
A Practical Approach for Position Control of a Robotic Manipulator
Using a Radial Basis Function Network and a Simple Vision System

Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay
Electrical, Electronic & Computer Engineering
 School of Engineering and Physical Sciences

Heriot-Watt University
EH14 4AS Edinburgh, UK

Email : hbd2@hw.ac.uk

Abstract : This paper proposes a new practical approach using a RBFN (Radial Basis Function Network) to
approximate the inverse kinematics function of a robot manipulator. It can be effectively applied for position
control of a real robot-vision system in which robot movement in the workspace is observed by a camera. In
fact, there are several traditional methods based on the known geometry of the manipulator to determine the
relationship between the joint variable space and the world coordinate space. However, these traditional
methods are impractical if the manipulator geometry cannot be determined easily, a robot-vision system for
example. Therefore, a neural network with its inherent learning ability can be an effective alternative solution
for the inverse kinematics problem. In this paper, an approach using a RBFN with predefined centres in the
hidden layer (distributed regularly in the workspace) and a combination of the strict interpolation method and
the LMS (Least Mean Square) algorithm is presented for effective learning of the inverse kinematic function.
By using the strict interpolation method and constrained training data an appropriate approximation of the
inverse kinematic function can be produced. However, this solution has the difficulty of how to collect the
constrained training patterns whose inputs are selected at pre-defined positions in the workspace. Additionally,
the LMS algorithm can incrementally update the linear output-layer weights through an on-line training
process. Thus, the proposed idea of combining these techniques can produce the advantages of both methods to
deal with the difficulties in practical applications, such as the sensitive structure of a real robot-vision system or
a realistic situation where the initial setup and application environments are different. To verify the
performance of the proposed approach, practical experiments have been performed using a Mitsubishi PA10-
6CE manipulator observed by a webcam. All application programmes, such as robot servo control, neural
network, and image processing were written in C/C++ and run in a real-time robotic system. The experimental
results prove that the proposed approach is effective.

Keywords: RBFN, robot-vision, strict interpolation, inverse kinematics, PA10-6CE manipulator.

1 Introduction
In robot kinematics there are two important
problems, forward and inverse kinematics. Forward
kinematics can be regarded as a one-to-one mapping
from the joint variable space to the Cartesian
coordinate space (world space). From a set of joint
angles, forward kinematics determines the
corresponding location (position and orientation) of
the end-effector. This problem can be easily solved
by the 4x4 homogenous transformation matrices
using the Denavit & Hartenbergh representation
[1][2]. Inverse kinematics is used to compute the
corresponding joint angles from location of the end-
effector in space. Obviously, inverse kinematics is a
more difficult problem than forward kinematics
because of its multi-mapping characteristic. There
are many solutions to solve the inverse kinematics

problem, such as the geometric, algebraic, and
numerical iterative methods. In particular, some of
the most popular methods are mainly based on
inversion of the mapping established between the
joint space and the task space by the Jacobian
matrix [2]. This solution uses numerical iteration to
invert the forward kinematic Jacobian matrix and
does not always guarantee to produce all the
possible inverse kinematic solutions whilst
involving significant computation. In cases where
the manipulator geometry cannot be exactly
specified, the traditional methods become very
difficult, for example a robot-vision system.
The artificial neural network, which has significant
flexibility and learning ability, has been used in
many robot control problems. In fact, for the inverse
kinematics problem several neural network
architectures have been used, such as MLPN (Multi-

WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
289

Issue 4, Volume 3, April 2008

Layer Perceptron Network), Kohonen self-
organizing map and RBFN. In [3][4] Guez et al and
Choi described solutions using the MLPN and back
propagation training algorithm. Additionally,
Watanabe in [5] determined optimal numbers of
neurons in a MLPN for approximating the inverse
kinematic function. To deal with complex
manipulator structures some particular neural
network architectures were also presented, for
example a combination between the MLPN and the
look-up table in [6] or a modular neural network in
which the modules were concatenated in a global
scheme in order to perform the inverse kinematics in
a sequential way in [7]. Similarly, in [8][9][10] the
authors proposed using a RBFN to compare with the
performance of the MLPN in the inverse kinematic
problem. Basically, all of these mentioned
approaches used the inverse solution of the forward
kinematic transformation to build the mapping from
world coordinate space to joint angle space. It
means that the manipulator geometry or the forward
kinematics must be known to collect the data for
training neural networks. Alternatively, when using
a simple vision system, the manipulator position in
the workspace is represented by an image
coordinate in the camera’s plane instead of a world
coordinate, thus the manipulator geometry is not
required. Hence, the RBFN can learn an indirect
inverse kinematic function of the manipulator to
control its movement in the image plane without any
knowledge of the manipulator geometry or forward
kinematics. This solution is known as an image-
based control scheme. Moreover, an advanced
approach using a RBFN with predefined centres in
the hidden layer, and a combination of the strict
interpolation method and the LMS (Least Mean
Square) algorithm is presented to learn the inverse
kinematic function. By using the strict interpolation
method and constrained training data an appropriate
approximation of the inverse kinematic function can
be produced. A constrained training set whose
inputs are regularly spaced positions represents a
different idea from other related papers [8][9][10].
However, this solution has the difficulty of how to
collect this constrained data without knowing the
inverse kinematic expressions of the real robotic
system. Additionally, the RBFN performance can be
improved through on-line training using the LMS to
incrementally update the linear output-layer
weights. Therefore, combining the strict
interpolation and the LMS methods produces the
advantages of both training methods to deal with the
difficulty in collecting training patterns in practical
applications. This approach consists of two steps,
firstly producing an inaccurate inverse kinematic

approximation by the strict interpolation method and
then correcting it through on-line training by the
LMS. The inaccuracy of the RBFN here reflects the
reasonable assumption that the initial network
training occurs in an environment that is not exactly
the same as the environment where the system is
actually deployed. Moreover, it proposes an
alternative situation in training neural networks.
Instead of learning a function directly from a non-
realistic situation, the training process can be
divided into two simpler steps. Firstly a less
accurate solution is easily obtained producing an
approximate function which is then corrected in a
convenient way (on-line update in this case) using
the adaptive ability of the LMS algorithm. This
approach can be used to deal with some practical
difficulties in the robot-vision system, such as
collecting the constrained training data and the
sensitive structure of visual measurement. This is
demonstrated by the practical work in Section 3.
The paper is organized as follows. The first section
has introduced the basis ideas and background of the
inverse kinematics problem using neural networks.
In the second section, the approach using the RBFN
to approximate the manipulator inverse kinematics
is presented. It describes the RBFN architecture and
presents the training approach to learn the inverse
kinematic function of a robot-vision system. The
practical experiment and results are described in the
next section that verifies the proposed approach. In
the fourth section, aspects of training process are
discussed and future research is also identified.
Finally, the main conclusions are outlined in the last
section.

2 Inverse Kinematics Approximation
Using A Radial Basis Function
Network

2.1 The structure of Radial Basis Function
network
The basic architecture of a RBFN is the three layer
network consisting of an input layer, a hidden layer,
and a linear output layer [11]. In the inverse
kinematics problem of the robot-vision system, the
inputs and outputs of the RBFN are position (image
coordinates) and joint angles of the manipulator,
respectively, shown in Fig. 1.
The unique feature of RBFNs compared to MLPNs
and other networks is the process performed at the
hidden layer. In this hidden layer, the radial basis
function works as a local selector in which the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
290

Issue 4, Volume 3, April 2008

corresponding output depends on the distance
between its centre and input. It can be presented as:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=Φ

2

2

2
expexp)(

σσ
ii

i
rcx

x (1)

∑
=

−=
K

k
kiki cxr

1

2)((2)

where
Фi – Radial basis function (Gaussian function)
ci – centre of the i-th hidden unit (i = 1, 2,…, N)
σ - width of the Gaussian function
ri - distance between input and centre of the i-th
hidden unit
x – input of the RBFN (k = 1, 2)

Thus, the outputs of the RBFN are expressed as :

)()(
1

xWxy i

M

i
jij Φ= ∑

=
 (3)

where,
Wji – synaptic weight between the i-th hidden
unit and the j-th output
yj – the j-th output (j = 1, 2)

Fig. 1- Structure of RBFN in inverse kinematic

approximation of the robot-vision system

Because of the RBFN structure, its training process
can be separated into two continuous phases,
building a hidden layer structure where centres and
widths of the hidden units are determined, and then
training the linear weights based on input-output
patterns. In order to determine the appropriate
centres from the training data set, the first phase
could be performed by the self-organizing method,

clustering techniques or randomly selected. This is
also known as unsupervised learning. The second
phase is supervised training to determine the linear
weights by either the Least Mean Square algorithm
or Gradient Descent method, exactly the same as the
back propagation network (MLPN).

-5
0 5 10

15 20 25 30
35 40

0

10

20

30

40

-1

-0.5

0

0.5

1

XY

G
au

ss
ia

n
Fu

nc
tio

n

Fig. 2- Centres as regularly spaced positions

In our approach, the structure of the hidden layer is
pre-defined by an intuitive method (involving trial
and error) where the centres of hidden units are
distributed regularly in the workspace and the width
of the Gaussian functions are fixed as a proportion
of the centre distance. Fig. 2 above shows an
example of the hidden layer’s centres as regularly
spaced positions in the workspace of the
manipulator. This is the principal difference from
other similar RBFN solutions in [8][9][10] where
the centres of hidden units were determined from a
particular training set by a clustering technique, and
thus that centre set was not fixed, but varied
according to the particular training set in the same
application. Basically, in our approach the persistent
hidden-layer structure is pre-defined and is therefore
able to generalize through the whole workspace.
These hidden-layer parameters were varied
extensively before a satisfactory set was chosen for
the specific problem here.

2.2 Supervised learning methods for the
linear output-layer weights
As expressed in equations (1) and (3), an output of
the RBFN has been performed by a linear
combination of the localized bumps formed at the
centres of Gaussian hidden units. Hence, this
training phase is to determine an appropriate set of
the linear weights to be able to approximate the
inverse kinematics of a manipulator. It follows and

∑

∑

X

Y

θ1

Φ1

ΦN

Hidden basis
layer

Linear output
layer

Input layer

W11

W2N

θ2

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
291

Issue 4, Volume 3, April 2008

does not depend on the first phase selecting
structure of hidden layer above.
In this paper, we propose two different training
methods to determine the linear weights for the
inverse kinematic approximation. The first one is a
simple method where the centres of hidden units
coincide with the inputs of training patterns and the
linear weights are determined from the target
outputs and the interpolation matrix. This is called
the strict interpolation method [11] in which the
RBFN is an exact mapping of all observations in the
training data set.
Given a training data set, consisting of N inputs -
different positions in the workspace, and N targets -
corresponding manipulator joint angles: {(X1, X2, ..,
XN); (T1, T2, …, TN)}, these known data points Xi are
taken to be the centres Ci of the hidden units. Then,
after all training patterns have been presented to the
RBFN, the NxN matrix called the interpolation
matrix can be obtained as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΦΦΦ

ΦΦΦ
ΦΦΦ

=Φ

)()()(

)2()2()2(
)1()1()1(

21

21

21

NNN N

N

N

L

MOMM

L

L

 (4)

The linear weights are calculated from the targets of
training data and the interpolation matrix from the
following equation:

1. −Φ= TW (5)

This solution is an exact mapping f : Xi Ti (i =
1,2,…N), for all patterns presented to the RBFN and
its generalization depends on the appropriateness of
the selection of the hidden layer structure (centres
and width of Gaussian function). It is an off-line
training process and the training patterns are
collected before the training phase is performed. In
fact, the strict interpolation method is only
appropriate when the function to be estimated does
not contain high frequency components so that a
small number of hidden units for a well-generalized
RBFN can be chosen. Fortunately, the inverse
kinematic function is a reasonably smooth surface,
so the strict interpolation method is a suitable
solution if the training patterns are regularly
distributed in the workspace. In this paper, the
training data used by the strict interpolation method
was constrained patterns whose inputs are close to
the centres, which were predefined as regularly
spaced positions in the workspace. The closer the
position of the training data is to the centres, the
better the inverse kinematics approximation

achieved. This kind of data is called the regularly
spaced position training pattern. As a result, this
solution can produce an inverse kinematic
approximation using a simple structure RBFN with
a small number of hidden units [14]. However, this
approach has the difficulty of how to collect the
constrained patterns without the inverse kinematics
expressions. In practice, it can only be estimated by
experiment with an undetermined accuracy and also
needs many attempts depending on the system’s
complexity. The quality or accuracy of collected
data depends on the user’s observation and a poor
pattern means that its input deviates from pre-
defined position (centres).
The second method called the LMS (Least Mean
Square) algorithm is more popular than the former
and can be applied for the on-line process. As
described in [11], the linear weights can be modified
by the simple Delta rule :

ijji eW Φ=Δ ..η (6)

jjj yTe −=

where

ej - error between target and actual output j
Φi - output of hidden unit i
η – learning rate

This LMS algorithm is quite a simple approach
whose performance depends on the adopted learning
rate and the size of the training data. Moreover,
collecting an arbitrary position pattern is much
easier than a constrained pattern as mentioned
above. Hence, the related papers [8][9][10] used this
arbitrary data (no consideration given to the
positions of the patterns) and the LMS algorithm to
train the output-layer linear weights. It was the off-
line batch training process with data collected based
on forward kinematics. However, this approach does
guarantee to produce an appropriate approximation
function, and also needs many training patterns and
training time to cover the entire workspace. In this
paper, the LMS algorithm (or Delta rule in
incremental case) is used in the on-line process to
incrementally update the linear weight by arbitrary
patterns. Thus, it should be used as an additional
technique to improve the quality of a trained
function rather than the main training approach.
Based on the two mentioned learning methods and
the predefined structure of hidden layer, a new
practical training approach is proposed to cope with
the difficulties in approximating the inverse
kinematics function in a real robot-vision system,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
292

Issue 4, Volume 3, April 2008

such as collecting the constrained training data and
the sensitive visual measurement structure.

2.3 Description of strict interpolation and
LMS methods to deal with difficulty in
collecting constrained training data
A practical approach for position control of the
robot-vision system has been developed to cope
with the difficulty in collecting the constrained
training data. The notable principle of this approach
is that instead of learning a function directly from a
complex situation, the training process can be
divided into two simpler steps. Firstly using a less
accurate but feasible solution to produce an
approximate function, and then correcting it through
a convenient way (on-line update in this case). The
full training procedure can be described as below:

Step 1: Determine hidden layer parameters where
i/ centres of the hidden layer are predefined as
regularly spaced positions in the workspace by a
specific distance, and
ii/ the width of Gaussian functions is selected as a
proportion of the centre distance heuristically.

Step 2: Collect a constrained training set. In the
practical work, this can be achieved using the
manipulator joint angle controller. This constrained
data, consisting of the position and the
corresponding joint angles, are picked in the
neighbourhood of each centre, but the training data
then will be formed as the centres and joint angles
of that collected data. Obviously, this is the
PSEUDO-TARGET (inaccurate) training data,
whose target outputs do not correspond to the inputs
(the centres - regularly-spaced positions). This can
be seen in Fig. 3, where the circles and squares are
centres and collected points respectively, and thus
the inaccurate training set is formed as (Angle, C).

Step 3 : Use the strict interpolation method and the
pseudo-target training data to determine the linear
weights. Consequently, the currently trained RBFN
is an incorrect approximation of the inverse
kinematics, but it also produces a boundary function
of the accurate approximation trained by accurate
constrained training data - (AngleC, C) (if it could
be collected). That is because both have the same
structure and the only deviations are in the
corresponding target angles.

 Step 4 : Correct the currently trained RBFN by
using the LMS (Delta rule) and arbitrary training
data. This is on-line training where the linear
weights are incrementally updated when a new
training pattern is presented.

Fig. 3 – Positions of centres and collected data

Furthermore, Step 4 of the proposed approach can
be expanded to deal with the sensitive structure of
the robot-vision system, which can occur due to
variation in the set-up of the visual measurement
system or in case the set-up and actual application
environments are different.

3 Practical Work and Results

3.1 Set-up of the practical work
Practical experiments have been developed and
performed using the existing facilities in the
Intelligent Robotics Laboratory [12]. It is the
remotely robotic control system as shown in Fig.4.
The following elements of the system can be
identified:

• The Mitsubishi PA10-6CE manipulator with
servo controller. This is the six link
multipurpose arm connected to an industrial
PC (IPC) via an ARC-Net interface.

• The IPC running under the QNX Neutrino
real-time operating system is used to
execute control programmes and
communicate with an application PC (APC)
via Internet interface.

• A standard webcam mounted on a vertical
shaft that permits rotation captures the
manipulator images in two dimensional
space.

Actual Position - A

Centre Position – C

Actual collected data : (Angle, A)

Accurate constrained data : (AngleC, C)

Pseudo-Target training data : (Angle, C) –
Inaccurate (or less accurate)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
293

Issue 4, Volume 3, April 2008

• All of the main application programmes
were written in C/C++ and run in the APC.

Fig.4 – General structure of the robotic control

system

Fig.5 presents a simple robot-vision system,
consisting of the PA10-6CE manipulator and the
webcam.

Fig.5 – Simple visual measurement system

The webcam and an image processing programme
developed from OpenCV library are used in the
simple visual measurement system where the
relative position of the manipulator can be directly
determined by two dimensional coordinates (x,y) in
the image plane. Obviously, this can be performed
without camera calibration or the manipulator
geometry. In other words, the visual measurement
system can directly determine the relative positions
of any manipulator with unknown geometry in the
image plane. Therefore, the inputs of the RBFN are

image coordinates (x,y) instead of world coordinates
(X,Y,Z) and the inverse kinematic function then is
the mapping from image coordinates (x,y) to joint
angles. However, this simple visual measurement
system is easily altered due to variations in the
configured parameters of the robot-vision system.
This sensitivity is common in practice.

Fig.6 – The inverse kinematics based RBFN for the

robot-vision system

Fig.6 presents the general structure of the real
robotic system used in this practical work. The
PA10-6CE manipulator was controlled to move in
two-dimensional space by allowing movement only
of the second and third joints (J2 and J3). Thus, the
problem was to determine the inverse kinematics of
a two link manipulator and this RBFN consisted of
two inputs (x,y) and two outputs (J2,J3)
correspondingly. In the working area of the
manipulator, the centres of the hidden layer were
regularly chosen as a grid. The video frame at the
resolution of 640x480 (pixels) was created and
forwarded to the image processing programme to
determine image coordinates (x,y) of the
manipulator.
This paper presents the practical work through two
experiments. The first one is how to train the RBFN
to overcome the difficulty of collecting constrained
data. The second is the technique to deal with the
sensitive structure of the visual measurement
system.

3.2 Practical experiment 1
This experiment uses the outlined approach below
to overcome the difficulty in collecting constrained
training data for the inverse kinematics problem. It
can be described in the following steps:

• Step 1 : A set of regularly spaced position
data is manually collected in the workspace
of the PA10-6CE manipulator using the

L.E.D

JOINT ANGLE
CONTROL

MEASURING ROBOT
POSITION

ROBOT CONTROL
SERVER

RBF NETWORK

ROBOT CONTROL
CLIENT

TCP / IP

INDUSTRIAL PC

APPLICATION PC

PA10-6CE
MANIPULATOR

CAMERA

IMAGE
PROCESSING

RBF ROBOT
CONTROLLER

x

y

Θ1

Θ2

L.E.D

(X,Y)

J1

J2

(θ1, θ2) = I(x,y)

WEBCAM

ZW

XW

WORLD
COORDINATE
SYSTEM

LED

CAMERA

IMAGE
COORDINATE
SYSTEM

XC

YC

ZC

YW

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
294

Issue 4, Volume 3, April 2008

joint servo controller and the visual
measurement system. The quality or
accuracy of collected data depends on the
user’s observation and a poor pattern means
that its input deviates from pre-defined
position (centres). However, this step can be
simply carried out because it is not
necessary to collect the data coincident with
predefined positions (centres). To form a set
of pseudo-target training patterns the inputs
are assigned to centres but the target outputs
are joint angles corresponding to position of
collected points different from the centres.

• Step 2 : Using the strict interpolation
method and the pseudo-target training data
to establish an incorrect approximation of
the inverse kinematic function. It is the off-
line training phase.

• Step 3 : this step is used to correct the
existing RBFN through an on-line training
phase. It can be briefly described as:

- Moving the PA10-6CE
manipulator to an arbitrary
position and pick that training
pattern.

- Update the linear weights by
the LMS (Delta rule) according
to the recent pattern.

- Repeat until stop command
sent.

To verify the performance of the RBFN, a test data
set was presented after each training phase. It is a
position control task moving the PA10-6CE
manipulator along the trajectory as shown in Fig.7,
Fig.8, and Fig.9.

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

340

350

X COORDINATE (PIXEL)

Y
C

O
O

R
D

IN
A

TE
 (P

IX
EL

)

DESIRED TRAJECTORY
ACTUAL TRAJECTORY

Fig. 7 – Performance of the RBFN trained by

pseudo-target (inaccurate) data

An incorrect approximation was built by the strict
interpolation method with the pseudo-target
training patterns as described in Step 2, and the
performance of this trained RBFN is presented in
Fig.7. The errors introduced are obvious from
inspection.
To correct the existing function, an on-line training
process was applied using the LMS as described in
Step 3. The linear weights are adjusted for each
recent training pattern picked from arbitrarily
moving the PA10-6CE. After training by a number
of training patterns, the RBFN was corrected
incrementally and the performance of the robotic
system was clearly improved. Fig.8 shows the
performance of the RBFN after 10 on-line training
patterns.

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

340

350

X COORDINATE (PIXEL)

Y
C

O
O

R
D

IN
A

TE
 (P

IX
E

L)

DESIRED TRAJECTORY
ACTUAL TRAJECTORY

Fig.8 – Performance of the RBFN after on-line

training with 10 arbitrary training patterns

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

340

350

X COORDINATE (PIXEL)

Y
C

O
O

R
D

IN
A

TE
 (P

IX
EL

)

DESIRED TRAJECTORY
ACTUAL TRAJECTORY

Fig.9 – Performance of the RBFN after on-line
retraining with 100 arbitrary training patterns

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
295

Issue 4, Volume 3, April 2008

In Fig.9 the performance of the RBFN after on-line
training with 100 patterns is presented. As can be
seen, the actual trajectory is close to the desired
trajectory with an error of approximately 1 or 2
pixels (one pixel is equivalent to 2 mm). The
performance is highly satisfactory because the
quality of this robotic system is dependent not only
on the RBFN learning ability but also the accuracy
of the training data, quality of the visual
measurement system, and even the precision of the
servo controller. Moreover, the experimental results
show that as the distance between the centres
becomes smaller the better the generalization. In
other words, the RBFN needs more hidden units to
improve the accuracy of the inverse kinematic
function. Obviously, there is a practical limit in the
number of centres of the hidden layer due to lack of
memory and complicated architecture of the
network.

3.3 Practical experiment 2
This experiment illustrates the effectiveness of the
proposed approach in dealing with the sensitive
structure of a real robot-vision system. It can be
performed similarly to the previous experiments
with an additional step as below :

• Step 1 : RBFN trained the same as in the
previous experiment. This produces an
appropriate inverse kinematics
approximation of the robot-vision system

• Step 2 : If there is any variation in the
configuration parameters of the webcam
and/or manipulator, the visual structure will
be different from the previous case.
Consequently, the knowledge of the inverse
kinematic function stored in the RBFN no
longer matches with the new situation. This
reflects the fact that the set-up and actual
application environments are sometimes
different.

• Step 3 : is used to re-correct the existing
RBFN by an on-line training phase as was
performed in experiment 1.

To alter the set-up of the robotic system, the
webcam was rotated through an arbitrary angle so
that it changed the image transformation of the
visual measurement system correspondingly.
Consequently, the inverse kinematic approximation
stored in the existing RBFN no longer matches with
the new structure of the robot-vision system. Fig.10
presents the performance of the RBFN in the new
condition of the visual measurement system and the
errors introduced are obvious from inspection.

To obtain a new correct function, an on-line training
process was applied using the LMS instead of being
retrained by strict interpolation method. In this step,
the linear weights are adjusted with each recent
training pattern picked from arbitrarily moving the
PA10-6CE. After training by a number of training
patterns, the RBFN can adapt to the new condition
of the visual measurement system and the
performance of the robotic system is clearly
improved. Fig.11 shows the performance of the
RBFN after 60 on-line training patterns.

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

X COORDINATE (PIXEL)

Y
C

O
O

R
D

IN
A

TE
 (P

IX
EL

)

DESIRED TRAJECTORY
ACTUAL TRAJECTORY

Fig.10 - Performance of the existing RBFN with
new condition of the visual measurement system

240 250 260 270 280 290 300 310 320 330 340 350
240

250

260

270

280

290

300

310

320

330

X COORDINATE (PIXEL)

Y
C

O
O

R
D

IN
A

TE
 (P

IX
EL

)

DESIRED TRAJECTORY
ACTUAL TRAJECTORY

Fig.11 - Performance of the RBFN after on-line
retraining with 60 training patterns

4 Discussion
In general, using the pre-defined centres of the
hidden layer as regularly-spaced positions means
that the hidden layer structure remains the same, and
therefore is able to generalize through the whole
workspace. As the distance between the centres

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
296

Issue 4, Volume 3, April 2008

becomes smaller the better the generalization
becomes. Because the inverse kinematic function of
the robot-vision system does not contain high
frequency components, the strict interpolation
method is a suitable solution if the training patterns
are collected as the same positions of the centres in
the workspace. It can produce a well-generalized
RBFN with a small number of hidden units for this
inverse kinematics problem. This is a different idea
from all other related solutions. However, it also
addresses the difficulty of how to collect the
constrained data in practice and the proposed
training approach is essential to deal with that.
In on-line training, since the RBFN acts as a locally
tuned function, only hidden units close enough to
the training pattern positions contribute noticeably
to the network output. As a result, only the linear
weights connected to these hidden units are adjusted
via on-line training. It means that the positions of
the training data have an important impact in the on-
line training process. The closer the training pattern
to the test points, the stronger the effect in
modifying the linear weights of the RBFN in that
area. Different patterns presented to the RBFN can
produce different improvement effects in the
approximate function. Thus, the distribution of
training patterns should cover the entire workspace
to modify the whole of the inverse kinematic
function.
In addition, the choice of learning rate is an
important variable in the LMS algorithm, especially
in incremental mode. The variation in learning rate
can lead to completely different training results.
Therefore, in order to maintain the smoothness of
the inverse kinematic approximation over the whole
workspace, a small learning rate (η = 0.1) was
adopted even though it made the training process
slower. This is the reason that the training process
required a hundred epochs for the small testing area.
In fact, the real number of training patterns for these
experiments was collected at only a maximum of 10
points, but they were used repeatedly in the
incremental mode with a small learning rate to
ensure stability of the learning process. In other
experiments, when using the same training patterns
with a larger learning rate (0.3 to 0.5 for example),
the RBFN could perform well in the testing area
after training over a small number of training epochs
(from 10 to 20). However, its responses in other
neighbouring areas appeared to be worse due to the
larger learning rate.
Furthermore, we found that the distribution of
training patterns and the learning rate both influence
the incremental modification of the linear weights.
To keep the training process not only stable but also

fast the learning rate should be not a constant but be
related to the distribution of training patterns. For
example, if a new pattern presented to the network
is far away from previous used patterns, the learning
rate can be large. In contrast it should be small to
keep the training function surface smooth when the
current pattern presented is close, or the same, as
previous patterns. This aspect requires further
investigation.

5 Conclusion
A new approach using a RBFN with predefined
centres of the hidden layer, which are distributed
regularly in the workspace, and a combination of the
strict interpolation method and the LMS (Least
Mean Square) algorithm has been proposed to learn
the inverse kinematic function. The strict
interpolation method with regularly-spaced position
training patterns in the workspace can produce an
appropriate approximation, but it has the difficulty
of how to collect this kind of constrained data.
Additionally, the LMS algorithm can incrementally
update the linear weights through on-line training
process. Therefore, the combination of these
techniques can produce the advantages of both
training methods to deal with the difficulties in
practical applications. Practical work using the
PA10-6CE manipulator observed by the webcam
verified the proposed approach.

References:
[1] – K.S.Fu, R.C.Gonzalez, C.S.G.Lee. Robotics :
Control, Sensing, Vision, and Intelligence.
McGraw-Hill, 1987.
[2] – W. Khalil and E. Dombre. Modeling,
Identification, and Control of Robots. Hermes
Penton, 2002.
[3] – Benjamin B. Choi and Charles Lawrence.
Inverse Kinematics Problem in Robotics Using
Neural Networks. NASA Technical Memorandum,
105869. Oct.1992
[4] – Allon Guez, Ziauddin Ahmad. Solution to The
Inverse Kinematics Problem in Robotics by Neural
Networks. In Proceedings of the IEEE International
Conference on Neural Networks, Vol.1, pp.617-624.
July, 24-27 1988. San Diego, California, USA.
[5]- Eiji Watanabe and Hikaru Shimizu. A Study on
Generalization Ability of Neural Network for
Manipulator Inverse Kinematics. In Proceedings of
the Seventeenth International Conference on
Industrial Electronics, Control and Instrumentation,
Vol.2, pp. 957-962. 28 Oct-1 Nov 1991. Kobe,
Japan.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
297

Issue 4, Volume 3, April 2008

[6] – A.S. Morris and A. Mansor. Finding the
Inverse Kinematics of Manipulator Arm Using
Artificial Neural Network with Lookup Table.
Robotica (Cambridge University Press), Vol.15, pp.
617-625. 1997.
[7] – Pablo J. Alsina, Narpat S. Gehlot. Robot
Inverse Kinematics: A Modular Neural Network
Approach. In Proceedings of 38th Midwest
Symposium on Circuits and Systems, Vol.2, pp. 631-
634. August, 13-16 1995. Rio de Janeiro, Brazil.
[8] – Pei-Yan Zhang, Tian Sheng Lu, Li Bo Song.
RBF Networks-Based Inverse Kinematics of 6R
Manipulator. The International Journal of Advanced
Manufacturing Technology, Volume 26, 2004, pp.
144-147. Springer- Verlag London Ltd.
[9] – S.S. Yang, M. Moghavvemi, and John D.
Tolman. Modelling of Robot Inverse Kinematics
Using Two ANN Paradigms. In Proceedings of
TENCON2000-Intelligent System and Technologies
for the New Millennium, Volume 3, pp. 173-177.
September, 24-27 2000. Kuala Lumpur, Malaysia.
[10] – Joseph A. Driscoll. Comparison of Neural
Network Architectures for the Modelling of Robot

Inverse Kinematics. In Proceedings of The IEEE
SOUTHEASTCON 2000, Vol.3, pp. 44-51. April, 7-
9 2000. Tennessee USA.
[11] – Simon Haykin. Neural networks - A
Comprehensive Foundation. Prentice Hall, Inc.
1999.
[12]- Cyprian M. Wronka, Matthew W. Dunnigan.
Internet Remote Control Interface for A
Multipurpose Robotic Arm. The International
Journal Of Advanced Robotic Systems. Volume 3,
pp. 179-182. June 2006.
[13] – OpenCV: Image processing and computer
vision reference Manual.
[14] - Bach H. Dinh, Matthew W. Dunnigan,
Donald S. Reay. Position control of a Mitsubishi
PA10-6CE manipulator using the RBFN for inverse
kinematics approximation. In Proceedings of the
International Conference on Robotics, Vision,
Information, and Signal Processing ROVISP 2007,
pp.170-174. Penang, Malaysia, November 28-30,
2007.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Bach H. Dinh, Matthew W. Dunnigan, Donald S. Reay

ISSN: 1991-8763
298

Issue 4, Volume 3, April 2008

