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Abstract:  As a contribution towards improving the environment, a new position controller for vector controlled 
electric drives employing permanent magnet synchronous motors (PMSM) is presented that achieves 
approximately 27% less frictional energy loss than a conventional controller adjusted to give the same 
manoeuvre time for the same initial and final positions. The frictional energy loss minimisation is carried out 
within the constraint of a velocity-time profile of fixed form to achieve prescribed manoeuvre times for 
relatively large step reference position changes. Optimal settings of the parameters of the velocity-time profile 
are made to minimise the energy loss. The control system robustness is achieved through the use of two control 
techniques, forced dynamic control (FDC) and sliding mode control (SMC), which maintain the velocity-time 
profile regardless of the mechanical load presented to the motor. The closed loop system automatically enters a 
linear operational mode with prescribed dynamics as the demanded position is approached, enabling derivative 
feed forward pre-compensation techniques to eliminate dynamic lag if needed. Vector control is achieved by an 
FDC direct axis current control loop with zero reference input, assuming a non-salient PMSM. The only 
information required from the user is the reference position and the required manoeuvre time. For 
commissioning, no time consuming adjustment of PI controllers is needed in contrast to conventional vector 
controlled drives. Only the following parametric entries are needed: a) the motor power and voltage ratings, the 
permanent magnet flux, the number of pole pairs and an estimate of the total moment of inertia presented to the 
rotor, to calculate the maximum rotor angular acceleration magnitude for which no motor control torque 
saturation can occur and b) the settling time for the FDC direct axis current control. Since a specified 
manoeuvre time may be realised, the method is especially suited to applications in which more than one 
position control loop has to be coordinated. The performance of the new controller and its advantages over a 
conventional controller adjusted to yield the same settling time are demonstrated by simulations. 
 
Key-Words: Forced dynamic control, sliding mode control, synchronous motor drives, minimum energy manoeuvres. 

 
1  Introduction 
Vector controllers for PMSM drives used in motion 
control applications typically employ three PI 
controllers, one aimed at driving the direct axis stator 
current component to zero to keep the magnetic flux 
and stator current vectors mutually orthogonal for 
maximum torque efficiency (the vector control 
condition), one for an inner speed control loop (to 
guarantee sufficient damping for the position control) 
and another completing the outer position control 
loop. The velocity and position PI controllers have to 
be tuned to achieve an acceptable response to step 
position reference changes. This standard form of 
vector controller, however, suffers from some 
drawbacks, the most important in the context of this 
paper being unnecessarily high energy loss due to 
friction in the driven mechanism. This is due to the 
high initial velocity peaks in the step responses 
produced under the action of traditional linear 

controllers. No attempt is usually made to minimise 
this loss, especially in production line applications 
where throughput speed is of paramount importance.  
Maximising the manoeuvre time, however, minimises 
the energy expenditure for a given motion control 
system with given initial and final positions, because 
the power loss due to viscous friction increases with 
the square of the velocity. In this case the gains of the 
aforementioned standard PI controllers could be 
adjusted to yield the maximum tolerable manoeuvre 
time. In view of the aforementioned high velocity 
peaks, however, a lower minimum energy loss would 
be expected using a another form of controller 
designed especially for the purpose. 
 Ideally, an optimal controller should be found that 
yields the absolute minimum frictional energy loss for 
given initial and final positions. To arrive at a 
practicable controller, however, the manoeuvre time 
cannot be arbitrarily long and so one constraint is that 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
 

Stephen J. Dodds, Gunaratnam. Sooriyakumar, Roy Perryman 

ISSN: 1991-8763
299

Issue 4, Volume 3, April 2008

mailto:s.j.dodds@uel.ac.uk
mailto:soori@ctdynamics.com
mailto:r.perryman@uel.ac.uk


it is fixed at the maximum allowable value. Other 
constraints are imposed by the limitations of the 
hardware: The finite power supply voltages and the 
back e.m.f. of the machine combine to limit the stator 
currents and therefore limit the control torque 
magnitude. Also the peak speed of a manoeuvre has to 
be kept well below the value for which the back e.m.f. 
limits the stator currents to zero! Hence this optimal 
control problem is one of cost function minimisation 
for given initial and final plant states, subject to 
control saturation and state magnitude constraints and 
a fixed time to apply the control function. The general 
solution to this class of problem was produced by 
Pontryagin et al [9] but this is an open loop solution in 
which the optimal control function is computed ‘of 
line’ and subsequently applied to the plant in real time. 
This is impracticable for a number of reasons, the 
main one being that unknown external disturbances 
would cause the plant state trajectory to deviate from 
the planned optimal path undetected.  In theory, this 
problem could be alleviated by equivalent closed loop 
optimal state feedback control laws, but their 
derivation in an algebraic form for implementation on 
a digital processor is intractable in all but a few simple 
cases such as the time optimal control of a double 
integrator plant [6]. Even if the closed form of a 
minimum energy state feedback control law were to be 
discovered, it would be based on a state space model 
of the plant and therefore could be sensitive to 
modelling errors. In principle, on line plant 
identification could alleviate this problem but the 
relatively high computational load would render this 
approach unattractive as a replacement for the existing 
PI controllers in industrial vector controlled electric 
drives.  Minimum energy motion control has been 
attempted by Ma [1] who reports the aforementioned 
difficulties and approaches the problem with 
approximate model based optimal control.  In contrast, 
the approach here is based on robust control 
techniques and to the knowledge of the authors is the 
first attempt at minimising energy loss in this way.    
 Although absolute minimisation of frictional 
energy loss is not attempted, the attainable 
performance of the proposed robust control law 
exceeds that of conventional vector controlled drives.  
The optimisation within the constraints of the chosen 
form of control law is relatively straightforward. Also 
the concept is fairly easily understood and its 
computational demands are well within the reach of 
modern digital processors of the type currently used in 
electric drives and therefore the new controller should 
be acceptable in industry.  
2  Model of the PMSM and its Load 
The state differential equations 

 di dt Ai B i Fud d r q d= − + ω +  (1) 

( )dq rdi dt Ci E Di Gu= − + ω − + q q   (2) 

rd dt rθ = ω  (3) 

( )r d qd dt H Ki i M Lω = + − Γ  (4) 

model the PMSM in the synchronously rotating d-q 
co-ordinate system, together with its mechanical load, 
where ,  and ,  are the stator current and 

voltage components, 
qudi duqi

rω  and  are the rotor angular 
velocity and  angle, and  is the total load torque 
presented to the motor. The constant coefficients are: 

rθ

LΓ

( ) ( ) ( )

s d q d d q

s q PM q d q

PM r d q r r

A R L ; B pL L ; C pL L ;

D R L ; E p L ; F 1 L ; G 1 L ;

H 3p 2J ;K 3p L L 2J ;M 1 J

= = =⎧
⎪⎪ = = Ψ = =⎨
⎪ = Ψ = − =⎪⎩
 

where PMΨ  is the permanent magnet flux,  is the 
stator resistance,  and  are the direct and 
quadrature axis inductances, p is the number of pole 
pairs and  is the rotor moment of inertia.  

Rs
qLdL

rJ
 The robustness introduced by the observer of 
subsection 3.4 may be understood by rewriting (4) 
as a torque balance equation two different ways. 
The first, which is used in the observer, is for the 
rotor inertial torque: 

r
r em

d
J

dt
ω

 L= Γ − Γ  (4a) 

The second is for the total inertial torque: 

( ) (r
r L em v r Le

d
J J F

dt
ω

+ = Γ − ω + Γ )   (4b) 

where  is the load moment of inertia referred to 
the PMSM, 

LJ

v rF ω  is the viscous friction assumed to 
be responsible for most of the energy loss, LeΓ  is 
the external load torque and  is the 
electromagnetic control torque: 

emΓ

( ) ( )em PM d q d q3p 2 L L i i⎡ ⎤Γ = Ψ + −⎣ ⎦  (5) 

Subtracting (4b) from (4a) then yields: 

r
L L v r L

d
J F

dt
ω

 eΓ = + ω + Γ  (6) 

LΓAs will be seen,  is counteracted by the 
controller using an accurate estimate of this from the 
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observer.  So there is no need to model any of the 
terms on the RHS of (6).  This gives the FDC its 
robustness. 

3 Inner Forced Dynamic Control Loops 
3.1 Overview 
Forced dynamic control (FDC) is a general control 
method extending to nonlinear multivariable plants 
[3]. It forces the closed loop system to follow  
prescribed dynamics and is closely related to 
feedback linearisation [9] but differs in that it 
directly takes external disturbances into account.  As 
already mentioned, this feature gives FDC 
robustness through use of an observer for estimation 
of the total load torque. As will be seen, the load 
torque derivative is also needed and a good example 
of this is given in [11].  The control system to be 
formulated employs FDC for control of the direct 
axis current, , and the rotor angular acceleration di

 ( )d q LH Ki i Mα = + − Γ  (7) 

with  and  as the control variables. To keep the 
current and magnetic flux vectors mutually 
perpendicular for maximum torque efficiency (i.e., the 
vector control condition) the direct axis stator current 
component is controlled with the demanded value set 
to . The FDC angular acceleration control 
loop is treated as an inner loop for the rotor angle 
control with the demanded angular acceleration, , 
as the control variable, as presented in subsection 3.6.  

du qu

d _ demi = 0

dema

 
 
3.2 Direct axis stator current control 
By inspection of (1), the control variable, , 
appears on the RHS and therefore the rank of the 
plant with respect to  is just 1 and so the desired 
closed loop differential equation is of first order.  
Choosing this as linear with a settling time of  to 
95% of the steady state step response (i.e., the 
classical 5% criterion) yields: 

du

di

siT

 (d
d

si

di 3 i
dt T d_dem= )i−  (8) 

( )di t  is then forced to have the dynamics of (8) by 
equating the RHS of (1) to the RHS of (8) and then 
solving the resulting equation for .  Thus the 
forced dynamic direct axis current control law is: 

du

 ( )d d d
si

1 3u i i Ai B
F T d_dem

⎡
= − + −⎢

⎣
r qi

⎤
ω ⎥

⎦

0d _ demi =  (10)  
 
 
3.3 Rotor angular acceleration control 
It is clear from (7) that there is no direct algebraic  

α

 (9) 

The vector control condition requires 

dependence of  on   or . Hence (7) is 
differentiated: 

qudu

( ) q d L
d q

di did dH Ki Ki M
dt dt dt dt
α Γ

= + + −  (11) 

di dtqdi dtd  and Substituting for  in (11) using, 

respectively, (1) and (2) then yields: 

( )( )

( )

d r d q r

L
q d r q d

d H Ki C i Di E Gu
dt

dKi Ai B i Fu M
dt

α⎧ = + − ω − − ω +⎪⎪
⎨

q

Γ⎪ + − + ω + −
⎪⎩

 (12)  

Since both  and  now appear on the RHS of 
(12), the rank of the plant with respect to 

qudu
α  is the 

order of the derivative on the LHS of (12), which is 
1. The desired closed loop differential equation is 
therefore of first order and if this is chosen to be 
linear with a settling time of  (5% criterion), then  saT

(
sa

d 3
dt T d_dem
α )= α − α . (13) 

The control law is found by equating the RHS of (12) 
to the RHS of (13) and solving the resulting equation 
for , noting that  is now known from (9): qu du

( )( )
( )

( )

d d q r

q d r q d

L

sa

H Ki C i Di E Gur
Ki Ai B i Fu

d 3M
dt T dem

+ − ω − − ω +

+ − + ω +

Γ

q

− = α − α ⇒

( )

( )

( )

dem
s

L
q

d

3
T

d1 Ki Ai B i Fu Mu d r q d dtq G
H Ki

C i Di Er d q r

α

⎧ ⎫⎡ ⎤α − α⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ Γ ⎪⎢ ⎥⎪ ⎪+ − ω − += ⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪+⎪ ⎪
⎪ ⎪+ ω + + ω⎪ ⎪⎩ ⎭

(14)  

It should be noted that  may be calculated using 
(7) together with the known motor parameters and 
current measurements, an estimate of the load 
torque, 

α

LΓ , being obtained from the observer 
presented in subsection 3.4. 
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 If  is chosen very much less than the 
minimum manoeuvre time, then the dynamic lag of 
the control loop is negligible and  . The 
plant equation for the outer position loop can then 
be taken as 

saT

demα ≅ α

  (15) 

+

+++1
s

1
s

1
s

 1
s

M

3K 2K 1K4K
+ −  +

−

oe rθ

rθ̂rω̂0 L
ˆ ˆL = Γ

L
1

d
L̂

dt

∧
Γ⎛ ⎞= ⎜ ⎟

⎝ ⎠ ( )d qH Ki i+

r uθ =

where  is the control variable. demu = α

  
Fig. 1: Observer for estimation of  and Ld dtΓ . LΓ

3.4 Observer  
The main purpose of the observer is to estimate LΓ  
and 

31 2 4
2 3 4

K MK K K M1 0
s s s s

⎡ ⎤− − − + + = ⇒⎢ ⎥⎣ ⎦
   

Ld dΓ t  as needed by control law (14) and (7) 
but it also produces estimates of θ  and rd dtθr  
which can be useful in applications where the 
measurement of θ  is contaminated by significant 
measurement noise, in view of its filtering 
properties. 

4 3 2
1 2 3 4s K s K s K Ms K M 0+ + − − =  (16)  

r

Applying the Dodds 5% settling time formula [4] to 
the observer, i.e., T 1 , where n is 
the system order, for all the correction loop 
eigenvalues placed at 

( )so co.5 1 n T= +
  and Ld dΓ tLΓ  are treated as state variables in the 
real time plant model of the observer and in the absence 
of knowledge of the time variation of , it is assumed 

that 

cos 1 T= − , yields the desired 
characteristic equation: 

LΓ
2 2
Ld dtΓ = 0 .  This does not impose a serious 

limitation provided the observer eigenvalues are 
sufficiently large to reduce the dynamic lag between ( ) n 4

s0 s0
n 4

1.5 1 n 15s s
T 2T

=

+⎡ ⎤ ⎛ ⎞
0+ = + = ⇒⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
 

( )L tΓ ( )Ld t dΓ and t  and their estimates to 
negligible proportions.  The real time model consists of 
(3) and (4) together with the two load torque state 
equations,   s 44 3 2 2 3 4qs 6q s 4q s q 0

0dL dt L= 1  and 1dL dt 0= , where 
 and 0L = ΓL 1 LL d d= Γ t .  The corresponding 

observer equations are as follows, where the hats denote 
estimates of the variables above which they are placed: 

 ( )

o r r

r r 1 o

r d q 0

0 1 3 o

1 4 o

ˆe
ˆd dt K e

ˆˆd dt H Ki i ML K e
ˆ ˆdL dt L K e
ˆdL dt K e

⎧ = θ − θ
⎪

θ = ω +⎪
⎪

ω = + − +⎨
⎪

= +⎪
⎪ =⎩

2 o  (15)    

The corresponding block diagram is shown in Fig. 1. 
The observer can be designed by eigenvalue 
placement in which case the characteristic equation 
is given by ( )sΔ = 0  where ( )sΔ  is the determinant 
of Mason’s formula: 

+ + + + =  (17) 

so

15q
2T

=where .  Comparing the LHS of (15) with 

that of (17) then yields the required observer 
correction loop gains: 

3 4
2

1 2 3 4
4q qK 4q, K 6q , K , K
M M

⎧ ⎫⎪ ⎪= = = − = −⎨ ⎬
⎪ ⎪⎩ ⎭

curate

 (18) 

The smaller s0  is made, then the more ac  T

( )LΓ̂ d ( )L
ˆ tΓt  an

contain

 will be. As stated at the end of 
section 2, the mechanical load is excluded from the real 
time model of the observer but its presence is reflected 
as a time varying load torque component which is 
compensated by the FDC algorithm through the terms 

ing ( )Lˆ tΓ  [ref  and ( )L
ˆ tΓ., (7)]

l [8]. 

 [ref., (14)]. 
This yields robustness against external disturbances 
and plant model uncertainties that is fully exploited 
in the general control technique of observer based 
robust control [7] and applied in motion contro
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4  Minimum Energy Position Control 
4.1 Outer sliding mode position control loop 
4.1.1 The plant and its state trajectory equation 
The controlled plant for the outer loop is given by (15) 
and for a rest to rest manoeuvre, the demanded rotor 
angle, , is constant.  Then the position error, 

, satisfies  and . The 
plant equation (15) can then be written as  

r demθ

re r r demθ = θ − θ re rθ = θ re rθ = θ

  (19) r uθ =

and the plant state differential equations in terms of 
the state variables, and , are: reθ rω

  (20) re r

r u
⎧θ = ω⎪
⎨

ω =⎪⎩

In the basic form of sliding mode control, the 
control variable, u, is switched between one of two 
constant values, in this case, the maximum 
allowable angular acceleration limits, . In the 
following subsection, the plant behaviour under this 
control law will be viewed by means of the state 
trajectories in the phase plane.  These are solutions 
to the state trajectory differential equation which is 
obtained by  dividing the first of equations (20) by 
the second: 

max±α

 r

r

d
d u

θ ω
=

ω
r  (21) 

The general state trajectory equation for  constant 
is obtained by the method of separation of variables: 

u

  re r ru d dθ = ω ω ⇒∫ ∫

 ( ) ( )2 2
re re r r

10
2u

⎡θ = θ + ω − ω⎣ 0 ⎤
⎦ . (22) 

Thus the state trajectories are parabolas symmetrical 
about the  axis of the phase plane with constant 
acceleration parameters, 

reθ

maxu = ±α , as shown in 
Figure 2 of the following subsection. 
  
4.1.1 Basic bang-sliding mode control law 
Sliding mode control [5] usually employs a linear 
switching boundary in the state space in order to 
obtain linear closed loop dynamics [5]. Here, in 
contrast, realisation of the special velocity-time control 
profile [ref., section 4.2] can be achieved by means of 
a special sliding mode control law having a piecewise 
linear switching boundary in the phase plain 
comprising a linear segment at the origin with slope 

c1 T− , similar to the conventional sliding mode 
controller [5], and completed with two horizontal 

straight line segments as shown in Fig. 2. Here, ωp is 
the peak angular velocity, which is the constant value 
reached during the manoeuvre, calculated to realise 
the demanded manoeuvre time, as shown in 
subsection 4.2. As will be seen later in this subsection, 
ideally the control acceleration magnitude limit, maxα , 
should be given the maximum possible value that can 
be held constant.  

 
Fig. 2: Switching boundary for minimum energy 

loss control law and the closed loop phase portrait. 

Below the switching boundary, , and 
above, 

maxu = +α

maxu = −α , as shown, yielding the closed 
loop phase portrait comprising two families of 
parabolas with oppositely signed acceleration 
parameters. The phase portrait is actually an infinite 
continuum of state trajectories represented by a few 
sample trajectories in Fig. 2. The trajectories are 
directed towards the boundary from both sides, 
which is Utkin’s condition for sliding motion [5]. 
Once the state trajectory reaches and just crosses the 
boundary, the control law holds it on the boundary 
by switching the control variable, , at an infinite 
frequency in theory, between, causing it to ‘zig-zag’ 
about the boundary with an infinitesimal amplitude. 
Since the position error and the velocity are 
oppositely signed along the whole boundary then 
the state trajectory appears to slide along the 
boundary towards the origin and the system is said 
to be operating in a sliding mode. It is evident that 
for any initial state, the state trajectory is driven 
onto the boundary with  and thereafter 
slides to the origin. 

u

maxu = ±α

 The closed-loop state trajectory a-b-c-d exemplifies 
a rest-to-rest manoeuvre. The control saturates at 

maxu = +α  along segment a-b, after which r pω = ω  is 
maintained along segment b-c and finally maintains 

( )r r e1 Tcω = − θ   ⇒ ( )( )r r dem r1 Tcθ = θ − θ  along 

segment c-d, which therefore yields a linear closed loop 
system with transfer function 

 ( )
( )

r

r dem

s 1
s 1 sTc

θ
=

θ +
 (23) 

rω
 

r r dem reθ − θ = θ

maxu = −α

0  

maxu = +α

a

b

d  

p−ω  

p+ω  

1+θ  
1−θ

c

Switching boundary with slope c1 T− at the origin 
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 With reference to Fig. 2, next the equation of the 
switching boundary will be found in the form 

 ( )re rS ,θ ω = 0  (39) 

Then the switching function is ( )re rS ,  and is 
arranged such that if  is increased beyond the 
value on boundary (39) without changing θ , then 

θ ω

rω

re

( )re rS ,θ ω > 0 , and vice versa so that the required 
control law becomes: 

 ( )max re ru sgn S ,= −α θ ω⎡⎣ ⎤⎦  (40) 

Proceeding in this way for the example of Fig. 2, the 
switching boundary is defined by 

 
( )p re re c p

r
re c re c p

sgn for T
T for T

−ω θ θ ≥ ω⎧⎪ω = ⎨ − θ θ < ω⎪⎩
 (41) 

where . ( )
1 for x 0

sgn x , 0 for x 0
1 for x 0

Δ + >⎧
= ⎨− <⎩

⎫
= ⎬

⎭

Equation (41) may be rewritten as 

 
( ) ( )

( ) ( )

re c p p re

r

re c p re c

1 sig T sgn
1
2 1 sig T T

⎧⎡ ⎤+ θ − ω ω θ⎣ ⎦⎪ω = − ⎨
⎡ ⎤+ − θ − ω θ⎪ ⎣ ⎦⎩

⎫
⎪
⎬
⎪⎭

 (43) 

where . ( ) { }sig x 1 for x 0, 1 for x 0
Δ
= + ≥ − <

Then the switching function of control law (40) 
follows from (43): 

( )
( ) ( )

( ) ( )

re c p p re

re r r

re c p re c

1 sig T sgn
1S , 2 1 sig T T

⎧ ⎫⎡ ⎤+ θ − ω ω θ⎣ ⎦⎪ ⎪θ ω = ω + ⎨ ⎬
⎡ ⎤+ − θ − ω θ⎪ ⎪⎣ ⎦⎩ ⎭

  

   (44) 
 
4.1.2 Introduction of a boundary layer 
As it stands, the outer loop control law derived in 
section 4.1.1 would suffer from control chatter [2]. 
This may be avoided by replacement of the 
switching boundary with the well-known boundary 
layer [1,4], i.e., a region straddling the switching 
boundary within which the control undergoes a 
continuous transition between  and  at 
the edges. This could be termed ‘soft switching’.  The 
boundary layer is introduced by replacing the 
signum function, 

max+α max−α

( )sg , of (40) by the saturation 
function: 

n •

 ( )
( )

KS for S 1 K
sat S,K

sgn S for S 1 K

⎧ <⎪
⎨

≥⎪ ⎪⎩ ⎭

⎫⎪
⎬

hus, (40) is replaced by T

 ( )max re ru sat S , ,K= −α θ ω⎡ ⎤⎣ ⎦  (46) 

Fig. 3 shows a sketch of the basic and modified 
switching boundaries together with the boundary layer 
and a state trajectory for a rest-to-rest manoeuvre.  

r r dem reθ − θ = θ

rω

 (45) 

 
Fig. 3: Boundary layer and state trajectory. 

 
The initial segment, a-b, of the state trajectory is the 
same as that of Fig. 2 with maxu = +α until the 
boundary layer is reached.  Thereafter control law 
(46) keeps the trajectory within the boundary layer 
with a smooth control variable closely approaching 
the ‘instantaneous mean value’ of the bang-bang 
control of Fig. 2, i.e., the equivalent control of Utkin 
[5].  It is evident that as the gain, K, is increased, the 
width, 1 K , of the boundary layer measured parallel 
to the rω  axis becomes smaller and the state 
trajectory approaches closer to the ideal one of Fig. 
2.  In practice, however, the maximum value of K 
will be limited by the sampling frequency of the 
digital implementation but modern digital 
processors should allow this to be sufficiently high 
for the state trajectory to be a very close to the ideal 
ne. o

 
 
4.2 The velocity-time profile and the optimisation 
Fig. 4 shows the angular velocity-time profile for a 
rest-to-rest manoeuvre produced by the forced 
dynamic sliding mode controller defined in 
subsections 3.3 and 4.1. 

 
Fig. 4: Velocity-time profile for rest-to-rest 

manoeuvre. 

The points, a, b, c and d, correspond to points, a, b, c 
and d, on the state trajectories of Fig. 2 and Fig. 3. 

b

a

c

0  
d  

Slope = −1/Tc

Boundary layer maxu =

Basic switching
boundary 

1 K

State trajectory 

manoeuvre  
for rest-to-rest 

−α

u

p+ω  

pω  −
= +αmax

( )r tω

0 t

pω c  

d

b

aT d cT 3T=( )m a dT T T− +  

mT

ap0.05ω
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( )
( )
( )

61
m 6

L a 231
m a2

T 19 3e T
W T A

T 5 2e T

−

−

− +
=

 The torque required to overcome viscous friction 
is , where  is the viscous friction 
coefficient.  Then, referring to Fig. 4, the energy 
loss during a manoeuvre of duration, , is: 

a

⎡ ⎤− +
⎣ ⎦

( ) ( )f v rt F tΓ = ω vF   (52) 

mT

( )

( )

( )

m

a m a d

d d d

T 2
L v r0

2
T T T Tp 2

a a p o0 0av
2T 3 T

p d0

2 62 1
v p m a d3 6

W F t dt

d
TF

e d

F T T 5 e T (47

− +

− τ

−

= ω

⎧

and the intermediate period of constant velocity, 

d

)

ω⎛ ⎞⎪ τ τ + ω τ⎜ ⎟⎪ ⎝ ⎠= ⎨ ⎬
⎪ ⎪⎡ ⎤+ ω τ⎪ ⎪⎣ ⎦⎩

⎡ ⎤= ω − − +
⎣ ⎦

∫

∫ ∫

∫

, is Tpω m a4T

⎫
⎪
⎪

− .  Now the value of  that 
minimises  of (52) will be found. For this 
purpose, the minimum value will be taken as zero, 
although not realisable. The maximum value 
is

aT

LW

 1
a max m4T T= . Then 

⎭ ( )

At the end of this manoeuvre, the position change 
has to be the demanded value of 

 ( )r dem r dem r 0Δθ = θ − θ  (48) 

By inspection of Fig. 4 this is  

 

( )
( )

( ){ }

m

a m a d

d
d d

T

r dem r0

T T T Tp
a a p o0 0

a

T 3 T
p d0

31 1
p m a d2 3

t dt

d d
T

e d

T T 2 e T (49

− +

− τ

−

Δθ = ω

′ω
′= τ τ + ω τ

′+ ω τ

′=ω − − +

∫

∫ ∫

∫
)

 

where ( )p p sgn′ω = ω Δθr . Hence the required peak 
angular velocity magnitude is 

 ( )
r dem

p 31 1
m a2 3T T 2 e T−

Δθ
ω =

− − + d

 (50) 

Substituting for pω  in (47) using (50) then yields 

 
( )

( )

62 1
m a d3 6

L 231 1
m a d2 3

T T 5 e T
W A

T T 2 e T

−

−

− − +
=

⎡ − − +
⎣

⎤
⎦

)

a

 (51) 

where . Next, it is reasonable to 

suppose that the acceleration and deceleration levels 
will be of similar magnitude. This is satisfied by 
setting the peak initial deceleration equal and 
opposite to the constant acceleration and this is 
achieved by setting . Then (51) becomes 

( 2
v r demA F= Δθ

dT 3T=

 L mW 0 A T=  (53) 

( ) ( )
( )

61
241

L m4 231m m
8

1 19 3eA 1W T
T T1 5 2e

−

−

− +
= =

⎡ ⎤− +
⎣ ⎦

.5826A  (54) 

To find any stationary points, (52) will be rewritten:  

( ) ( )

( )

231
m a L a2

61
m a6

T 5 2e T W T

A T 19 3e T

−

−

⎡ ⎤− +
⎣ ⎦

⎡ ⎤= − +
⎣ ⎦

 (55) 

Differentiating w.r.t.  then yields aT

( ) ( ) ( )

( ) ( )

( )

3 31 1
m a2 2

2 L a31
m a2

a
61

6

2 T 5 2e T 5 2e W T

dW T
T 5 2e T

dT

19 3e A

− −

−

−

⎡ ⎤⎡ ⎤− + − +
⎣ ⎦⎣ ⎦

⎡ ⎤+ − +
⎣ ⎦

= − +

L a

 (56)  

( )L a adW T dT 0=  and substituting for Then setting 

( )L aW T  using (52) yields  

( ) ( )
( ) ( )

3 61
m a6

6 31 1
m a6 2

5 2e T 19 3e T

19 3e T 5 2e T

− −

− −

⎡ ⎤⎡ ⎤− + − +
⎣ ⎦⎣ ⎦

⎡ ⎤= − + − +
⎣ ⎦

 

Since this equation is linear in , there is only one 
stationary point. Setting  in (56) and 
observing (53) yields: 

aT

aT 0=

( ) ( )
a

2 61
m L a a 6T 0

T dW T dT 11 3e 12e A− −
=

= − + 3  (56)  

( ) ( )1
L m L4W T W 0>( )

a
L a a T 0

dW T dT
=

Since ,  

[ref., (52) and (53)] and there is at most one 
stationary point in the interval 1

a 40 T T≤ ≤ m , then 
the absolute minimum of ( )L aW T  must be at 
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aT 0= .  It follows that the smallest value of  
must be employed for which the electromagnetic 
control torque from the PMSM will not saturate.  
Then the FDC inner loop will be able to hold the 
initial angular acceleration at 

 a p maT x= ω α  (58) aT

Also the sliding mode time constant for the 
deceleration phase of a rest-to-rest manoeuvre and 
any subsequent operation with continuously varying 
position demands is set to max p a minT±α = ω . 

 
 cT Ta=  (59)  

4.3 User inputs and parameter calculations 
Substituting for  in (57) using (58) yields: aTThe user will provide a demanded manoeuvre time, 

 and a demanded rotor angle, .  Then the 
demanded rotor angle change, , is given by 
(48). Then with , (50) becomes 

r demθmT ( )3 21
p max m p max r dem2 5 2e T 0−+ ω − α ω + α Δθ = ⇒  

r demΔθ

dT 3T= a

 ( )
r dem

p 31
m a2T 5 2e−

Δθ
ω =

− + T
 (57) 

( )
( )

2 2 3
max m max m max r dem

p 3

T T 2 5 2e

5 2e

−

−

α − α − + α Δθ
ω =

+
 (60) 

the chosen root being the one yielding p 0=  for ω

r dem 0Δθ = .  
 

At commissioning time, the maximum angular 
acceleration magnitude, , will be determined.  
Then 

 

maxα

r demθ  

mT  

sV+

LΓ  

demα  

d demu
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a demu

b demu
dq/abc 
trans.
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r r,ω θ
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Fig. 5: Position control system under investigation. 

( )c a dem bdemu u u= − +5  Simulations  and the measured currents 

and rotor angle are equal to the true values, i.e., Fig. 5 shows the structure of the complete position 
control system as envisaged for future implementation.
 Since for most applications the energy transmitted 
to the mechanical load will far exceed the losses in the 
PMSM and its drive, for this investigation the power 
electronics is assumed ideal, the space vector 
modulation not being simulated, and the iron losses in 
the PMSM are ignored. Also the measurement 
instrumentation is assumed ideal. 

a m ai i= , 

In this case, the applied stator voltages are equal to 
the demanded values, i.e., u ua a dem= , b bdemu u= , 

b mi bi=  and r mθ = θ . 
 The total energy consumed is calculated as 

( )q q d dW 1.5 u i u i= +  (58)  

and therefore this includes the PMSM copper losses. 
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Fig. 6: Position responses with robust FDSMC for 
different manoeuvre times. 

Fig. 9: Position responses with conventional linear 
state feedback control for different manoeuvre times. 
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Fig. 10: Energy loss with conventional linear state 
feedback control for different manoeuvre times. 

Fig. 7: Energy loss with robust FDSMC for different 
manoeuvre times. 
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Fig. 11: Energy expenditure for different manoeuvre 
times with conventional linear state feedback. 

Fig. 8: Velocity-time profiles with robust FDSMC 
for different manoeuvre times. 

  
  The parameters of the non-salient PMSM are: 
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Rated voltage: ; Rated Power: 
;  

0V 430V=
1 22

mm

784 56g , g
5T25T

⎧ = =⎨
⎩

  (61) 
rP 12000W=

Base speed: ; Maximum torque: 
; ; ; 

; ; . 

b 150rad / sω = Similar results would be expected using traditional 
PI controllers for cascaded speed and position 
control loops adjusted to yield zero overshoot and 
the same manoeuvre times.  

max 40NmΓ = PM 0.38 WbΨ = d qL L 5.4e 3H= = −
2

rJ 300e 4 Kg m= −sR 0.1= Ω p 5=
Comparison of Fig. 7 with Fig. 10 indicates a 
significant reduction of energy loss using the FDSMC 
controller for all the demanded manoeuvre times. 
Table 1 shows the percentage energy savings for each 
case.  

 The parameters of the mechanical load referred to 
the PMSM rotor are: ;  L rJ 4J=
The coefficient of viscous friction is equivalent to 
80% of the maximum load power: 2

v rF 0.8P= ωb

= − sT 1e 3α = − so e 4= −

. 
 The FDC inner loop parameters are as follows:  

siT 5e 3s ; ; T 2 . s Table 1: Percentage energy savings relative to 
conventional controller for different manoeuvre times  The outer position control loop parameters are as 

follows: 1.0 1.4 1.8 2.2 2.6  [s] mT
max r 0H.P Vα =Maximum acceleration magnitude: ; 

% Energy 
Saving 27.9 27.8 27.5 26.8 25.1 Sliding mode time constant: . cT 0.005s=

Boundary layer gain: ;  K 1000=
The reason for this is the characteristically large initial 
velocity peak produced by the conventional control 
law that is about twice the peak velocity produced by 
the FDSMC controller. 

  Figs. 6 to 10 show the results for a rest-to-rest 
manoeuvre with a fixed demanded angle of 

 using the new sliding mode forced 
dynamic control law. This requires nearly 10 rotor 
revolutions, which is realistic for motion control 
applications. Fig. 8 shows the corresponding speed 
responses. The energy expenditure penalty for 
reducing the settling time is evident in Fig. 7. As 
expected, the velocity-time profiles of Fig. 9 are of 
the form depicted in Fig. 4 and exhibit the increase 
in the peak angular velocities responsible for the 
frictional energy loss and the manoeuvre time is 
reduced. The initial angular acceleration is relatively 
high so that on the time scale of the figure, the 
initial linear ramps to the peak velocity values are 
hardly visible but the final exponential decay of the 
velocities to zero may be seen. 

r 60radθ =
 The small overshoots in Fig. 7 are due to some of 
the kinetic energy stored in the rotor/driven 
mechanism being returned to the power supply during 
deceleration.  
 
 
6  Conclusions and Recommendations 

 For comparison, Figs 9, 10, and 11 show the 
graphs corresponding, respectively, to Figs 6, 7 and 8, 
obtained using a conventional linear state feedback 
control law 

 ( )1 r dem r 2 r
ˆ ˆu g g= θ − θ + ω  (62) 

A new closed loop position controller for vector 
controlled PMSM drives has been proposed that offers 
considerable advantages over currently employed 
conventional controllers. First it yields lower frictional 
energy losses: an energy saving of the order of 27%. If 
such a controller were to be adopted throughout 
industry, the energy saving would have a significant 
positive impact on the environment.  Also the system 
is potentially very practicable in view of its ability to 
precisely realise a demanded manoeuvre time for a 
given position demand without the need to model the 
mechanical load. Applications would include 
coordinated control of mechanisms and multi-axis 
machines on production lines.  The elimination of the 
need for time consuming adjustment of PI controllers 
by trial and error at commissioning time is also a 
considerable advantage. 

with the gains determined by coincident pole 
placement to yield the same manoeuvre times for 
critical damping using the Dodds 2% settling time 
formula [4]:    

 In view of the generality of the FDC and SMC 
methods, it is clear that the new controller is not 
restricted to PMSM drives and therefore investigation 
of its application to drives employing other types of 
motor is recommended. 

( ) n
2

2 1
m n 2

2
2

m m

4 3 2ns g s g s
5T

56 784s s
5T 25T

=

+⎡ ⎤+ + = +⎢ ⎥
⎣ ⎦

= + + ⇒

  

 Experimental trials will be the next step of the 
research.  Also, a further investigation in which the 
true optimal control that absolutely minimises the 
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energy expenditure is determined, even if it is only 
computed on an open loop basis, would be of interest 
to provide a standard of comparison for the proposed 
control system. 
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