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Abstract: - In the present paper, the analytic mathematical model of a test case central heating system is 
developed in the form of a nonlinear neutral time delay model with time varying delay which in turn is 
simplified to a neutral time delay model with  constant time delay. In the process it is shown that the influence 
of the delay is significant, thus its incorporation to the model is of high importance while the constant delay 
approximation imposes only small error. A PID controller is derived to control the temperature of a room, 
which is modeled as a first order differential equation. The controller parameters are evaluated using a 
metaheuristic algorithm. 
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1   Introduction 
The problem of modeling and control of central 
heating systems has attracted significant attention 
during the last years (see f.e. [1]-[15]). In particular, 
significant attention has been given to the modeling, 
construction and optimization of core components of 
central heating systems, such as pipe networks and 
piping elements (see f.e. [4]-[8] and the references 
therein), radiators and other heating systems (see f.e. 
[9]-[10]), boilers (see [11]-[12]) etc. Furthermore, 
different control techniques have been applied to 
such systems in order to regulate the ambient air 
temperature in heated areas (see f.e. [13]-[17]). 

The present paper is an extended version of [16] 
where the dynamic model of the system is briefly 
presented while the room temperature is controlled 
via a PI controller. In the present paper the 
mathematical model of the test case central heating 
system will analytically be presented in the form of a 
nonlinear neutral time delay model. In particular, 
separate models will be presented for the core 
components of the system, i.e. pipe network, radiator 
and boiler. The separate models will be combined to 
a nonlinear neutral time delay system (with time 
varying delay) which will be simplified to a neutral 

time delay model with constant time delay. It will be 
shown that the influence of the delay is significant, 
thus its incorporation to the model is of high 
importance while the constant delay approximation 
imposes only a small error to the system. Finally, a 
PID controller will be derived to control the 
temperature of a room, which will be modeled as a 
first order differential equation. The controller 
parameters will be evaluated using a metaheuristic 
approach whose efficiency will be investigated. The 
resulting closed loop response will be compared to 
the response produced by the same controller for the 
case where the parameters are evaluated using the 
first Ziegler Nichols method and the open loop 
response of the system applying appropriate constant 
actuatable inputs. 

 

2   Dynamic Model of a Test Case 
Central Heating System 
In what follows, the general dynamic model of a test 
case central heating system will be produced. The 
system consists of the piping network, a radiator and 
a boiler (see Figure 1). The radiator heats up a room, 
thus the performance output of the system is the 
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power emitted by the radiator which is directly 
related to the temperature of the ambient air. 
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Fig. 1: Layout of the Test Case Central Heating System 

2.1 Radiator Modeling  
The dynamic model of a radiator is presented in the 
form of the partial differential equation, [10] 
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where T  is the water temperature inside the radiator, 

a
T  is the ambient air temperature, q  is the water 

volumetric flow rate in the radiator, 
l
C  is the heat 

capacity of water and radiator material (per length), 

p
C   and ρ  are the thermal capacity and density of 

the water respectively, 0,l
Φ  denotes the nominal 

power of the radiator (per length), ,0ma
TΔ  is the 

arithmetic mean temperature difference at standard 
conditions and 

1
n  is an exponent in the range 1.2  to 

1.4 . 
Relation (2.1) can be approximated by a 

nonlinear system of ordinary differential equations as 
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or equivalently  
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where C  is the heat capacity of the water and 
radiator material, 0Φ  is the nominal heat of the 

radiator, N  is the number of sections the radiator is 
partitioned and 

j
T  is the radiator temperature in the 

jth section. The temperature difference jTΔ  is given 
by 

( ) ( )1 11 2 1j j j jT T T Tϕ ϕ ϕ− +Δ = − + − −  

where ϕ  denotes a fractional number between 0  
and 0.5 . In a more analytic manner, the first and jth 
section are given as 
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while the last section is given as 
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where q pH C ρ=  and 
i
T  is the influent water 

temperature. Note that the last section differential 
equation has been produced setting 0ϕ = . This 
assumption is used in order for the effluent radiator 
temperature to be equal to the last section 
temperature. 

Applying elementary computations, the nonlinear 
system of equations can be rewritten as a set of 
ODEs in the form of a nonlinear state space model as 
follows 

 ( ) ( ) ( ) ( )( ), ,
r r r r r
x t f x t u t tξ=�  (2.3a) 

while the performance of the radiator is considered 
to be the emitted thermal power 
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2.2 Boiler Modeling  
The dynamic model of the boiler can be described as 
a first order differential equation of the form (2.4), 
[11]-[12] 

( )w
b com w burner

dT
C n T Q
dt

= −  

( ) ( )
s rp w w j w e

C q T T a T Tρ − − − (2.4) 

where 
w
T  is the lumped water temperature, 

sw
T  and 

rw
T  are the effluent and influent boiler water 

temperature, 
e
T  is the temperature of the boiler 

room, 
burner
Q  is the energy supply to the boiler, 

b
C is 

the thermal capacity of the boiler, j
a  is the rate of 

heat loss from the boiler jacket to the environment 
(i.e. boiler room) and 

com
n  denotes the combustion 

efficiency of the boiler. The combustion efficiency is 
given by a polynomial of the form 
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1
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where the coefficients can be obtained from 
experimental data. In the present paper it will be 
assumed that 0

i
a =  for 3i ≥ . The lumped water 

temperature 
w
T  can be connected to the influent and 

effluent temperatures through 

 ( )1
r sw w w

T aT a T= + −  (2.6) 

a  is the coefficient connecting the lumped water 
temperature of the boiler to the inlet and outlet 
temperatures. 

Using relations (2.4) to (2.6), the nonlinear model 
of the boiler can be expressed in state space form as 
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2.3 Pipe Network Modeling  
Given a straight circular pipe of length l , diameter d  
and roughness e , the dynamic model of one-
dimensional incompressible flow q  of a fluid of 
density ρ , driven by the pressure 

in out
p p pΔ = −  

across the pipe, can be expressed as (see [10]) 
( ) ( ) ( ) ( ) ( ),1 ,2j in out j

dq t
f q p t p t f q

dt
⎡ ⎤= − −⎢ ⎥⎣ ⎦ (2.8) 

It holds that  
 ( ) 2

,1
4

j
f q d lπ ρ=  (2.9) 

while 

 ( ) ( ) ( )2 3
,2

2 ,
j
f q q d q t dλ π=  (2.10) 
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where ( ),q dλ  is the friction factor. The friction 

factor ( ),q dλ  depends upon the conditions of the 

flow inside the pipe, i.e. weather the flow is laminar, 
transient or turbulent. The flow conditions can be 
examined using the Reynolds number, defined as 

( ) 4
Re ,

q
q d

d
ρ

π μ
=  

where μ  is the viscosity of the fluid. For the case of 

laminar flow, i.e. if ( )Re , 2300q d ≤ , it holds that 

 ( ) ( ), 64 Re ,q d q dλ =  (2.11) 

while for the turbulent region, i.e. if 
( )Re , 3000q d > , it holds that the friction factor is 

the solution of relation (2.12) with respect to λ  

( )1 ,q dλ =  

( ) ( )10

2.51
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With respect to the transient region, i.e. for 
( )2300 Re , 3000q d< ≤ , the friction factor can be 

approximated linearly, [5], as long as the linear 
function satisfies (2.11) and (2.12) for 

( )Re , 2300q d =  and ( )Re , 3000q d =  respectively. 

With respect to the turbulent region, it can be divided 
into smaller regions. For example when the Reynolds 
number is less than 510  and the pipe is smooth, i.e. 
the pipe roughness is small, the friction factor is 
described by the Blasius equation 

 ( ) ( )0.25, 0.316 Re ,q d q dλ =  (2.13) 

Approximation (2.13) is valid for typical flow and 
geometry conditions for single family houses. Hence, 
assuming that the pipes used are smooth relation 
(2.12) can be substituted by (2.13). Consequently, 
the linear approximation for 

( )2300 Re , 3000q d< ≤  takes on the form 

( ),q dλ =
 

( )54 10 0.5333Re , 530.4027q d− ⎡ ⎤= ⋅ −⎢ ⎥⎣ ⎦ (2.14) 

Fitting pressure losses are sometimes presented in 
terms of the equivalent length of straight pipe that 
would have the same pressure loss as the fitting. If a 
fitting is to be replaced by an equivalent length eq

L  

of pipe, then it must hold that ( ),eq f
L K d q dλ= , 

where f
K  denotes the pressure loss coefficient for 

fittings. This relationship shows the fundamental 
shortcoming with the equivalent-length approach. It 
must be noted that even though f

K  and d  are 
constants for a given pipe under various flow 
conditions, the friction function is not. The same 
assumptions can be used for the case where a 
radiator is present in the pipe network. Additionally, 
an extra turbulent pressure drop will exist due to the 
fitting present to entrance of the radiator connecting 
it to the network. This pressure drop will be 
considered to be of the form  
 ( ) 2

t t
P q K qδ =  (2.15) 

where 
t
K  is a turbulent pressure drop factor. 

According to the above presented formulae the 
nonlinear model of the piping network can be written 
in state space form as 
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and where  
r
d  and 

r
L  are the hydraulic diameter and 

length of the radiator respectively, d  and L  are the 
diameter and length of the pipes connecting the 
boiler to the radiator respectively. The term PΔ  
stands for the pressure added to the pipe network by 
the pump (actuatable input).  
  
2.4 Nonlinear Model of the Overall Plant 
In order to construct the nonlinear model of the 
overall plant, it suffices to establish the necessary 
algebraic equations standing for the “connections” 
between the different elements of the plant. Define 
the composite state, input and disturbance vectors, as 
defined in Sections 2.1 to 2.3 
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From Figure 1, it can readily be observed that 
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Applying elementary computations, the nonlinear 
model of the overall plant, takes on the form 
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Note that the pump pressure and the energy supply to 
the boiler are considered to be actuatable inputs 
while the room and boiler room ambient air 
temperatures act as disturbances upon the system. 
The time delay ( )tτ  stands for the transport delay 

from the output of the boiler to the input of the 
radiator and the output of the radiator to the input of 
the boiler. It must be noted that these delays are in 
general different. In the present paper, it is assumed 
that the length and diameter of the pipes from the 
boiler to the radiator and vice versa are equal hence 
the respective time delays, let ( )1

tτ  and ( )2
tτ , are 

also equal between themselves, i.e. 
( ) ( ) ( )1 2
t t tτ τ τ= = . 
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3   Influence of the Delay to the 
Nonlinear Model of the Overall Plant 
In what follows, the influence of the delay to the 
response of the overall plant will be examined, 
through computational experiments. Assume that the 
model (2.18) operates on certain operating 
conditions, let 

1
u , 

2
u , 

1
ξ  and 

2
ξ  for the actuatable 

inputs and disturbances yielding to the respective 
nominal values for the state variables, let j

x  for 
1, , 2j N= +… . Without loss of generality, assume 

that at 0t =  the actuatable inputs and disturbances 
become ( ) ( )

11 1u s
u t p u u t= , ( ) ( )

22 2u s
u t p u u t= , 

( )1
tξ = ( )

1 1 s
p u tξ ξ  and ( ) ( )

22 2 s
t p u tξξ ξ= , where 

( ) ( )
1 1 1min max

,
u u u
p p p⎡ ⎤∈ ⎢ ⎥⎣ ⎦

, ( )
2 2 min

,
u u
p p⎡∈ ⎢⎣ ( )

2 max
u
p ⎤

⎥⎦
, 

( ) ( )
1 1 1min max

,p p pξ ξ ξ
⎡ ⎤∈ ⎢ ⎥⎣ ⎦

 and ( ) ( )
2 2 2min max

,p p pξ ξ ξ
⎡ ⎤∈ ⎢ ⎥⎣ ⎦

 

and where ( )s
u t  denotes the unit step function, 

driving the system to new operating conditions, let 

j
x ′  for 1, , 2j N= +… , through the respective 

responses, let ( )j
x t  for 1, , 2j N= +… . The same 

experiment can be carried out for the system (2.18) 
assuming that the time delay ( )tτ  is equal to zero, 

leading to different responses, let ( )j
x t�  for 

1, , 2j N= +… . In order to examine the influence 
of the time delay to the system a Euclidean norm 
type of error will be used, defined as 

 ( ) 2

2

, 100%
j j

j j

j j

x x
p x x

x x

−
= ×

−

�
�  (3.1) 

The same investigation will be carried out for the 
performance variable. Note that since the flow rate 
response is not influenced by the delay, in both 
cases, with or without the presence of the delay, it 
will be equal, i.e. the error will be by definition zero. 
Furthermore, for the case where 

1
1

u
p = , 

2
1

u
p = , 

1
1pξ =  and 

2
1pξ =  both systems remain in the 

operating point, hence both numerator and 
denominator become zero. In that case the error is 
defined as zero. 

Let 25 mL ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 0.015 md ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 

2 m
r
L ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 0.0096153 m

r
d ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 0.00001

t
K = , 

C = 36 KJ K⎡ ⎤
⎢ ⎥⎣ ⎦ , 4N = , 0ϕ = , 0

2500 W⎡ ⎤Φ = ⎢ ⎥⎣ ⎦ , 

1
1.25n =  2 9a = , 

1
1a = , 

2
0.12a = − , 

,max
100 °C

w
T ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 5.06 W K

j
a ⎡ ⎤= ⎢ ⎥⎣ ⎦ , w

C =  

4180 J K Kgr⎡ ⎤⋅⎢ ⎥⎣ ⎦ , 42400 J K
b
C ⎡ ⎤= ⎢ ⎥⎣ ⎦ , ρ =    

3971.81 Kgr m⎡ ⎤
⎢ ⎥⎣ ⎦ , 0.0003547 Pa sμ ⎡ ⎤= ⋅⎢ ⎥⎣ ⎦ , 

,0
60 °C

ma
T ⎡ ⎤Δ = ⎢ ⎥⎣ ⎦  be the parameters of the nonlinear 

model (2.18). Assuming that 1
3000 Pau ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 

2
2300 Wu ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 1

19.111 Cξ ⎡ ⎤= °⎢ ⎥⎣ ⎦  and 2
10 Cξ ⎡ ⎤= °⎢ ⎥⎣ ⎦  

the starting nominal points are evaluated to be 
-5 3

1
3.6287 10 sx m⎡ ⎤= ⋅ ⎢ ⎥⎣ ⎦ , 2

69.6437 Cx ⎡ ⎤= °⎢ ⎥⎣ ⎦ , 

3
66.4807 Cx ⎡ ⎤= °⎢ ⎥⎣ ⎦ , 4

63.5596 Cx ⎡ ⎤= °⎢ ⎥⎣ ⎦ , 

5
60.8587 Cx ⎡ ⎤= °⎢ ⎥⎣ ⎦ ,  6

73.0728 Cx ⎡ ⎤= °⎢ ⎥⎣ ⎦ , while the 

nominal emitted power by the radiator can be easily 
evaluated to be [ ]1796.1 Wy = . In Figures 2 to 6 
contour plots of the criterion (3.1) are presented 
while in Figure 7 the same criterion is presented for 
the performance variable for a wide range of 

1u
p  and 

2u
p , indicatively for 

1
105%pξ =  and 

2
95%pξ = . It 

can readily be observed that the influence of the 
delay to the system is significant, especially to the 
performance output. Hence, it can be safely stated 
that the incorporation of the delay to the system 
makes it more accurate. It must be noted that the 
Euclidean Norm Error plots have been zoomed to a 
particular area in order to demonstrate specific 
details. 
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Fig. 2: Euclidian Norm Error ( )2 2
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Fig. 5: Euclidian Norm Error ( )5 5
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Fig. 6: Euclidian Norm Error ( )6 6
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Fig. 7: Euclidian Norm Error ( ),p y y�  for 

1
105%pξ =  and 

2
95%pξ =

 

3.1 Approximation of the Nonlinear Model of 
the Plant  
In order to simplify the nonlinear model of the plant 
it will be approximated using constant delays, 
instead of the time varying ones, i.e. the dynamic 
model (2.18) becomes 

( ) ( )1

dx t d
E x t

dt dt
τ+ − =�  

( ) ( ) ( ) ( )( ), , ,f x t u t x t tτ ξ−� (3.2a) 

 ( ) ( ) ( ) 1
1

10

2 ,0

n
N

j

j ma

x t t
y t

N T

ξ+

=

⎛ ⎞− ⎟Φ ⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟Δ ⎟⎜⎝ ⎠
∑  (3.2b) 

In order to evaluate the constant delay, it will be 
assumed that the system operates on its nominal 
points. It can easily be verified that 2

1
4d L xτ π=  
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In order to check the accuracy of the proposed 
simplification a cost criterion similar to that in (3.1) 
will be used. Assume that the model (2.18) operates 
on certain operating conditions, let 

1
u , 

2
u , 

1
ξ  and 

2
ξ  

for the actuatable inputs and disturbances yielding to 
the respective nominal values for the state variables, 
let j
x  for 1, , 2j N= +… . Without loss of 

generality, assume that at 0t =  the actuatable inputs 
and disturbances become ( ) ( )

11 1u s
u t p u u t= , 

( ) ( )
22 2u s

u t p u u t= , ( ) ( )
11 1 s

t p u tξξ ξ=  and 

( ) ( )
22 2 s

t p u tξξ ξ= , where ( ) ( )
1 1 1min max

,
u u u
p p p⎡ ⎤∈ ⎢ ⎥⎣ ⎦

,  

( ) ( )
2 2 2min max

,
u u u
p p p⎡ ⎤∈ ⎢ ⎥⎣ ⎦

, ( ) ( )
1 1 1min max

,p p pξ ξ ξ
⎡ ⎤∈ ⎢ ⎥⎣ ⎦

, 

( ) ( )
2 2 2min max

,p p pξ ξ ξ
⎡ ⎤∈ ⎢ ⎥⎣ ⎦

 and where ( )s
u t  denotes 

the unit step function, driving the system to new 
operation conditions, let j

x ′  for 1, , 2j N= +… , 

through the respective responses, let ( )j
x t  for 

1, , 2j N= +… . The same experiment can be 
carried out for the system (3.2), leading to different 
responses, let ( )j

x t�  for 1, , 2j N= +… . Note that 

the starting and ending nominal points are equal to 
both cases, with constant or time varying delay. In 
order to examine the influence of the constant time 
delay to the system a Euclidean norm type of error 
will be used, similar to that defined in (3.1). 
Consider the data presented in the previous 
subsection. In Figures 8 to 12 contour plots of the 
cost criterion are presented while in Figure 13 the 
same criterion is presented for the performance 
variable for a wide range of 

1u
p  and 

2u
p , 

indicatively for 
1
105%pξ =  and 

2
95%pξ = . It can 

readily be observed that the influence of the time 
varying delay to the system as compared to the 
constant delay case is not significant. Hence, the 
system can safely be simplified using constant delay 
rather than time varying. It must be noted that the 
Euclidean Norm Error plots have been zoomed to a 
particular area in order to demonstrate specific 
details. 
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Fig. 13: Euclidian Norm Error ( ),p y y�  for 

1
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2
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4   Temperature Control 
In the present section, a PID controller will be 
designed in order to regulate the temperature of a 
room in which the central heating system presented 
previously is installed. To do so, the room will be 
modeled as a first order differential equation, [10], 
under the assumptions that the walls of the room are 
subject to the same external temperature, there is no 
influence of the weather (wind or rain) on the 
thermal resistance of the walls, radiative heat transfer 
is negligible, there is no ventilation and no influence 
from the humidity of the air, there are no heat losses 
from the ceiling and the floor and there are no heat 
sources  in the room besides the radiator. Under the 
above assumptions the dynamic model of the room 
takes on the form 

( ) ( ) ( ) ( )1 1r

out r rad
r w r

dT t
T t T t P t

dt C R C
⎡ ⎤= − +⎢ ⎥⎣ ⎦  (4.1)

 
where 

r
T  is the room temperature, 

out
T  is the 

environment temperature, 
rad
P  is the thermal power 

emitted by the radiator, 
r
C  is the thermal capacity of 

the room and 
w
R  is the thermal resistance of the 

outer walls. For simulation purposes it will be 
assumed that 72.1 KJ K

r
C ⎡ ⎤= ⎢ ⎥⎣ ⎦  and 

37.85 10 K W
w
R − ⎡ ⎤= ⋅ ⎢ ⎥⎣ ⎦ . It can readily be observed 

that the environment temperature acts as a 
disturbance while the radiator power is the 
“actuatable” input. 

In the overall system, i.e. room plus central 
heating unit, it will be assumed that the only 
measurable variable is the room temperature while 
the actuatable input is fuel, in the form of power, 
supplied to the boiler. 

The controller is chosen of the form [18]  

 ( ) ( ) ( ) ( )2 2
0

t

p i d
u t f e t f e d f e t uτ τ= + + +∫ � (4.2) 

where ( ) ( ) ( )r
e t T t r t= −  and r  is the room set 

point temperature. 
In order to choose the controller parameters, two 

techniques will be used. First, a classical Ziegler-
Nichols approach will be applied, see f.e. [16]. Using 
the data presented in previous sections, the controller 
parameters using the first Ziegler-Nichols method 
can be found to be 

( ) 780.2586
p ZN
f = , ( ) 0.1689

i ZN
f =
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( ) 800970
d ZN
f =  

Second, a metaheuristic approach, similar to that 
presented in [19] and [20], will be applied. In 
particular, the metaheuristic algorithm, applied to the 
present control scheme, takes on the form 

 
Initial data of the algorithm 
• Center values and half widths for the initial search area 

of the controller parameters 
,p c
f , 

,i c
f , 

,d c
f , 

,p w
f , 

,i w
f  

and  
,d w
f . 

• Desired properties of the closed-loop system 
• Actuator, state and/or output variable constraints 
• Sampling period T  
• Time window range N  
• Performance criterion ( ), ,J x u ξ  

• Loop repetition parameters 
loop
n , 

rep
n  and 

tot
n  

• Search  algorithm thresholds  
pf

λ , 
if

λ  and 
df

λ  

• External command used for simulation 
 
Search algorithm 
Step 1. Set the numbering index 

max
0i = . Set 

mintotal
J = ∞ . 

Step 2. Set the numbering index 
1
0i = . 

Step 3. Determine a search area ℑ  for the controller 
parameters. The search area is bounded according to the 
inequalities 

,min ,maxp p p
f f f≤ ≤ , 

,min ,maxi i i
f f f≤ ≤  

,min ,maxd d d
f f f≤ ≤  

where 

,min , ,p p c p w
f f f= − , 

,min , ,i i c i w
f f f= −  

,min , ,d d c d w
f f f= − , 

,max , ,p p c p w
f f f= +  

,max , ,i i c i w
f f f= + , 

,max , ,d d c d w
f f f= +  

Step 4. Set 
max max

1i i= + . If 
max total
i n>  go to Step 17. 

Step 5. Set the numbering index 
2
0i = . 

Step 6. Select randomly a set of controller parameters 
within the search area ℑ . 
Step 7. Check if the closed-loop system satisfies the 
properties. If no, set J = ∞  and go to Step 10. 
Step 8. Perform simulation of the closed-loop system 
resulting by applying controller (4.2) to the system (3.2). 
Use the simulation results for a sufficiently large time 
window 0 t NT≤ ≤ and with an appropriate sampling 
period T  , to check if the control input variables ( )u kT , 

the state variables ( )x kT  and the output variable ( )y kT , 
0, ,k N= …  satisfy the actuator, state and/or output 

constraints. If no, set J = ∞  and go to Step 10. 

Step 9. Use the simulation results of Step 8 to compute 
the value of ( ), ,J x u ξ   

Step 10. Set 
2 2

1i i= + . If 
2 loop
i n≤  go to Step 6. 

Step 11. Use the results of the last 
loop
n  repetitions of 

Steps 6 - 9 to determine the suboptimal controller that 
resulted in the smallest value 

1i
J +  of the cost criterion. 

Step 12. Set 
1 1

1i i= + . If 
1 rep
i n≤  go to Step 5. 

Step 13. Find 

{ }min
min , 1, ,

i rep
J J i n= = …  

{ }max
max , 1, ,

i rep
J J i n= = …  

and the corresponding controller parameters ( )
min

p J
f , 

( )
min

i J
f , ( )

min
d J
f , ( )

max
p J
f , ( )

max
i J
f  and ( )

max
d J
f . 

Step 14. If 
min
J = ∞  then set 

, ,
2

p w p w
f f= , 

, ,
2

i w i w
f f= , 

, ,
2

d w d w
f f=  

and go to Step 2. If 
min mintotal
J J< , set 

min mintotal
J J=  

and  

( )
min

, minp total p J
f f= , ( )

min
, mini total i J
f f=  

( )
min

, mind total d J
f f=  

Otherwise, set 
min mintotal
J J=  and  

( )
min

, minp p totalJ
f f= ,( )

min
, mini i totalJ

f f=  

( )
min

, mind d totalJ
f f=  

Step 15. Define  

( ) ( )
min maxpf p pJ J

d f f= − , ( ) ( )
min maxif i iJ J

d f f= −  

( ) ( )
min maxdf d dJ J

d f f= −  

Let 

( )
min

,min pp p fJ
f f d= − , ( )

min
,min ii i fJ
f f d= −  

( )
min

,min dd d fJ
f f d= − , ( )

min
,max pp p fJ
f f d= +  

 ( )
min

,max ii i fJ
f f d= + , ( )

min
,max dd d fJ
f f d= +  

If  
,max ,min pp p f
f f λ− >  or ,max ,min ii i f

f f λ− >  or 

,max ,min dd d f
f f λ− > , go to Step 2 

Step 16. End of the algorithm. If 
mintotal

J <∞ , use the 

controller parameter values 
, minp total
f , 

, mini total
f  and 

, mind total
f . Otherwise the algorithm has failed. 
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In order to initialize the metaheuristic algorithm, it is 
assumed that 

,
1000

p c
f = , 

,
0.25

i c
f = , 

,
500000

d c
f = , 

,
1000

p w
f = , 

,
0.25

i w
f = , 

,
500000

d w
f = , 60 secT ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 120N = , 5

rep
n = , 

50
loop
n = , 4000

tot
n = , 0.0001

pf
λ = , 

0.0001
if

λ =  and 0.0001
df

λ = . The actuatable 

input is assumed to be constrained by 

( )2
0 7500 Wu kT ⎡ ⎤≤ ≤ ⎢ ⎥⎣ ⎦  while the effluent 

temperature of the boiler is constrained by 

( )6
0 100 °Cx kT ⎡ ⎤≤ ≤ ⎢ ⎥⎣ ⎦ . The external command is 

chosen to be of the form ( ) ( )1 s
r t u tξ= +  where 

( )s
u t  is a unit step function while the cost criterion 

is chosen of the form 

( ) ( ) ( )1 2
, ,J x u kT r kTξ ξ= − . Using the above 

presented data, the controller parameters have been 
found to be 

( ) 2003.619
p MH
f = , ( ) 0.37187

i MH
f =

 

( ) 362699.8191
d MH
f =  

With respect to efficiency of the search algorithm, it 
has been observed that it had converged to the 
controller parameters after 3500 simulations. 
Nevertheless, it must be noted that the search 
algorithm thresholds are quite strict and the 
controller has practically converged much sooner 
while the closed loop performance response remains 
practically unchanged. Indicatively, in Table 1 the 
center values and half widths of the controller 
parameters are presented, while the overshoot, rise 
time, settling time and cost criterion for the optimal 
controller up to that point are also presented. Indeed, 
it can be observed that the response characteristics 
remain practically unchanged after the fourth loop. 
Note that the all response parameters are evaluated 
using the sampled data. 

,p c
f  

,i c
f  

,d c
f  

,p w
f  

,i w
f  

,d w
f  Overshoot 

(%) 

Rise 
Time 
(sec) 

Settling 
Time 
(sec) 

Cost 

1968.6988  0.4672  413900.7486  20.25557 0.075123 176582.4 6.149637  540  4620 2.70145

1988.4861  0.4002  377274.1091  11.83431 0.021945 44307.62 6.250459  540  2280 2.69142

1999.8603  0.3804  356804.9286  3.605856 0.016848 6385.115 6.321436  540  1920 2.68825

2003.3968  0.3693  362891.6232  0.220001 0.001008 130.5197 6.31093 540  2640 2.68749

2003.6155  0.3703  362820.5299  0.006162 0.001038 121.3849 6.312557  540  2640 2.68744

2003.6190  0.3713  362715.4942  6.3E‐06 0.00051 15.90379 6.313546  540  2640 2.68743

2003.6190  0.3718  362700.0480  1.98E‐06 0.000107 0.3515 6.313927  540  2640 2.68743

2003.6190  0.3719  362699.9183  3.58E‐06 3.63E‐06 0.037753 6.314005  540  2640 2.68743

2003.6190  0.3719  362699.8867  1.6E‐06 3.34E‐07 0.039941 6.314008  540  2640 2.68743

2003.6190  0.3719  362699.8475  4E‐08 1.71E‐07 0.024149 6.314008  540  2640 2.68743

2003.6190  0.3719  362699.8241  5.6E‐08 7E‐09 0.004569 6.314008  540  2640 2.68743

2003.6190  0.3719  362699.8202  4E‐09 2E‐09 0.000942 6.314008  540  2640 2.68743

2003.6190  0.3719  362699.8192  1E‐09 1E‐09 0.000186 6.314008  540  2640 2.68743

2003.6190  0.3719  362699.8191  1E‐09 1E‐09 4.99E‐05 6.314008  540  2640 2.68743

 
Table 1: Metaheuristic Algorithm Parameters and Closed Loop Response Characteristics 

 
In order to demonstrate the efficiency of the 

proposed control scheme, consider the data presented 
in previous sections. Note that the environment 
nominal temperature has been chosen to be 5 °C⎡ ⎤⎢ ⎥⎣ ⎦  

producing the same nominal temperature 
1
ξ  for the 

room. Using the data presented in previous sections 
an assuming that the external command is chosen to 
be of the form ( ) ( )1

2
s

r t u tξ= + , the two 
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controllers will be compared among themselves as 
well as the open loop response, choosing the 
actuatable input to be constant and equal to 

2
=2649.6756 Wu ⎡ ⎤⎢ ⎥⎣ ⎦  producing the same steady state 

for the room temperature. In particular in Figures 14 
to 17 the temperature in the sections of the radiator is 
presented, in Figure 18 the boiler effluent 
temperature is presented, in Figure 19 the room 
temperature is presented, while in Figures 20 and 21, 
the emitted radiator power and energy supply to the 
boiler is presented. With respect to the room 
temperature (see Figure 19), the controller produced 
by the metaheuristic algorithm performs significantly 
better than the controller produced using the 1st 
Ziegler-Nichols method. In particular the 
metaheuristic controller is much faster (rise time 
11.4627 minutes and settling time 27.7704 minutes), 
than the Ziegler Nichols (ZN) controller (rise time 
32.4572 minutes and settling time 189.4270 
minutes). For the open loop case, it can be observed 
that the response is even slower (rise time 147.3314 
minutes and settling time 189.9147 minutes). Note 
that in the present case rise time is defined as the 
time where the response reaches 95% of the steady 
state value while settling time the time after which 
the system diverges less than 2% from the steady 
state value. Finally, the metaheuristic controller 
presents much smaller overshoot (6.3%) than the ZN 
controller (13.74%). For the open loop case there is 
no overshoot. With respect to the actuatable input 
(see Figure 21), even though for the metaheuristic 
controller it is much higher than the ZN controller, it 
remains within acceptable limits. The same 
observation can be made for all state variables as 
well as the emitted power by the radiator. 

With respect to the stability of the closed loop 
system, consider the linearized approximation of the 
nonlinear model (3.2) presented in [17]. Substituting 
the derived PID controller to the linearized 
approximation it is that the roots of the characteristic 
polynomial of the resulting closed loop system are 
placed on the left half complex plan and their real 
part is less than 0.0001851− .  
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Fig. 14: Radiator Temperature (1st partition) 

(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop) 
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Fig. 15: Radiator Temperature (2nd partition) 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop)
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Fig. 16: Radiator Temperature (3d partition) 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop) 
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Fig. 17: Radiator Temperature (4th partition) 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop) 
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Fig. 18: Boiler Effluent Temperature 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop) 
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Fig. 19: Room Temperature 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop) 
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Fig. 20: Emitted Radiator Power 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop) 
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Fig. 21: Energy Supply to the Boiler 
(cont. – metaheuristic, dotted – ZN, dotted dashed – open loop)

 

5   Conclusions 
In the present paper the mathematical model of the 
test case central heating system has analytically been 
presented in the form of a nonlinear neutral time 
delay model. In particular, separate models have 
been presented for the core components of the 
system, i.e. pipe network, radiator and boiler. The 
separate models have been combined to a nonlinear 
neutral time delay system (with time varying delay) 
which has been simplified to a neutral time delay 
model with constant time delay. It has been shown 
that the influence of the delay is significant, thus its 
incorporation to the model is of high importance 
while the constant delay approximation imposes only 
a small error to the system. Finally, a PID controller 
has been derived to regulate the temperature of a 
room, which has been modeled as a first order 
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differential equation. The controller parameters have 
been evaluated using a metaheuristic approach 
whose efficiency has been investigated. It has been 
shown that the search algorithm produces fast the 
controller parameters. The resulting closed loop 
response has been compared to the response 
produced by the same controller for the case where 
the parameters have been evaluated using the first 
Ziegler Nichols method and the open loop response 
of the system applying appropriate constant 
actuatable inputs. It has been shown that the 
metaheuristic controller produces by far better results 
than the controller produced by the Ziegler Nichols 
method and the open loop case. 
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