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Abstract : This paper proposes a new practical approach using a RBFN (Radial Basis Function Network) to 
approximate the inverse kinematics function of a robot manipulator. It can be effectively applied for position 
control of a real robot-vision system in which robot movement in the workspace is observed by a camera.  In 
fact, there are several traditional methods based on the known geometry of the manipulator to determine the 
relationship between the joint variable space and the world coordinate space. However, these traditional 
methods are impractical if the manipulator geometry cannot be determined easily, a robot-vision system for 
example. Therefore, a neural network with its inherent learning ability can be an effective alternative solution 
for the inverse kinematics problem. In this paper, an approach using a RBFN with predefined centres in the 
hidden layer (distributed regularly in the workspace) and a combination of the strict interpolation method and 
the LMS (Least Mean Square) algorithm is presented for effective learning of the inverse kinematic function. 
By using the strict interpolation method and constrained training data an appropriate approximation of the 
inverse kinematic function can be produced. However, this solution has the difficulty of how to collect the 
constrained training patterns whose inputs are selected at pre-defined positions in the workspace. Additionally, 
the LMS algorithm can incrementally update the linear output-layer weights through an on-line training 
process. Thus, the proposed idea of combining these techniques can produce the advantages of both methods to 
deal with the difficulties in practical applications, such as the sensitive structure of a real robot-vision system or 
a realistic situation where the initial setup and application environments are different. To verify the 
performance of the proposed approach, practical experiments have been performed using a Mitsubishi PA10-
6CE manipulator observed by a webcam. All application programmes, such as robot servo control, neural 
network, and image processing were written in C/C++ and run in a real-time robotic system. The experimental 
results prove that the proposed approach is effective. 
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1  Introduction 
In robot kinematics there are two important 
problems, forward and inverse kinematics. Forward 
kinematics can be regarded as a one-to-one mapping 
from the joint variable space to the Cartesian 
coordinate space (world space). From a set of joint 
angles, forward kinematics determines the 
corresponding location (position and orientation) of 
the end-effector. This problem can be easily solved 
by the 4x4 homogenous transformation matrices 
using the Denavit & Hartenbergh representation 
[1][2]. Inverse kinematics is used to compute the 
corresponding joint angles from location of the end-
effector in space. Obviously, inverse kinematics is a 
more difficult problem than forward kinematics 
because of its multi-mapping characteristic. There 
are many solutions to solve the inverse kinematics 

problem, such as the geometric, algebraic, and 
numerical iterative methods. In particular, some of 
the most popular methods are mainly based on 
inversion of the mapping established between the 
joint space and the task space by the Jacobian 
matrix [2]. This solution uses numerical iteration to 
invert the forward kinematic Jacobian matrix and 
does not always guarantee to produce all the 
possible inverse kinematic solutions whilst 
involving significant computation. In cases where 
the manipulator geometry cannot be exactly 
specified, the traditional methods become very 
difficult, for example a robot-vision system.  
The artificial neural network, which has significant 
flexibility and learning ability, has been used in 
many robot control problems. In fact, for the inverse 
kinematics problem several neural network 
architectures have been used, such as MLPN (Multi-
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Layer Perceptron Network), Kohonen self-
organizing map and RBFN. In [3][4] Guez et al and 
Choi described solutions using the MLPN and back 
propagation training algorithm. Additionally, 
Watanabe in [5] determined optimal numbers of 
neurons in a MLPN for approximating the inverse 
kinematic function. To deal with complex 
manipulator structures some particular neural 
network architectures were also presented, for 
example a combination between the MLPN and the 
look-up table in [6] or a modular neural network in 
which the modules were concatenated in a global 
scheme in order to perform the inverse kinematics in 
a sequential way in [7]. Similarly, in [8][9][10] the 
authors proposed using a RBFN to compare with the 
performance of the MLPN in the inverse kinematic 
problem. Basically, all of these mentioned 
approaches used the inverse solution of the forward 
kinematic transformation to build the mapping from 
world coordinate space to joint angle space. It 
means that the manipulator geometry or the forward 
kinematics must be known to collect the data for 
training neural networks. Alternatively, when using 
a simple vision system, the manipulator position in 
the workspace is represented by an image 
coordinate in the camera’s plane instead of a world 
coordinate, thus the manipulator geometry is not 
required. Hence, the RBFN can learn an indirect 
inverse kinematic function of the manipulator to 
control its movement in the image plane without any 
knowledge of the manipulator geometry or forward 
kinematics. This solution is known as an image-
based control scheme. Moreover, an advanced 
approach using a RBFN with predefined centres in 
the hidden layer, and a combination of the strict 
interpolation method and the LMS (Least Mean 
Square) algorithm is presented to learn the inverse 
kinematic function. By using the strict interpolation 
method and constrained training data an appropriate 
approximation of the inverse kinematic function can 
be produced. A constrained training set whose 
inputs are regularly spaced positions represents a 
different idea from other related papers [8][9][10]. 
However, this solution has the difficulty of how to 
collect this constrained data without knowing the 
inverse kinematic expressions of the real robotic 
system. Additionally, the RBFN performance can be 
improved through on-line training using the LMS to 
incrementally update the linear output-layer 
weights. Therefore, combining the strict 
interpolation and the LMS methods produces the 
advantages of both training methods to deal with the 
difficulty in collecting training patterns in practical 
applications. This approach consists of two steps, 
firstly producing an inaccurate inverse kinematic 

approximation by the strict interpolation method and 
then correcting it through on-line training by the 
LMS. The inaccuracy of the RBFN here reflects the 
reasonable assumption that the initial network 
training occurs in an environment that is not exactly 
the same as the environment where the system is 
actually deployed. Moreover, it proposes an 
alternative situation in training neural networks. 
Instead of learning a function directly from a non-
realistic situation, the training process can be 
divided into two simpler steps. Firstly a less 
accurate solution is easily obtained producing an 
approximate function which is then corrected in a 
convenient way (on-line update in this case) using 
the adaptive ability of the LMS algorithm. This 
approach can be used to deal with some practical 
difficulties in the robot-vision system, such as 
collecting the constrained training data and the 
sensitive structure of visual measurement. This is 
demonstrated by the practical work in Section 3. 
The paper is organized as follows. The first section 
has introduced the basis ideas and background of the 
inverse kinematics problem using neural networks. 
In the second section, the approach using the RBFN 
to approximate the manipulator inverse kinematics 
is presented. It describes the RBFN architecture and 
presents the training approach to learn the inverse 
kinematic function of a robot-vision system. The 
practical experiment and results are described in the 
next section that verifies the proposed approach. In 
the fourth section, aspects of training process are 
discussed and future research is also identified.  
Finally, the main conclusions are outlined in the last 
section. 
 
 
2  Inverse Kinematics Approximation 
Using A Radial Basis Function 
Network  
 
2.1 The structure of Radial Basis Function 
network 
The basic architecture of a RBFN is the three layer 
network consisting of an input layer, a hidden layer, 
and a linear output layer [11]. In the inverse 
kinematics problem of the robot-vision system, the 
inputs and outputs of the RBFN are position (image 
coordinates) and joint angles of the manipulator, 
respectively, shown in Fig. 1.  
The unique feature of RBFNs compared to MLPNs 
and other networks is the process performed at the 
hidden layer. In this hidden layer, the radial basis 
function works as a local selector in which the 
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corresponding output depends on the distance 
between its centre and input. It can be presented as: 
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where  
Фi – Radial basis function (Gaussian function) 
ci –  centre of  the i-th hidden unit (i = 1, 2,…, N) 
σ - width of the Gaussian function 
ri - distance between input and centre of the i-th 
hidden unit  
x – input of the RBFN  (k = 1, 2) 

 
Thus, the outputs of the RBFN are expressed as : 
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where, 
Wji – synaptic weight between the i-th hidden 
unit and the j-th output   
yj – the j-th output  (j = 1, 2) 
 

 
Fig. 1- Structure of RBFN in inverse kinematic 

approximation of  the robot-vision system 
 
Because of the RBFN structure, its training process 
can be separated into two continuous phases, 
building a hidden layer structure where centres and 
widths of the hidden units are determined, and then 
training the linear weights based on input-output 
patterns. In order to determine the appropriate 
centres from the training data set, the first phase 
could be performed by the self-organizing method, 

clustering techniques or randomly selected. This is 
also known as unsupervised learning. The second 
phase is supervised training to determine the linear  
weights by either the Least Mean Square algorithm 
or Gradient Descent method, exactly the same as the 
back propagation network (MLPN).  

-5
0 5 10

15 20 25 30
35 40

0

10

20

30

40

-1

-0.5

0

0.5

1

XY

G
au

ss
ia

n 
Fu

nc
tio

n

 
Fig. 2- Centres as regularly spaced positions 

 
In our approach, the structure of the hidden layer is 
pre-defined by an intuitive method (involving trial 
and error) where the centres of hidden units are 
distributed regularly in the workspace and the width 
of the Gaussian functions are fixed as a proportion 
of the centre distance. Fig. 2 above shows an 
example of the hidden layer’s centres as regularly 
spaced positions in the workspace of the 
manipulator. This is the principal difference from 
other similar RBFN solutions in [8][9][10] where 
the centres of hidden units were determined from a 
particular training set by a clustering technique, and 
thus that centre set was not fixed, but varied 
according to the particular training set in the same 
application. Basically, in our approach the persistent 
hidden-layer structure is pre-defined and is therefore 
able to generalize through the whole workspace. 
These hidden-layer parameters were varied 
extensively before a satisfactory set was chosen for 
the specific problem here.  
 
2.2 Supervised learning methods for the 
linear output-layer weights 
As expressed in equations (1) and (3), an output of 
the RBFN has been performed by a linear 
combination of the localized bumps formed at the 
centres of Gaussian hidden units. Hence, this 
training phase is to determine an appropriate set of 
the linear weights to be able to approximate the 
inverse kinematics of a manipulator. It follows and 
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does not depend on the first phase selecting 
structure of hidden layer above.  
In this paper, we propose two different training 
methods to determine the linear weights for the 
inverse kinematic approximation. The first one is a 
simple method where the centres of hidden units 
coincide with the inputs of training patterns and the 
linear weights are determined from the target 
outputs and the interpolation matrix. This is called 
the strict interpolation method [11] in which the 
RBFN is an exact mapping of all observations in the 
training data set.  
Given a training data set, consisting of N inputs - 
different positions in the workspace, and N targets - 
corresponding manipulator joint angles: {(X1, X2, .., 
XN); (T1, T2, …, TN)}, these known data points Xi  are 
taken to be the centres Ci of the hidden units. Then, 
after all training patterns have been presented to the 
RBFN, the NxN matrix called the interpolation 
matrix can be obtained as: 
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The linear weights are calculated from the targets of 
training data and the interpolation matrix from the 
following equation: 
 

1. −Φ= TW      (5) 
 
This solution is an exact mapping f : Xi  Ti (i = 
1,2,…N), for all patterns presented to the RBFN and 
its generalization depends on the appropriateness of 
the selection of the hidden layer structure (centres 
and width of Gaussian function). It is an off-line 
training process and the training patterns are 
collected before the training phase is performed. In 
fact, the strict interpolation method is only 
appropriate when the function to be estimated does 
not contain high frequency components so that a 
small number of hidden units for a well-generalized 
RBFN can be chosen. Fortunately, the inverse 
kinematic function is a reasonably smooth surface, 
so the strict interpolation method is a suitable 
solution if the training patterns are regularly 
distributed in the workspace. In this paper, the 
training data used by the strict interpolation method 
was constrained patterns whose inputs are close to 
the centres, which were predefined as regularly 
spaced positions in the workspace. The closer the 
position of the training data is to the centres, the 
better the inverse kinematics approximation 

achieved. This kind of data is called the regularly 
spaced position training pattern. As a result, this 
solution can produce an inverse kinematic 
approximation using a simple structure RBFN with 
a small number of hidden units [14]. However, this 
approach has the difficulty of how to collect the 
constrained patterns without the inverse kinematics 
expressions. In practice, it can only be estimated by 
experiment with an undetermined accuracy and also 
needs many attempts depending on the system’s 
complexity. The quality or accuracy of collected 
data depends on the user’s observation and a poor 
pattern means that its input deviates from pre-
defined position (centres). 
The second method called the LMS (Least Mean 
Square) algorithm is more popular than the former 
and can be applied for the on-line process. As 
described in [11], the linear weights can be modified 
by the simple Delta rule : 
 

ijji eW Φ=Δ ..η     (6) 

jjj yTe −=  
 
where 

ej - error between target and actual output j 
Φi - output of hidden unit i 
η – learning rate 

 
This LMS algorithm is quite a simple approach 
whose performance depends on the adopted learning 
rate and the size of the training data. Moreover, 
collecting an arbitrary position pattern is much 
easier than a constrained pattern as mentioned 
above. Hence, the related papers [8][9][10] used this 
arbitrary data (no consideration given to the 
positions of the patterns) and the LMS algorithm to 
train the output-layer linear weights. It was the off-
line batch training process with data collected based 
on forward kinematics. However, this approach does 
guarantee to produce an appropriate approximation 
function, and also needs many training patterns and 
training time to cover the entire workspace. In this 
paper, the LMS algorithm (or Delta rule in 
incremental case) is used in the on-line process to 
incrementally update the linear weight by arbitrary 
patterns. Thus, it should be used as an additional 
technique to improve the quality of a trained 
function rather than the main training approach.  
Based on the two mentioned learning methods and 
the predefined structure of hidden layer, a new 
practical training approach is proposed to cope with 
the difficulties in approximating the inverse 
kinematics function in a real robot-vision system, 
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such as collecting the constrained training data and 
the sensitive visual measurement structure. 
 
2.3 Description of strict interpolation and 
LMS methods to deal with difficulty in 
collecting constrained training data 
A practical approach for position control of the 
robot-vision system has been developed to cope 
with the difficulty in collecting the constrained 
training data. The notable principle of this approach 
is that instead of learning a function directly from a 
complex situation, the training process can be 
divided into two simpler steps. Firstly using a less 
accurate but feasible solution to produce an 
approximate function, and then correcting it through 
a convenient way (on-line update in this case). The 
full training procedure can be described as below: 

Step 1: Determine hidden layer parameters where 
i/ centres of the hidden layer are predefined as 
regularly spaced positions in the workspace by a 
specific distance, and 
ii/ the width of Gaussian functions is selected as a 
proportion of the centre distance heuristically. 

Step 2: Collect a constrained training set. In the 
practical work, this can be achieved using the 
manipulator joint angle controller. This constrained 
data, consisting of the position and the 
corresponding joint angles, are picked in the 
neighbourhood of each centre, but the training data 
then will be formed as the centres and joint angles 
of that collected data. Obviously, this is the 
PSEUDO-TARGET (inaccurate) training data, 
whose target outputs do not correspond to the inputs 
(the centres - regularly-spaced positions). This can 
be seen in Fig. 3, where the circles and squares are 
centres and collected points respectively, and thus 
the inaccurate training set is formed as (Angle, C).  

Step 3 : Use the strict interpolation method and the 
pseudo-target training data to determine the linear 
weights. Consequently, the currently trained RBFN 
is an incorrect approximation of the inverse 
kinematics, but it also produces a boundary function 
of the accurate approximation trained by accurate 
constrained training data - (AngleC, C) (if it could 
be collected). That is because both have the same 
structure and the only deviations are in the 
corresponding target angles. 

 Step 4 : Correct the currently trained RBFN by 
using the LMS (Delta rule) and arbitrary training 
data. This is on-line training where the linear 
weights are incrementally updated when a new 
training pattern is presented. 

 
Fig. 3 – Positions of centres and collected data 

 
Furthermore, Step 4 of the proposed approach can 
be expanded to deal with the sensitive structure of 
the robot-vision system, which can occur due to 
variation in the set-up of the visual measurement 
system or in case the set-up and actual application 
environments are different. 
 
 
3  Practical Work and Results 
 
3.1 Set-up of the practical work  
Practical experiments have been developed and 
performed using the existing facilities in the 
Intelligent Robotics Laboratory [12]. It is the 
remotely robotic control system as shown in Fig.4. 
The following elements of the system can be 
identified: 

• The Mitsubishi PA10-6CE manipulator with 
servo controller. This is the six link 
multipurpose arm connected to an industrial 
PC (IPC) via an ARC-Net interface. 

• The IPC running under the QNX Neutrino 
real-time operating system is used to 
execute control programmes and 
communicate with an application PC (APC) 
via Internet interface.   

• A standard webcam mounted on a vertical 
shaft that permits rotation captures the 
manipulator images in two dimensional 
space.  

Actual Position - A 

Centre Position – C 

Actual collected data : (Angle, A)  

Accurate constrained data : (AngleC, C) 

Pseudo-Target training data : (Angle, C) – 
Inaccurate (or less accurate) 
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• All of the main application programmes 
were written in C/C++ and run in the APC. 

 

 
Fig.4 – General structure of the robotic control 

system 
 

Fig.5 presents a simple robot-vision system, 
consisting of the PA10-6CE manipulator and the 
webcam.  
 

 
Fig.5 – Simple visual measurement system 

 
The webcam and an image processing programme 
developed from OpenCV library are used in the 
simple visual measurement system where the 
relative position of the manipulator can be directly 
determined by two dimensional coordinates (x,y) in 
the image plane. Obviously, this can be performed 
without camera calibration or the manipulator 
geometry. In other words, the visual measurement 
system can directly determine the relative positions 
of any manipulator with unknown geometry in the 
image plane. Therefore, the inputs of the RBFN are 

image coordinates (x,y) instead of world coordinates 
(X,Y,Z) and the inverse kinematic function then is 
the mapping from image coordinates (x,y) to joint 
angles. However, this simple visual measurement 
system is easily altered due to variations in the 
configured parameters of the robot-vision system. 
This sensitivity is common in practice. 
 

 
Fig.6 – The inverse kinematics based RBFN for the 

robot-vision system 
 
Fig.6 presents the general structure of the real 
robotic system used in this practical work. The 
PA10-6CE manipulator was controlled to move in 
two-dimensional space by allowing movement only 
of the second and third joints (J2 and J3). Thus, the 
problem was to determine the inverse kinematics of 
a two link manipulator and this RBFN consisted of 
two inputs (x,y) and two outputs (J2,J3) 
correspondingly. In the working area of the 
manipulator, the centres of the hidden layer were 
regularly chosen as a grid. The video frame at the 
resolution of 640x480 (pixels) was created and 
forwarded to the image processing programme to 
determine image coordinates (x,y) of the 
manipulator. 
This paper presents the practical work through two 
experiments. The first one is how to train the RBFN 
to overcome the difficulty of collecting constrained 
data. The second is the technique to deal with the 
sensitive structure of the visual measurement 
system. 
  
3.2  Practical experiment 1 
This experiment uses the outlined approach below 
to overcome the difficulty in collecting constrained 
training data for the inverse kinematics problem. It 
can be described in the following steps: 

• Step 1 : A set of regularly spaced position 
data is manually collected in the workspace 
of the PA10-6CE manipulator using the 
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joint servo controller and the visual 
measurement system. The quality or 
accuracy of collected data depends on the 
user’s observation and a poor pattern means 
that its input deviates from pre-defined 
position (centres). However, this step can be 
simply carried out because it is not 
necessary to collect the data coincident with 
predefined positions (centres). To form a set 
of pseudo-target training patterns the inputs 
are assigned to centres but the target outputs 
are joint angles corresponding to position of 
collected points different from the centres.  

• Step 2 : Using the strict interpolation 
method and the pseudo-target training data 
to establish an incorrect approximation of 
the inverse kinematic function. It is the off-
line training phase.  

• Step 3 : this step is used to correct the 
existing RBFN through an on-line training 
phase. It can be briefly described as: 

- Moving the PA10-6CE 
manipulator to an arbitrary 
position and pick that training 
pattern. 

- Update the linear weights by 
the LMS (Delta rule) according 
to the recent pattern. 

- Repeat until stop command 
sent. 

 
To verify the performance of the RBFN, a test data 
set was presented after each training phase. It is a 
position control task moving the PA10-6CE 
manipulator along the trajectory as shown in Fig.7, 
Fig.8, and Fig.9. 
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Fig. 7 – Performance of the RBFN trained by 

pseudo-target (inaccurate) data 

 
An incorrect approximation was built by the strict 
interpolation method with the pseudo-target  
training patterns as described in Step 2, and the 
performance of this trained RBFN is presented in 
Fig.7. The errors introduced are obvious from 
inspection. 
To correct the existing function, an on-line training 
process was applied using the LMS as described in 
Step 3. The linear weights are adjusted for each 
recent training pattern picked from arbitrarily 
moving the PA10-6CE. After training by a number 
of training patterns, the RBFN was corrected 
incrementally and the performance of the robotic 
system was clearly improved. Fig.8 shows the 
performance of the RBFN after 10 on-line training 
patterns. 
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Fig.8 – Performance of the RBFN after on-line 

training with 10 arbitrary training patterns 
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Fig.9 – Performance of the RBFN after on-line 
retraining with 100 arbitrary training patterns 
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In Fig.9 the performance of the RBFN after on-line 
training with 100 patterns is presented. As can be 
seen, the actual trajectory is close to the desired 
trajectory with an error of approximately 1 or 2 
pixels (one pixel is equivalent to 2 mm). The 
performance is highly satisfactory because the 
quality of this robotic system is dependent not only 
on the RBFN learning ability but also the accuracy 
of the training data, quality of the visual 
measurement system, and even the precision of the 
servo controller. Moreover, the experimental results 
show that as the distance between the centres 
becomes smaller the better the generalization. In 
other words, the RBFN needs more hidden units to 
improve the accuracy of the inverse kinematic 
function. Obviously, there is a practical limit in the 
number of centres of the hidden layer due to lack of 
memory and complicated architecture of the 
network. 
 
3.3 Practical experiment 2 
This experiment illustrates the effectiveness of the 
proposed approach in dealing with the sensitive 
structure of a real robot-vision system. It can be 
performed similarly to the previous experiments 
with an additional step as below : 

• Step 1 : RBFN trained the same as in the 
previous experiment. This produces an  
appropriate inverse kinematics 
approximation of the robot-vision system 

• Step 2 : If there is any variation in the 
configuration parameters of the webcam 
and/or manipulator, the visual structure will 
be different from the previous case. 
Consequently, the knowledge of the inverse 
kinematic function stored in the RBFN no 
longer matches with the new situation. This 
reflects the fact that the set-up and actual 
application environments are sometimes 
different. 

• Step 3 : is used to re-correct the existing 
RBFN by an on-line training phase as was 
performed in experiment 1. 

 
To alter the set-up of the robotic system, the 
webcam was rotated through an arbitrary angle so 
that it changed the image transformation of the 
visual measurement system correspondingly. 
Consequently, the inverse kinematic approximation 
stored in the existing RBFN no longer matches with 
the new structure of the robot-vision system. Fig.10 
presents the performance of the RBFN in the new 
condition of the visual measurement system and the 
errors introduced are obvious from inspection.  

To obtain a new correct function, an on-line training 
process was applied using the LMS instead of being 
retrained by strict interpolation method. In this step, 
the linear weights are adjusted with each recent 
training pattern picked from arbitrarily moving the 
PA10-6CE. After training by a number of training 
patterns, the RBFN can adapt to the new condition 
of the visual measurement system and the 
performance of the robotic system is clearly 
improved. Fig.11 shows the performance of the 
RBFN after 60 on-line training patterns. 
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Fig.10 - Performance of the existing RBFN with 
new condition of the visual measurement system 
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Fig.11 - Performance of the RBFN after on-line 
retraining with 60 training patterns 
 
 
4 Discussion 
In general, using the pre-defined centres of the 
hidden layer as regularly-spaced positions means 
that the hidden layer structure remains the same, and 
therefore is able to generalize through the whole 
workspace. As the distance between the centres 
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becomes smaller the better the generalization 
becomes. Because the inverse kinematic function of 
the robot-vision system does not contain high 
frequency components, the strict interpolation 
method is a suitable solution if the training patterns 
are collected as the same positions of the centres in 
the workspace. It can produce a well-generalized 
RBFN with a small number of hidden units for this 
inverse kinematics problem. This is a different idea 
from all other related solutions. However, it also 
addresses the difficulty of how to collect the 
constrained data in practice and the proposed 
training approach is essential to deal with that.  
In on-line training, since the RBFN acts as a locally 
tuned function, only hidden units close enough to 
the training pattern positions contribute noticeably 
to the network output. As a result, only the linear 
weights connected to these hidden units are adjusted 
via on-line training. It means that the positions of 
the training data have an important impact in the on-
line training process. The closer the training pattern 
to the test points, the stronger the effect in 
modifying the linear weights of the RBFN in that 
area. Different patterns presented to the RBFN can 
produce different improvement effects in the 
approximate function. Thus, the distribution of 
training patterns should cover the entire workspace 
to modify the whole of the inverse kinematic 
function. 
In addition, the choice of learning rate is an 
important variable in the LMS algorithm, especially 
in incremental mode. The variation in learning rate 
can lead to completely different training results. 
Therefore, in order to maintain the smoothness of 
the inverse kinematic approximation over the whole 
workspace, a small learning rate (η = 0.1) was 
adopted even though it made the training process 
slower. This is the reason that the training process 
required a hundred epochs for the small testing area. 
In fact, the real number of training patterns for these 
experiments was collected at only a maximum of 10 
points, but they were used repeatedly in the 
incremental mode with a small learning rate to 
ensure stability of the learning process. In other 
experiments, when using the same training patterns 
with a larger learning rate (0.3 to 0.5 for example), 
the RBFN could  perform well in the testing area 
after training over a small number of training epochs 
(from 10 to 20). However, its responses in other 
neighbouring areas appeared to be worse due to the 
larger learning rate.  
Furthermore, we found that the distribution of 
training patterns and the learning rate both influence 
the incremental modification of the linear weights. 
To keep the training process not only stable but also 

fast the learning rate should be not a constant but be 
related to the distribution of training patterns. For 
example, if a new pattern presented to the network 
is far away from previous used patterns, the learning 
rate can be large. In contrast it should be small to 
keep the training function surface smooth when the 
current pattern presented is close, or the same, as 
previous patterns. This aspect requires further 
investigation. 
 
  
5  Conclusion  
A new approach using a RBFN with predefined 
centres of the hidden layer, which are distributed 
regularly in the workspace, and a combination of the 
strict interpolation method and the LMS (Least 
Mean Square) algorithm has been proposed to learn 
the inverse kinematic function. The strict 
interpolation method with regularly-spaced position 
training patterns in the workspace can produce an 
appropriate approximation, but it has the difficulty 
of how to collect this kind of constrained data. 
Additionally, the LMS algorithm can incrementally 
update the linear weights through on-line training 
process. Therefore, the combination of these 
techniques can produce the advantages of both 
training methods to deal with the difficulties in 
practical applications. Practical work using the 
PA10-6CE manipulator observed by the webcam 
verified the proposed approach.  
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