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Abstract. Modelling and simulation of n-DOF robots with revolute joints are presented in the paper. First, 
numerical effective equations to solve the direct kinematics of n-degree-of-freedom robots are derived. 
Following this, the dynamic model based on Lagrangian equation is developed. In the model the characteristics 
of robots are utilized and therefore the complexity of the model is increasing slower with the number of degrees 
of freedom compared with the general type of manipulators. Next, some cost functions for n-R robots and their 
gradients are presented. The derived models represent the basis of the software package "Robotic Toolbox" 
implemented in Matlab. The package allows the user to create and simulate different systems considering 
robots. Matlab functions and Simulink blocks provided include forward kinematics, dynamics and several 
utility functions. 
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1. INTRODUCTION 

One of the important issues of the new generation 
of robotic manipulators is redundancy. Most of 
the study of the redundant mechanisms has been 
performed without considering any particular 
mechanism [9,12]. A theoretical approach to the 
control problem usually incorporates a dynamic 
model of a mechanism [8,5]. Furthermore, the 
schemes with pure cinematic redundancy 
resolution also often use dynamic models or 
their parts in performance criterions [9,12]. 
Some authors have proposed a seven-degree-of-
freedom (DOF) mechanism [4], or a four-DOF 
mechanism [6], but most of them use a simple 
three-DOF planar mechanism [5], [16], [8], [7], 
[2], [11]. Actually, most authors use in their 
analysis mechanical systems with only one 
degree of redundancy. The reason is in the 
complexity of mechanisms models, which 
increases rapidly with the number of DOF. For 
the evaluation of theoretical results it would be 
of benefit to have dynamic models of 
mechanisms with more than one degree of 
redundancy  

 

Fig. 1. Structure of the n-DOF planar robot. 
 
In this paper we present cinematic and dynamic 
models of n-DOF planar manipulator (robot) with 
revolute joints, the n-R manipulator. First, 
numerical effective equations to solve the direct 
kinematics of n-DOF robot are developed utilizing 
the characteristics of planar manipulators. Namely, 
the components of the Jacobian matrix and the 
Hessian matrix can be specified by the previous 
obtained results without any additional calculation. 
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Next, the dynamic model based on Lagrangian 
equation is derived. In the next section some 
commonly used cost functions for n-R robot and 
their gradients are derived. In the second part, a 
software package for simulation of n-R robot is 
presented. The package is implemented in 
Matlab/Simulink and consists of several M-files and 
Simulink blocks for the calculation of the robot 
model and several utility functions derived from the 
robot model like cost functions and functions for the 
representation of the robot in the task plane [15]. At 
the end, some examples showing how to use the 
derived functions and blocks in Matlab and in 
Simulink are presented. 

 2   Problem Formulation 

In the following subsections, we derive the 
cinematic and the dynamic model of the n-DOF 
robot with revolute joints. The manipulator is 
supposed to move in the vertical plane x-y as shown 
in Fig.1.The task coordinates x are the positions in 
x-y plane, x=[x, y]T. 

2.1. Kinematics of n-R robot 

With respect to n joint coordinates q, and m task 
coordinates x, the kinematics of the manipulator can 
be described with the following equations [1]: 

      x=p(q), J(q) , = J(q) + J(q, ) ,       (1) =x& q& x&& q& q& q&

where p is an m-dimensional vector function 
representing direct kinematics, J is the Jacobian 
matrix and J  is its time derivative, J =dJ/dt;. As 
we deal with redundant manipulators, n>m and J is 
an mxn matrix. Let 

& &

ϕ  be an n-dimensional vector 
with components: 

  iii q+= −1ϕϕ     (2) 

for i=1,...,n and initial value 0φ =0, and li be the 
length of the ith link. Following this, in the case of a 
planar robot (m=2) with revolving joints, the end 
effectors positions x, x=[x1, y1]T, can be expressed 
by the following recursive equations [10]: 

  ( )iiii lxx ϕcos1 += +   and ( )iiii lyy ϕsin1 += +     (3) 

for i=n-1 ,...,1 and initial values xn = lncos( nϕ ) and 
yn = lnsin( nϕ ). The pairs [x1, y1]T represent the 
position of the end of the manipulator measured 
from the joint i. Next we calculate the Jacobian 

matrix J. In the planar case, the Jacobian J is a 2xn 
matrix: 
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From Eqs. (2) and (3), it follows that: 
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where k=max(i, j). {Note that 
xi= ( )[ ]∑ ∑= =ik ij jk ql cosn k } Hence, the components of J 

can be specified without any further calculations as: 
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For the complete model, we have to derive , i.e. to 
differentiate J with respect to time: 

J&

                             =J& ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂n

k
k

k
q

q1

&
J .                      (6) 

Differentiating Eq. (4) with respect to q yields: 
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where r=max(i,j,k).Substituting Eq.(7) into Eq.(6) 
yields: 
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As we can see from Eqs. (5) and (8), the only 
elements of a cinematic model of n-R robot to be 
calculated are xi and yi. All other parts of the model 
can be expressed in terms of xi and yi. 
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2.2. Dynamics of n-R robot 

Before we determine the components of the 
dynamic model, we have to derive expressions for 
the position of the centerpoint of the mass and 
corresponding Jacobian matrices for all segments. 
Using Eq. (3) the position of the centerpoint of the 
mass (COM) of the ith link can be denned by: 

                        xci= .  (9) 
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Note that [x1-xi, y1-yi]T represents the position of the 
joint i measured from the base of the robot. 
Differentiating Eq. (9) with respect to q yields: 
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The Jacobian matrices related to the segments have 
been divided into two parts: 
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where JL and JA are parts of J associated with linear 
and angular task velocities, respectively. The 
Jacobian matrices associated with the center-
point of the mass of the ith link are defined as: 
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and can easily be obtained by substituting Eq. (10) 
into the above equation. Next, the derivatives of ( )i

LJ  
with respect to q are calculated: 
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using the relationships 
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where r=max(j, k). For convenience, the following 
notation has been introduced: 
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The dynamic model is based on the Lagrangian 
formulation. The equations of the motion of the 
robot are given by: 

q
T

q
T

∂
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∂
∂
&dt

d = , τ

where T is the total energy of the system and τ  are 
generalized forces corresponding to the joint 
coordinates q. After some calculations, the dynamic 
equations of the rigid robot can be given in the 
closed form: 

            τ =H(q) +h(q, )+ B +g(q),                (12) q&& q& q&

where H is the inertia matrix, h is the vector of 
Coriolis and centrifugal forces, B is the matrix of 
viscous friction coefficients and g is the vector of 
gravity forces. The detailed derivation of the above 
equations is described in [1]. In Eq. (12), the matrix 
H is given by: 

H= ∑ =
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where mi is the mass of the ith link. In the case of a 
planar manipulator with revolute joints, it can be 
proved that terms ( )i ( )i
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where Ii is the moment of inertia of the link i and 1 
and 0 are matrices of ones and zeros of 
corresponding dimensions, respectively. Next, the 
components of the vector of Coriolis and centrifugal 
forces h can be expressed by: 
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Using Eq. (11) the vector h can rewritten into a 
more suitable form: 
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As a last step, the components of the vector of 
gravity forces g are calculated. In general, they are 
defined as: 
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where  is the vector representing the 
acceleration of gravity, but in the case of n-R planar 
robots it is of benefit to calculate the components of 
the vector g recursively. Namely, the gravity force 
of link i is equal to the gravity force of the link i+1 
increased by the contribution of the link i. Thus, the 
components gi are: 
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for i= n -1,..., 1 and the initial value gn 
=gaccmnlcncos(φn) and gacc is the acceleration of 
gravity. 

3   Problem Solution 

Optimization is often part of the motion planning 
and the control design of redundant mechanisms. A 
very common approach is redundancy resolution at 
the velocity level based on the equation [12]: 

( Φ+−++= + &&& JJIxJq kd )

&

Φ&

,  (14) 

where  is the desired task velocity, J+ is the 
generalized inverse, Φ  is an arbitrary joint velocity 
vector and (I-J+J)  is its projection into the null 
space of J, corresponding to the self motion of the 
mechanism and k is an arbitrary constant. The first 
part of Eq. (14) is the least normal solution and 
assures the motion along the path. The second part 
is the homogeneous solution which moves the robot 
in the null space of J, e.g. toward the optimal 
configuration. The scalar gain k is used to tune the 
null space motion. In the following, we present 

some cost functions which are common in the study 
of the redundant systems. 

dx&

3.1.  Singularity avoidance 

It is well known that pseudo-inverse control does 
not avoid singularities. Furthermore, minimization 
of some cost functions may push the manipulator to 
the singularities. Therefore, additional measures for 
the singularity avoidance should be used. One 
possibility is the condition number of J [16]. The 
condition number is the ratio between the maximal 
and minimal singular values of JJT: 
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The other commonly used measure is the 
manipulability measure [16] defined as: 

. ( )TJJdet== mw σσσ L21 .              (16) 

In the case of planar manipulator JJT  is a 2x2 
symmetric matrix : 
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Hence, substituting Eq. (17) into Eq. (15) yields: 
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and into Eq. (16) yields 

 ( )2122211 aaaw −= .              (19) 

The components , =  can be easily obtained 
using the following equations [17,10]: 

ija ija ija1
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where the initial values are . To 
move away from the singularity we have to 
minimize ρ or maximize w. Following the basic idea 
the velocity  in Eq. (14) should be selected in the 
case of the condition number as: 
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or when the manipulability is used as 
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and the results are then used in the calculation of the 
gradient of the cost functions [in Eq. (20) or Eq. 
(21)]. 

3.2. Joint torques optimization 

Considering only the gravity term on the right side 
of Eq. (12), the performance criterion function p 
representing the weighted norm of joint torques can 
be expressed as: 

  p=g(q)TWg(q),    (22) 

where W is the matrix of weights. To optimize p, 
the vector  can be selected as: 
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Considering Eq. (13), the gradient of gravity forces 
is calculated as: 
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for i=n-1,...,1 and initial value  
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Thus, using Eqs. (13) and (24) the gradient of the 
cost function Eq. (23) can be easily obtained. 

3.3.  Simulation  

There exist several simulation packages for robot 
analysis and control design like "A Robotic 
Toolbox" [3] and "A Toolbox for Simulation of 
Robotics Systems" [16] which are implemented in 
Matlab, or "Robotica" [13], [14] which is based on 
Mathematica. All these packages support the 
general manipulator structures and are rather 
complex. To utilize all the simplifications in the 
model calculation which are enabled due to the 
special structure of the planar manipulators, we have 
decided to develop a special software package 
"Robotic Toolbox" for dynamic simulation of n-
DOF robots with revolute joints. The package has 
been implemented in Simulink. Matlab has been 
selected mainly due to its capabilities of solving 
problems with matrix formulations, easy 
extensibility and because of the possibility to 
simulate in real-time. 

 
3.3.1. Implementation in Matlab 

The mathematical models derived in the previous 
sections form the basis of the simulation system. 
The main functions are: 

[x,J,Jd]=kinmodel(q,qd,L) for the calculation of 
elements of the kinematic model {x,J, ); 
[links]=kin_link(q,L) for the calculation of task 
positions of all links; 
[x,J,Jd,H,h,g]=dynmodel(q,qd,L,Lc,m,ml,ll,B) for 
the calculation of elements of the complete model 
(x, J, J , H, h, g); [Man,GradMan]=idxman(q,L) for 

J&

&Φ&
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the calculation of the manipulability w and its 
gradient; [CN, GradCN] =idxcn(q,L) for the 
calculation of the condition number ρ and its 
gradient and [Grav,GradGrav]=idxgrav(q,L,Lc,m, 

ml,grav,W) for the calculation of the norm of joint 
torques due to the gravity p and its gradient. 

Table 1 Parameters of the robot 

Parameter  Example for 4-R robot 

Initial joint position q         q = [0.5;1;-1;-1]*pi/2 

Initial joint velocity q          qd= [0;0;0;0l &

Link lengths l                       L = [1 1 1 1] 

Link COM/c                       Lc = [0.4 0.3 0.3 0.25] 

Link masses m                       m = [2 1 1 0.5] 

Load mass mt                       m1 = [ 1 1 1 1 ] 

Link inertias I                       ll= [0.3 0.2 0.2 0.11] 

Viscous friction coefficient B  Bv = [0.05 0.04 0.04 
0.04] 

The parameters of the robot needed in the 
calculation of the above functions are given in the 
Table 1. These functions can be used together with 
the standard Matlab functions in different areas like 
kinematics, dynamic or path planning. For example, 
to calculate the direct kinematics the following 
commands should be used: 

>> nj= ;L=[1 1 1 1]; q=[0.5;1;-1;-1]*pi/2; 

>> qd=[1; 1; 1; 1]; qdd=[1;0;-1;2]; 

>> [x,J,Jd]=kinmodel(q,qd,L); xd=J*qd; 

>> xdd=J*qdd; disp([x xd xdd]) 

To find the configuration of the robot with maximal 
manipulability for the same task position the 
cinematic control with the Adams (ode113) 
integration is used:  

>> while norm(qd)>0.001 [x,J]=kinmodel (q,L);  

J1=J'/(J*J');  NS=(eye(nj)-J1*J);  

[Man,GradMan]=idxman (q,L);  

qd=10*NS*GradMan; q=q+qd*0.001; end 

>> disp (q) 

As no task motion is desired only the second term of 
Eq. (14) is applied for the control. The figure of the 
optimal manipulator configuration is obtained by 
using the following commands (see Fig. 2) 

Fig. 2. Configuration of 4-R robot with maximal 
manipulability. 

>> xx=kin_link (q,L);ll=plot(xx(1,:),xx(2,:)); grid 

>> axis equal, axis square, axis([ —1 252.5]) 

>> xlabel('x-axis'), ylabel('y-axis')   

 
3.3.2. Computational complexity 

As described in the previous sections, most of the 
equations of the model use recursion and are in the 
form of loops. To obtain the most speed of the 
Matlab it is recommended to vectorize all the loops. 
For example, Eqs. (2) and (3) can be transformed 
into the form of 

fi=(robll*q)'; cL=L*cos(fi); sL=L*sin(fi); 

              x=cL*robll; y=sL*robll; X=[x(l),y(l)]; 

where robll is a lower-left triangular matrix of ones. 
As expected, the vectorized form is faster. 
Unfortunately, the increase in the calculation speed 
is not significant because it is not possible to 
vectorize all the loops and because the vectorization 
itself increases the number of numeric operations. 
On the other hand, the significant performance 
improvements can be achieved by using MEX-files 
instead of M-files. Using the Matlab Compiler, M-
functions can be compiled to MEX-files. As the 
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Matlab compiler compiles loops very efficiently it is 
better not to vectorize those parts where the 
vectorization introduces additional operations. Table 
2 shows the execution time te versus number of 
DOF of the robot cinematic and dynamic model 
realized as M-file and MEX-file. It is obvious that 
the MEX-file version is significantly faster than the 
M-file version. We can also see that the execution 
time te for calculation of the cinematic model 
increases with the number of DOF as O(n2) and the 
dynamic model as O(n3) for both M-file and MEX-
file. 

Table 2. The execution time tc versus number of 
DOF for cinematic and complete model for M-file 

and MEX- file 

Dynmodel Kinmodel 

M-file MEX-file M-file MEX-file 

n te(ms) te(ms)  te(ms) te(ms) 

2 11 1,1  5,0 0,38 

3 27 1,7  7,2 0,44 

4 38 2,7  9,8 0,50 

5 55 3,8  14,3 0,60 

10 215 23,1  44,0 1,10 

20 1197 276,9  159,0 3,30 

 
3.3.3. Integration into Simulink 
 
As an extension to Matlab, Simulink adds many 
features for the easier simulation of the dynamic 
systems, e.g. graphical model building and selection 
of the integration method and parameters. To exploit 
additional features, we have developed several 
blocks and functions needed to create cinematic and 
dynamic models and to simulate the motion of n-R 
robots in Simulink. Fig. 3 shows the Simulink part 
of the "Robotic Toolbox". To gain the transparency 
the system should be represented by the block 
structure with several hierarchical levels. In the case 
of robot systems the top level represents the close 
loop model. The corresponding block diagram is 
given in Fig. 4. Under the Robot block, the 
cinematic or dynamic model of the robot is 
modelled. For example, using Eq. (12) the dynamic 

model of the robot can be built as it is shown in 
Fig.5. 
The block Model is realized as the S-function 
(calling the M-function dynmodel) and includes the 
calculation of model matrices and vectors x, J, , 
H, h and g. The two integrators are used to obtain 
the joint velocities and positions. As it can be seen 
from Fig. 5 the model calculations require some 
matrix operations for the calculation of the joint 
accelerations and for the direct cinematic 
transformations (inversion, product, etc.). As the 
standard Simulink does not provide any blocks for 
the matrix operations we had to write the necessary 
blocks. To make them fast they are all C-MEX files. 
Other special blocks in the Simulink library provide 
functions specific for robots which cannot be 
created using the standard Simulink blocks. Two 
special blocks are used for the representation of the 
end-effector position in the task space and for the 
on-line animation of the manipulator motion (Fig. 
4). They plot the signals in separate windows as it is 
shown in Fig. 6. 

J&

Robotic Toolbox 

Fig. 3. Robotic Toolbox : Simulink  block library 

 

Fig. 4 Simulink block diagram for general close 
loop system. 
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3.3.4. Simulation example 

For illustration of the capabilities of the "Robotic 
Toolbox", we have chosen a dynamic simulation of 
a 7-R manipulator moving along a straight line.  
The redundancy resolution has been performed at 
the acceleration level and the control law is given in 
the form [12]: 
=τ H(J+( d+Kv e - J )+(I-J+J )+h+g.         (25) x&& & & q& Φ

where e=xd-x is the tracking error,  is the desired 
task space acceleration, Kv and Kp are constant gain 
matrices and J+ is the inertia weighted pseudo-
inverse, +=H-1 JT(JH-1JT)-1. 

dx&

J&
The null space vector  is used to stabilize the null 
space motion and is defined as [7]: 

Φ

  =-KnΦ
( )q

dt
JJIdq &&

+−
− ,                          (26) 

    Fig. 5 Simulink block diagram for the calculation      
     of the dynamic model of the robot 

Fig. 6. Task space (.v, y) and manipulator animation 
windows for the presentation of the manipulator 

motion in the task plane. 

where Kn is a gain matrix. Fig. 7 shows the 
SIMULINK block structure of the system. As we 
can see, the matrix blocks enable straightforward 
model generation from the Eqs. (25) and (26).  

Fig. 8. Tracking of a line: configurations of the 
robot in the task plane. 

Fig. 9. Tracking of a line: task and joint velocities. 
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Two dynamic models are used in the system: one 
for the calculation of the robot model and one in the 
control algorithm. As they can have different 
parameters, the user can simulate the errors in the 
model parameters. The simulation can be performed 
from the Simulink menu or from the command line 
by using 
>> [t,x] = ode45('trace',3,[],[0.001 0.01 0.001]) 
where trace is the name of the Simulink model.  
The selected system states are saved in the variables 
T, rxt, xt, qt and ut using To Workspace blocks. The 
analysis of the simulation results is then made in 
Matlab. For example, by using the following 
commands: 
>> xx=kin_link(qt(1,:),L); ll=plot(xx(1,:),xx(2,:)); 
>> axis equal, axis([ -0.5 6.5 -1.5 5]), grid 
 
 

 
 

>>xlabel('x-axis'),ylabel('y-
axis');set(11,'Linewidth',2); 
>>Hold on; plot(rxt(:,1),rxt(:,2),':') 
>>for ii=1:10:length(qt) xx=kinJink(qt(ii,:),L);  
li=plot(xx(1r:),xx(2,:)); set(li,'Linewidth',1); end 
the motion in the task plane can be plotted as shown 
in Fig. 8. The next commands plot the task and joint 
velocities versus time (Fig. 9): 
>>subplot(211); plot(T,xdt); 
>>xlabel(ltime');ylabel('task velocities') 
>> subplot(212); plot(T,qdt); 
>>xlabel('time');ylabel('joint velocities') 
Actually, the user can use all the tools available in 
Matlab and Simulink for the control design or the 
analysis of simulation results. 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

Fig. 7. SIMULINK block diagram for a robot system with the redundancy resolution 
at the acceleration level [control algorithm: E(25)]. 
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4. Conclusions 

In the paper, cinematic and dynamic models of n-
DOF planar manipulators (robot) with revolving 
joints are presented. Numerical effective equations 
to solve the direct kinematics and dynamics are 
developed. Their basic benefit is to utilize partial 
results in further calculations. Additionally, some 
cost functions for n-R manipulators and their 
gradients are presented. Based on the derived 
models, a software package "Robotic Toolbox" for 
cinematic and dynamic simulation of n-R planar 
manipulators with revolute joints is derived.  
The package is implemented in Matlab/Simulink. It 
consists of several M-files for the calculation of the 
model and other functions for planar manipulators 
which cannot be created using the standard ones. 
 To make the simulation easier, the modules were 
also integrated in Simulink environment as S-
function blocks. Additional blocks for matrix 
operation in Simulink enable a straightforward 
building of the simulation model.  
Current experience with the toolbox has confirmed 
that it is very useful and effective tool for many 
purposes: cinematic simulation, dynamic simulation, 
analysis and synthesis of control systems, trajectory 
generation, etc. As the complexity of the model 
increases slower with the number of DOF than in 
the case of general manipulators, the derived 
toolbox permits simulation of manipulators with 
many DOF within reasonable simulation times. It is 
very easy to extend and to adapt the simulation 
package to different requirements.  
Thus, it should be of interest to the researchers 
involved in the development of advanced robot 
control systems. Our further work will consider the 
real-time simulation. We intend to rewrite all the 
functions into C-MEX files so that the automatic 
code generation will be possible.  
The final goal is the development of an integrated 
environment for the robot control design and testing 
by using the "robot in the loop" simulation where  
the model of the robot in the simulation scheme is 
replaced by the real manipulator. 
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