecekV& .      (34) 

 Therefore 
 
                    ex(t) → 0, ey(t) →0                        (35) 
 
as ∞→t . From the third and forth equations of 
(33), it follows that 0~,0~ →→ RRxv ω&& as ∞→t .   
         The first equation of (33) can be seen as a 
derivative of a differentiable function ex(t) from R+ 
to R, which converges to limit value (0) when t 
tends to infinity, and its derivative, (the right side 
of this equation) can be seen as a sum of two terms, 
one, ( 1

~
Av ), being uniformly continuous since its 

derivative is bounded, and the other, 
( 1

~ωyxx eek −− ), which tends to zero. By 
application of the extended version of Barbalat’s 

Lemma [18], it follows that 0)( →tex&  as ∞→t , 
and this in turn implies that the term 
 
                                 0~ →Rxv                           (36) 
 as ∞→t .  
          In the same fashion, it can be proved from 
the second equation of (33) that 0)( →tey&  as ∞→t   
and this in turn implies that  the term  
 
                                  0~ →Rω .                          (37) 
 
           Since the dynamics of eθ has not been taken 
into account into the feedback control design, the 
next step in the stability analysis is to establish 
asymptotic convergence of eθ to the equilibrium 
state eθss which depends of lead vehicle linear and 
angular velocities (vA1, ω1), or equivalently the 
curvature radius of the path driven by the lead 
vehicle ρR=vA1/ω1 , and the distances L1 and L2. We 
analyze the zero dynamics of eθ assuming  that 

0)(;0)( ≡≡ tete yx  and  0~;0~
11 ≡≡ ωAv   for all 

time. In this case, substituting (27) into the third 
equation of (24) after some work, the zero 
dynamics of eθ is obtained as 
 

   θθθ ω e
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⎜⎜
⎝

⎛
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          Since we are interested in tracking scenario 
where at steady state the vehicle convoy will travel 
concentric arcs of same radii, we assume that L1 = 
L2 = L. Using the transformation 
  
                              )2/tan(: θe=Φ                     (39) 
 
equation (38) can be rewritten in the form 
 
                           

1
1 ω−Φ−=Φ

L
v A&   .               (40) 

 
Equation (40) represents first order linear 
differential equation with constant coefficients.  
The solution of (41) with initial condition Φ(0) = 0 
is given in the form 
 

                      ⎥⎦
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From (41), it can be seen that  
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              cte
v
L

ss
A
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1

1)( ω .           (42) 

 
Using the inverse transformation of (39), the 
relative orientation of the vehicles at steady state 
eθss is obtained as 
 
                     ctelae Rss == )/tan(2 ρθ                (43) 
where  
                         ctev AR == 11 /ωρ               (44) 
 
is the curvature radius of the path travel by the lead 
vehicle. Since ex = ey = 0, i.e., the reference points 
R1r and R2f coincide, and L1 = L2 = L, using 
geometrical argument, it follows that the two 
vehicles will travel concentric arcs of same radii, 
which complete the proof.                                   � 
 
     Remark 2:  In addition to Proposition 1, based 
on the linearization at the origin of the system (33), 
it can be shown that  
 
                  0]~,~,,[ 11 == T

Ayx veex ω              (45) 
 
is an exponentially stable equilibrium point for the 
corresponding linear system. Using [19, Theorem 
3.11, p.147], we conclude that the proposed 
adaptive control law achieves local exponential 
stability of 0=x  for the nonlinear system.          ◊ 
                                                             
          Using the inverse transformations of (23) and 
expressions (27) for the control inputs (u1, u2), we  
obtain expressions for the actual control inputs (vA2, 
ω2) and in turn, from (18), for the front wheel 
steering angle α2 of the following vehicle.  
 
Remark 3: The adaptive control law designed in 
this Section, is based on the assumption of 
unknown constant linear and angular velocities of 
the lead vehicle. It is very interesting to analyze the 
performance of the proposed controller, if the lead 
vehicle velocities are time-varying parameters, and 
assuming that their derivatives are bounded. In this 
case, the resulting closed-loop adaptive system in 
error coordinates (33) becomes  
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 .            (46) 

The closed-loop system can be written in vector 
form as 
 
                           )()( tgxfx +=& .                       (47) 
 
The system (47) can be seen as a perturbation of 
the nominal system (33). The perturbation term g(t) 
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is assumed to be an uniformly bounded disturbance 
that satisfies ||g(t)|| ≤ δ = cte, for all t ≥ 0 , which is 
reasonable assumption from a practical view point, 
since the lead vehicle velocities are always 
bounded due to physical limitations imposed on the 
driving and steering abilities of the vehicle.  
           In this case, since the nominal system is 
exponentially stable, /Remark 2/, by using [19, 
Theorem 5.1, page 211], it can be shown that x(t) 
will be ultimately bounded.  
          In addition,  when ||g(t)|| → 0, that is, the 
lead vehicle velocities converge to some constant 
values, by using [19, Lemma 5.2, page 213], it can 
be shown that the solution of the perturbed system 
(47) 
               x(t) → 0    as     t → ∞.                     (49) 
                                                                                   
                                                                            ◊   
 
5  Simulation Results 
          To illustrate the effectiveness of the proposed 
controller, several simulations are carried out in 
order to evaluate the vehicle behavior and tracking 
accuracy. In the simulation using MATLAB, a 
planar bicycle 2DOFs vehicle model was used. The 
longitudinal vehicle base was chosen to be l1=l2=l 
= 2m. For simplicity in the simulation, we set l = 
P2A2 and A1S1 = 0, (Fig. 5). The distance L = L1 = 
L2 was chosen to be L=4m, which corresponds to 
desired inter-vehicle separation ddes=6m in the   case 
of straight line motion of the lead vehicle, (Fig. 6). 
The gains in the control law (27) were chosen as kx 
= 8;  ky = 20;  γv = 5;  γω = 0.5. The initial position 
and orientation of the following vehicle in the 
inertial frame Fxy were chosen to be FxA2(0) = 0m, 
FyA2(0) = 0m, θ2(0) = 0rad. The initial position and 
orientation of the lead vehicle in the inertial frame 
Fxy were chosen to be FxA1(0) = 9.3 m, FyA1(0) = 0, 
θ1(0) = - 0,25rad.  In this case, the initial inter-
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vehicle distance S1P2 = 7.37m which is different 
from ddes. The initial values of the error coordinates 
were ex(0) = 1m;  ey(0) = - 1m;  eθ(0) = -0.25rad.   
The initial estimates for the leader linear and 
angular velocities were chosen to be  smvA /2)0(ˆ 1 =  
and   srad /0)0(ˆ1 =ω , and are different from the real 
values of the lead vehicle velocities (vA1 = 4m/s,, ω1 
= 0.27rad/s ) for the first maneuver (Table I). The 
leader path consists of three consecutive constant 
velocity maneuvers: turning both to the left and to 
the right followed by a straight line motion. The 
corresponding actual lead vehicle velocities are 
given in Table 1. 
 
Table 1 
 Radius 

of turn 
   ρR 
  [m] 

Duration 
    [s] 

Leader  
linear 
velocity 
vA1 [m/s] 

Leader 
angular 
velocity  
ω1 [rad/s]

Maneuver 1 
- left  turn 

   15    10     4      0.27 

Maneuver 2 
-right  turn 

  10    22     2      -0.2 

Maneuver 3 
- straight 
   line 

    -    8     5        0 

           
• In   the  first  simulation,  from  Fig. 6,    we 

can see the planar paths drown by the vehicle guide 
points A1 and A2 of the lead and following vehicle, 
respectively, (the mid-points of the rear vehicle 
axles). At steady state, the following vehicle tracks 
the path taken by the lead vehicle without lateral 
error. 
          From Fig. 7, we can see the evolution in time 
of the error coordinates. For each maneuver, the   
position errors ex(t) and ey(t) tend asymptotically to 
zero, i.e., at steady state, the look-ahead virtual 
point R2f coincides with the virtual reference point 
R1r. The inter-vehicle orientation eθ(t) tends also  
asymptotically to a constant value eθss.  
          As shown in Fig. 8, the estimates of the leader 
velocities tend asymptotically to   their actual 
values. 
           From Fig. 9, we can see the evolution in time 
of the inter-vehicle distance S1P2. The steady-state 
inter-vehicle distance during circular motion of 
constant radius is different for different values of 
the curvature radius of the leader path For example, 
for the first maneuver (ρR = 15m), at steady state 
S1P2 = 5.82m ; for the second maneuver (ρR = 10m), 
at steady state S1P2 = 5.62m and are a little smaller 
compared to the desired distance ddes of 6m during 

the straight line motion. In that way, the 
requirement of circular motion of same radii of the 
vehicles is satisfied. This is in accordance with the 
theoretical result obtained in Section IV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. A planar path drown by the vehicle guide 
points (the mid-points of the rear vehicle axles); red 
line (point A1, lead vehicle), green line (point A2, 
following vehicle), L1 =L2  = 4m ; ddes = 6m 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Evolution of the error coordinates in time: 
ex(t) (blue line); ey(t) (red line); eθ(t) (green line); L1 
=L2  = 4m ; ddes = 6m 
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Fig. 8. Evolution in time of the lead vehicle 
velocities estimates )ˆ,ˆ( 11 ωAv  (green line); lead 
vehicle actual velocities vA1 and ω1  (red line); L1 
=L2  = 4m ; ddes = 6m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.   Evolution of the inter-vehicle distance S1P2 
in time (green line); Desired inter-vehicle distance 
during straight line motion of the leader: ddes = 6m 
(red line); L1 =L2  = 4m 
 
 

• In   order   to   demonstrate    the  scenario 
  when   at  steady tate, the two vehicle travel 
concentric arc with different radii (the problem of 
“cutting the corner”), in the second simulation, we 
set L1 = 2m and L2 = 6m. The desired inter-vehicle 
distance for a straight line motion ddes = 6m is the 
same, as in the first simulation. All other conditions, 
(lead vehicle velocities, curvature radii ρR, the initial 

estimates for the leader linear and angular 
velocities, initial position coordinates and 
orientation in the inertial frame, and the initial 
values of the error coordinates) were the same as in 
the first simulation. The problem of “cutting the 
corner” ,i.e., traveling an arc concentric to that 
traveled by the lead car but with smaller radius 
clearly appears in Fig. 10. 
 
 
 
  
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. A planar path drown by the vehicle guide 
points (the mid-points of the rear vehicle axles); red 
line (point A1, lead vehicle), green line (point A2, 
following vehicle), L1 = 2m and L2 = 6m, ddes = 6m 
 
          For example, during the second maneuver of 
the lead vehicle, at steady state, the curvature radius 
of 8.3m for  the path traveled by the following 
vehicle is much smaller compared to   the  curvature 
radius of the path traveled by the lead vehicle (ρR = 
10m). which results in a  error of ∆ρ = 1.7m, which 
may be unacceptable from a practical point of view. 
In order to obtain smaller error between the  
curvature radii of the concentric arcs traveled by the 
two vehicles when L1 ≠ L2, we have to assign 
smaller desired inter-vehicle separation ddes in the  
case of  straight line motion of the lead vehicle.  
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• In  the   third    simulation,    we   simulate 
 the performance of the proposed controller when 
the lead vehicle velocities during the second and the 
third maneuver are time-varying parameters given 
in Table 2. All the initial conditions as well as the 
distances   L1 = L2 = 4m are as in the first 
simulation.  
 
Table 2 
 Radius 

of turn 
   ρR 
  [m] 

Dura
-tion 
 [s] 

Leader linear 
 velocity vA1 
       [m/s] 

Leader 
angular 
velocity  
ω1 [rad/s]

Maneuver 1 
- left  turn 

   15  10          4   0.27 

Maneuver 2 
- right turn 

  10  22 2+0.2sin(0.2
t) 
       

  -0.2 

Maneuver 3 
- straight 
   line 

    -   8    te 2.035 −−      0 

 
          We can see from Fig. 11, 12, 13 and 14 that 
all the signals are bounded (during the second 
maneuver) which is in conformity with the 
theoretical results obtained in Section IV. We note 
that, if the lead vehicle linear velocity converges to 
a constant value (which is the case during the third 
maneuver), the velocity estimate converges to this   
constant value, (Fig. 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Evolution in time of the lead vehicle 
velocities estimates )ˆ,ˆ( 11 ωAv  (green line); lead 
vehicle actual velocities vA1 and ω1  (red line); L1 
=L2  = 4m ; ddes = 6m 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. A planar path drown by the vehicle guide 
points (the mid-points of the rear vehicle axles); red 
line (point A1, lead vehicle), green line (point A2, 
following vehicle); L1 =L2  = 4m ; ddes = 6m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13.   Evolution of the inter-vehicle distance 
S1P2 in time (green line); Desired inter-vehicle 
distance during straight line motion of the leader: 
ddes = 6m (red line), L1 =L2  = 4m  
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. 
 
Fig. 14. Evolution of the error coordinates in time: 
ex(t) (blue line); ey(t) (red line); eθ(t) (green line), L1 
=L2  = 4m ; ddes = 6m 
 
          The results of the simulation verify the 
validity of the proposed controller.  
 
 
6 Conclusion 
          This paper considers the problems of 
kinematic modeling of a two-vehicle convoy and 
the design of a vehicle following controller that 
tracks the trajectory of the vehicle ahead with 
prescribed inter-vehicle distance. It is shown that 
the use of standard robotic methodology by using 
homogeneous transformation matrices can be used 
effectively for modeling the dynamics of the 
system. In this paper, a systematic method is 
developed for the design of an adaptive tracking 
controller for vehicle following. The control 
problem is solved alike trajectory tracking by 
coupling lateral and longitudinal control. A specific 
feature of the control scheme is that it allows the 
vehicle to follow the car instead of the road, i.e., a 
strategy for autonomous control was presented 
without the use of road infrastructure or inter-
vehicle communication.   The linear and angular 
velocities of the lead vehicle are unknown constant 
parameters, and the curvature radius of the lead 
vehicle path is also unknown. The proposed 
adaptive control law achieves asymptotic 
stabilization of the closed-loop system in error 
coordinates. Assuming constant velocity maneuvers 
of the leader, at steady state, the following vehicle 
will track the path taken by the lead vehicle.  In that 
way, the problem of “cutting the corner” has been 
overcome.  

          If the lead vehicle velocities are time-varying 
parameters, the proposed controller achieves 
ultimate boundness of the closed-loop system in 
error coordinates. In practice, the lead vehicle 
velocities are always bounded due to physical 
limitations imposed on the driving and steering 
abilities of the vehicle, which makes the proposed 
controller usable for practical implementation.  The 
results of the simulation verify the validity of the 
proposed controller. Future research will address the 
problem of a unified approach to control for 
backward and forward driving of an autonomous 
convoy with time-varying velocities.  
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