
Simulation of n-r robots

POPESCU MARIUS-CONSTANTIN, BORCOŞI IILIE, OLARU ONISIFOR, ANTONIE
NICOLAE

Department of Electromechanics, University of Craiova, Romanian,
Department of Automatics and Informatics

University of C-tin Brancusi
str. Geneva nr.3, Tg-Jiu, Gorj

ROMANIA
 popescu_ctin2006@yahoo.com, ilie_b@utgjiu.ro,olaru@utgjiu.ro, nicolae.antonie@utgjiu.ro,

http://www.em.ucv.ro, http://www.utgjiu.ro/ing

Abstract. Modelling and simulation of n-DOF robots with revolute joints are presented in the paper. First,
numerical effective equations to solve the direct kinematics of n-degree-of-freedom robots are derived.
Following this, the dynamic model based on Lagrangian equation is developed. In the model the characteristics
of robots are utilized and therefore the complexity of the model is increasing slower with the number of degrees
of freedom compared with the general type of manipulators. Next, some cost functions for n-R robots and their
gradients are presented. The derived models represent the basis of the software package "Robotic Toolbox"
implemented in Matlab. The package allows the user to create and simulate different systems considering
robots. Matlab functions and Simulink blocks provided include forward kinematics, dynamics and several
utility functions.

Key-words: Modelling; Redundant robots; Simulation n-r robots.

1. INTRODUCTION

One of the important issues of the new generation
of robotic manipulators is redundancy. Most of
the study of the redundant mechanisms has been
performed without considering any particular
mechanism [9,12]. A theoretical approach to the
control problem usually incorporates a dynamic
model of a mechanism [8,5]. Furthermore, the
schemes with pure cinematic redundancy
resolution also often use dynamic models or
their parts in performance criterions [9,12].
Some authors have proposed a seven-degree-of-
freedom (DOF) mechanism [4], or a four-DOF
mechanism [6], but most of them use a simple
three-DOF planar mechanism [5], [16], [8], [7],
[2], [11]. Actually, most authors use in their
analysis mechanical systems with only one
degree of redundancy. The reason is in the
complexity of mechanisms models, which
increases rapidly with the number of DOF. For
the evaluation of theoretical results it would be
of benefit to have dynamic models of
mechanisms with more than one degree of
redundancy

Fig. 1. Structure of the n-DOF planar robot.

In this paper we present cinematic and dynamic
models of n-DOF planar manipulator (robot) with
revolute joints, the n-R manipulator. First,
numerical effective equations to solve the direct
kinematics of n-DOF robot are developed utilizing
the characteristics of planar manipulators. Namely,
the components of the Jacobian matrix and the
Hessian matrix can be specified by the previous
obtained results without any additional calculation.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 149 Issue 3, Volume 3, March 2008

mailto:Popescu_ctin2006@yahoo.com
mailto:ilie_b@utgjiu.ro,olaru@utgjiu.ro
mailto:nicolae.antonie@utgjiu.ro
http://www.em.ucv.ro/
http://www.utgjiu.ro/ing

Next, the dynamic model based on Lagrangian
equation is derived. In the next section some
commonly used cost functions for n-R robot and
their gradients are derived. In the second part, a
software package for simulation of n-R robot is
presented. The package is implemented in
Matlab/Simulink and consists of several M-files and
Simulink blocks for the calculation of the robot
model and several utility functions derived from the
robot model like cost functions and functions for the
representation of the robot in the task plane [15]. At
the end, some examples showing how to use the
derived functions and blocks in Matlab and in
Simulink are presented.

 2 Problem Formulation

In the following subsections, we derive the
cinematic and the dynamic model of the n-DOF
robot with revolute joints. The manipulator is
supposed to move in the vertical plane x-y as shown
in Fig.1.The task coordinates x are the positions in
x-y plane, x=[x, y]T.

2.1. Kinematics of n-R robot

With respect to n joint coordinates q, and m task
coordinates x, the kinematics of the manipulator can
be described with the following equations [1]:

 x=p(q), J(q) , = J(q) + J(q,) , (1) =x& q& x&& q& q& q&

where p is an m-dimensional vector function
representing direct kinematics, J is the Jacobian
matrix and J is its time derivative, J =dJ/dt;. As
we deal with redundant manipulators, n>m and J is
an mxn matrix. Let

& &

ϕ be an n-dimensional vector
with components:

 iii q+= −1ϕϕ (2)

for i=1,...,n and initial value 0φ =0, and li be the
length of the ith link. Following this, in the case of a
planar robot (m=2) with revolving joints, the end
effectors positions x, x=[x1, y1]T, can be expressed
by the following recursive equations [10]:

 ()iiii lxx ϕcos1 += + and ()iiii lyy ϕsin1 += + (3)

for i=n-1 ,...,1 and initial values xn = lncos(nϕ) and
yn = lnsin(nϕ). The pairs [x1, y1]T represent the
position of the end of the manipulator measured
from the joint i. Next we calculate the Jacobian

matrix J. In the planar case, the Jacobian J is a 2xn
matrix:

J=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

n

n

q
y

q
y

q
x

q
x

1

1

1

1

1

1

L

L

.

From Eqs. (2) and (3), it follows that:

k
j

i y
q
x

−=
∂
∂ and k

j

i x
q
y

=
∂
∂ , (4)

where k=max(i, j). {Note that
xi= ()[]∑ ∑= =ik ij jk ql cosn k } Hence, the components of J

can be specified without any further calculations as:

 J= . (5) ⎥
⎦

⎤
⎢
⎣

⎡ −−

n

n

xx
yy

L

L

1

1

For the complete model, we have to derive , i.e. to
differentiate J with respect to time:

J&

 =J& ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂n

k
k

k
q

q1

&
J . (6)

Differentiating Eq. (4) with respect to q yields:

 r
kj

i x
qq

x
−=

∂∂
∂ 2

 and r
kj

i y
qq

y
−=

∂∂
∂2

 (7)

where r=max(i,j,k).Substituting Eq.(7) into Eq.(6)
yields:

 =J&

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−

nnn

n

n

T

nnn

n

n

T

yyy

yyy
yyy
xxx

xxx
xxx

L

LLLL

L

L

&

L

LLLL

L

L

&

22

21

22

21

q

q

. (8)

As we can see from Eqs. (5) and (8), the only
elements of a cinematic model of n-R robot to be
calculated are xi and yi. All other parts of the model
can be expressed in terms of xi and yi.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 150 Issue 3, Volume 3, March 2008

2.2. Dynamics of n-R robot

Before we determine the components of the
dynamic model, we have to derive expressions for
the position of the centerpoint of the mass and
corresponding Jacobian matrices for all segments.
Using Eq. (3) the position of the centerpoint of the
mass (COM) of the ith link can be denned by:

 xci= . (9)
()
()⎥⎦

⎤
⎢
⎣

⎡
+−
+−

icii

icii

lyy
lxx

ϕ
ϕ

sin
cos

1

1

Note that [x1-xi, y1-yi]T represents the position of the
joint i measured from the base of the robot.
Differentiating Eq. (9) with respect to q yields:

()
⎩
⎨
⎧

>
≤++−

=
∂
∂

ij
ijlyy

q
x iciij

j

ci

,0
,sin ϕ

()
⎩
⎨
⎧

>
≤++−

=
∂
∂

ij
ijlxx

q
y iciij

j

ci

,0
,cos ϕ

 (10)

The Jacobian matrices related to the segments have
been divided into two parts:

J= , ⎥
⎦

⎤
⎢
⎣

⎡

A

L

J
J

where JL and JA are parts of J associated with linear
and angular task velocities, respectively. The
Jacobian matrices associated with the center-
point of the mass of the ith link are defined as:

()i
LJ

()i
LJ =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

n

cici

n

cici

q
y

q
y

q
x

q
x

L

L

1

1

and can easily be obtained by substituting Eq. (10)
into the above equation. Next, the derivatives of ()i

LJ
with respect to q are calculated:

()

k

i
L

q∂
J =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

kn

ci

k

ci

kn

ci

k

ci

qq
y

qq
y

qq
x

qq
x

2

1

2

2

1

2

L

L

using the relationships

()
⎩
⎨
⎧

>>
≤≤ϕ++−

=
∂∂

∂
ikorij
ikandijlxx

qq
x iciir

kj

i

,0
,cos2

()
⎩
⎨
⎧

>>
≤≤ϕ++−

=
∂∂

∂
ikorij
ikandijlyy

qq
y iciir

kj

i

,0
,sin2

where r=max(j, k). For convenience, the following
notation has been introduced:

()iQ = ()i
LJ T ()i

LJ ; ()i
kΨ =

() T

k

i
L

q
J

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂ ()i

LJ + T()i
LJ

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

k

i
L

q
J (11)

The dynamic model is based on the Lagrangian
formulation. The equations of the motion of the
robot are given by:

q
T

q
T

∂
∂

−
∂
∂
&dt

d = , τ

where T is the total energy of the system and τ are
generalized forces corresponding to the joint
coordinates q. After some calculations, the dynamic
equations of the rigid robot can be given in the
closed form:

 τ =H(q) +h(q,)+ B +g(q), (12) q&& q& q&

where H is the inertia matrix, h is the vector of
Coriolis and centrifugal forces, B is the matrix of
viscous friction coefficients and g is the vector of
gravity forces. The detailed derivation of the above
equations is described in [1]. In Eq. (12), the matrix
H is given by:

H= ∑ =
n
i im1(()i

LJ T + T()i
LJ ()i

AJ ()i
AJ),

where mi is the mass of the ith link. In the case of a
planar manipulator with revolute joints, it can be
proved that terms ()i ()i

LJ TIi simplify to: LJ

()i
LJ TIi

()i
LJ =Ii

nn

ii

×

×
⎥
⎦

⎤
⎢
⎣

⎡
00
01

,

where Ii is the moment of inertia of the link i and 1
and 0 are matrices of ones and zeros of
corresponding dimensions, respectively. Next, the
components of the vector of Coriolis and centrifugal
forces h can be expressed by:

and ∑∑
= =

=
j k

kjijki qqhh
1 1

&&
n n

i

jk

k

ij
ijk qq

h
∂

∂
−

∂

∂
=

HH
2
1 .

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 151 Issue 3, Volume 3, March 2008

Using Eq. (11) the vector h can rewritten into a
more suitable form:

h ()

()

()

()

.
2
1 2

1

11
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑∑

==

q

q

q
q

qqm

i
n

T

iT

iT

n

j
j

i
j

n

i
i &

&

L

&

&

&&

ψ

ψ
ψ

ψ

As a last step, the components of the vector of
gravity forces g are calculated. In general, they are
defined as:

()j
Li

n

j

T
accji mg Jg∑

=

=
1

,

where is the vector representing the
acceleration of gravity, but in the case of n-R planar
robots it is of benefit to calculate the components of
the vector g recursively. Namely, the gravity force
of link i is equal to the gravity force of the link i+1
increased by the contribution of the link i. Thus, the
components gi are:

T
accg

()i

n

ik
ikciiaccii lmlmggg ϕcos

1
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ∑

+=
+ (13)

for i= n -1,..., 1 and the initial value gn
=gaccmnlcncos(φn) and gacc is the acceleration of
gravity.

3 Problem Solution

Optimization is often part of the motion planning
and the control design of redundant mechanisms. A
very common approach is redundancy resolution at
the velocity level based on the equation [12]:

(Φ+−++= + &&& JJIxJq kd)

&

Φ&

, (14)

where is the desired task velocity, J+ is the
generalized inverse, Φ is an arbitrary joint velocity
vector and (I-J+J) is its projection into the null
space of J, corresponding to the self motion of the
mechanism and k is an arbitrary constant. The first
part of Eq. (14) is the least normal solution and
assures the motion along the path. The second part
is the homogeneous solution which moves the robot
in the null space of J, e.g. toward the optimal
configuration. The scalar gain k is used to tune the
null space motion. In the following, we present

some cost functions which are common in the study
of the redundant systems.

dx&

3.1. Singularity avoidance

It is well known that pseudo-inverse control does
not avoid singularities. Furthermore, minimization
of some cost functions may push the manipulator to
the singularities. Therefore, additional measures for
the singularity avoidance should be used. One
possibility is the condition number of J [16]. The
condition number is the ratio between the maximal
and minimal singular values of JJT:

min

max

σ
σ

ρ = . (15)

The other commonly used measure is the
manipulability measure [16] defined as:

. ()TJJdet== mw σσσ L21 . (16)

In the case of planar manipulator JJT is a 2x2
symmetric matrix :

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 2221

1211

aa
aaTJJ

and the two singular values of JJT are

() ()

2
4

212222112211

2,1
aaaaa +−±+

=σ (17)

Hence, substituting Eq. (17) into Eq. (15) yields:

() ()
() ()212222112211

212222112211

4

4

aaaaa

aaaaa

+−−+

+−++
=ρ (18)

and into Eq. (16) yields

 ()2122211 aaaw −= . (19)

The components , = can be easily obtained
using the following equations [17,10]:

ija ija ija1

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 152 Issue 3, Volume 3, March 2008

 211
1

11
iii yaa += +

222
1

22
iii xaa += +

iiii yxaa −= +
12

1
12 (20)

where the initial values are . To
move away from the singularity we have to
minimize ρ or maximize w. Following the basic idea
the velocity in Eq. (14) should be selected in the
case of the condition number as:

012
1

22
1

11
1 === +++ nnn aaa

Φ&

 2
2

2112

σ
σσσσ

ρ
∇−∇

=∇=Φ& , (21)

or when the manipulability is used as

()2122211

121211222211

2

2

aaa

aaaaaaw
−

∇∇−∇+∇
=∇=Φ& . (21)

Differentiating yields: ija

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

∂
∂ ∑

−

=

1

1

12
11

2
j

k
jkj

j
ayx

q
a

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−=

∂
∂ ∑

−

=

1

1

12
22

2
j

k
jkj

j
axy

q
a

∑∑
−

=

−

=

+++−=
∂
∂ 1

1

2211
1

1

12 j

k
jjk

j

k
ikj

j
aayjxx

q
a

and the results are then used in the calculation of the
gradient of the cost functions [in Eq. (20) or Eq.
(21)].

3.2. Joint torques optimization

Considering only the gravity term on the right side
of Eq. (12), the performance criterion function p
representing the weighted norm of joint torques can
be expressed as:

 p=g(q)TWg(q), (22)

where W is the matrix of weights. To optimize p,
the vector can be selected as:

 () ())(2 qWg
q
qgq

T

p ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=∇=Φ& . (23)

Considering Eq. (13), the gradient of gravity forces
is calculated as:

()
⎪
⎩

⎪
⎨

⎧

>

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

∂
∂

=
∂
∂ ∑

+=
+

ij

ijlmlmg
q

q
q
g i

n

ik
ikciiacc

j

i

j

i

,0

,sin
1

1 ϕ (24)

for i=n-1,...,1 and initial value

()ncnnacc
j

n lmg
q
g

Φ−=
∂
∂

sin .

Thus, using Eqs. (13) and (24) the gradient of the
cost function Eq. (23) can be easily obtained.

3.3. Simulation

There exist several simulation packages for robot
analysis and control design like "A Robotic
Toolbox" [3] and "A Toolbox for Simulation of
Robotics Systems" [16] which are implemented in
Matlab, or "Robotica" [13], [14] which is based on
Mathematica. All these packages support the
general manipulator structures and are rather
complex. To utilize all the simplifications in the
model calculation which are enabled due to the
special structure of the planar manipulators, we have
decided to develop a special software package
"Robotic Toolbox" for dynamic simulation of n-
DOF robots with revolute joints. The package has
been implemented in Simulink. Matlab has been
selected mainly due to its capabilities of solving
problems with matrix formulations, easy
extensibility and because of the possibility to
simulate in real-time.

3.3.1. Implementation in Matlab

The mathematical models derived in the previous
sections form the basis of the simulation system.
The main functions are:

[x,J,Jd]=kinmodel(q,qd,L) for the calculation of
elements of the kinematic model {x,J,);
[links]=kin_link(q,L) for the calculation of task
positions of all links;
[x,J,Jd,H,h,g]=dynmodel(q,qd,L,Lc,m,ml,ll,B) for
the calculation of elements of the complete model
(x, J, J , H, h, g); [Man,GradMan]=idxman(q,L) for

J&

&Φ&

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 153 Issue 3, Volume 3, March 2008

the calculation of the manipulability w and its
gradient; [CN, GradCN] =idxcn(q,L) for the
calculation of the condition number ρ and its
gradient and [Grav,GradGrav]=idxgrav(q,L,Lc,m,

ml,grav,W) for the calculation of the norm of joint
torques due to the gravity p and its gradient.

Table 1 Parameters of the robot

Parameter Example for 4-R robot

Initial joint position q q = [0.5;1;-1;-1]*pi/2

Initial joint velocity q qd= [0;0;0;0l &

Link lengths l L = [1 1 1 1]

Link COM/c Lc = [0.4 0.3 0.3 0.25]

Link masses m m = [2 1 1 0.5]

Load mass mt m1 = [1 1 1 1]

Link inertias I ll= [0.3 0.2 0.2 0.11]

Viscous friction coefficient B Bv = [0.05 0.04 0.04
0.04]

The parameters of the robot needed in the
calculation of the above functions are given in the
Table 1. These functions can be used together with
the standard Matlab functions in different areas like
kinematics, dynamic or path planning. For example,
to calculate the direct kinematics the following
commands should be used:

>> nj= ;L=[1 1 1 1]; q=[0.5;1;-1;-1]*pi/2;

>> qd=[1; 1; 1; 1]; qdd=[1;0;-1;2];

>> [x,J,Jd]=kinmodel(q,qd,L); xd=J*qd;

>> xdd=J*qdd; disp([x xd xdd])

To find the configuration of the robot with maximal
manipulability for the same task position the
cinematic control with the Adams (ode113)
integration is used:

>> while norm(qd)>0.001 [x,J]=kinmodel (q,L);

J1=J'/(J*J'); NS=(eye(nj)-J1*J);

[Man,GradMan]=idxman (q,L);

qd=10*NS*GradMan; q=q+qd*0.001; end

>> disp (q)

As no task motion is desired only the second term of
Eq. (14) is applied for the control. The figure of the
optimal manipulator configuration is obtained by
using the following commands (see Fig. 2)

Fig. 2. Configuration of 4-R robot with maximal
manipulability.

>> xx=kin_link (q,L);ll=plot(xx(1,:),xx(2,:)); grid

>> axis equal, axis square, axis([—1 252.5])

>> xlabel('x-axis'), ylabel('y-axis')

3.3.2. Computational complexity

As described in the previous sections, most of the
equations of the model use recursion and are in the
form of loops. To obtain the most speed of the
Matlab it is recommended to vectorize all the loops.
For example, Eqs. (2) and (3) can be transformed
into the form of

fi=(robll*q)'; cL=L*cos(fi); sL=L*sin(fi);

 x=cL*robll; y=sL*robll; X=[x(l),y(l)];

where robll is a lower-left triangular matrix of ones.
As expected, the vectorized form is faster.
Unfortunately, the increase in the calculation speed
is not significant because it is not possible to
vectorize all the loops and because the vectorization
itself increases the number of numeric operations.
On the other hand, the significant performance
improvements can be achieved by using MEX-files
instead of M-files. Using the Matlab Compiler, M-
functions can be compiled to MEX-files. As the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 154 Issue 3, Volume 3, March 2008

Matlab compiler compiles loops very efficiently it is
better not to vectorize those parts where the
vectorization introduces additional operations. Table
2 shows the execution time te versus number of
DOF of the robot cinematic and dynamic model
realized as M-file and MEX-file. It is obvious that
the MEX-file version is significantly faster than the
M-file version. We can also see that the execution
time te for calculation of the cinematic model
increases with the number of DOF as O(n2) and the
dynamic model as O(n3) for both M-file and MEX-
file.

Table 2. The execution time tc versus number of
DOF for cinematic and complete model for M-file

and MEX- file

Dynmodel Kinmodel

M-file MEX-file M-file MEX-file

n te(ms) te(ms) te(ms) te(ms)

2 11 1,1 5,0 0,38

3 27 1,7 7,2 0,44

4 38 2,7 9,8 0,50

5 55 3,8 14,3 0,60

10 215 23,1 44,0 1,10

20 1197 276,9 159,0 3,30

3.3.3. Integration into Simulink

As an extension to Matlab, Simulink adds many
features for the easier simulation of the dynamic
systems, e.g. graphical model building and selection
of the integration method and parameters. To exploit
additional features, we have developed several
blocks and functions needed to create cinematic and
dynamic models and to simulate the motion of n-R
robots in Simulink. Fig. 3 shows the Simulink part
of the "Robotic Toolbox". To gain the transparency
the system should be represented by the block
structure with several hierarchical levels. In the case
of robot systems the top level represents the close
loop model. The corresponding block diagram is
given in Fig. 4. Under the Robot block, the
cinematic or dynamic model of the robot is
modelled. For example, using Eq. (12) the dynamic

model of the robot can be built as it is shown in
Fig.5.
The block Model is realized as the S-function
(calling the M-function dynmodel) and includes the
calculation of model matrices and vectors x, J, ,
H, h and g. The two integrators are used to obtain
the joint velocities and positions. As it can be seen
from Fig. 5 the model calculations require some
matrix operations for the calculation of the joint
accelerations and for the direct cinematic
transformations (inversion, product, etc.). As the
standard Simulink does not provide any blocks for
the matrix operations we had to write the necessary
blocks. To make them fast they are all C-MEX files.
Other special blocks in the Simulink library provide
functions specific for robots which cannot be
created using the standard Simulink blocks. Two
special blocks are used for the representation of the
end-effector position in the task space and for the
on-line animation of the manipulator motion (Fig.
4). They plot the signals in separate windows as it is
shown in Fig. 6.

J&

Robotic Toolbox

Fig. 3. Robotic Toolbox : Simulink block library

Fig. 4 Simulink block diagram for general close
loop system.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 155 Issue 3, Volume 3, March 2008

3.3.4. Simulation example

For illustration of the capabilities of the "Robotic
Toolbox", we have chosen a dynamic simulation of
a 7-R manipulator moving along a straight line.
The redundancy resolution has been performed at
the acceleration level and the control law is given in
the form [12]:
=τ H(J+(d+Kv e - J)+(I-J+J)+h+g. (25) x&& & & q& Φ

where e=xd-x is the tracking error, is the desired
task space acceleration, Kv and Kp are constant gain
matrices and J+ is the inertia weighted pseudo-
inverse, +=H-1 JT(JH-1JT)-1.

dx&

J&
The null space vector is used to stabilize the null
space motion and is defined as [7]:

Φ

 =-KnΦ
()q

dt
JJIdq &&

+−
− , (26)

 Fig. 5 Simulink block diagram for the calculation
 of the dynamic model of the robot

Fig. 6. Task space (.v, y) and manipulator animation
windows for the presentation of the manipulator

motion in the task plane.

where Kn is a gain matrix. Fig. 7 shows the
SIMULINK block structure of the system. As we
can see, the matrix blocks enable straightforward
model generation from the Eqs. (25) and (26).

Fig. 8. Tracking of a line: configurations of the
robot in the task plane.

Fig. 9. Tracking of a line: task and joint velocities.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 156 Issue 3, Volume 3, March 2008

Two dynamic models are used in the system: one
for the calculation of the robot model and one in the
control algorithm. As they can have different
parameters, the user can simulate the errors in the
model parameters. The simulation can be performed
from the Simulink menu or from the command line
by using
>> [t,x] = ode45('trace',3,[],[0.001 0.01 0.001])
where trace is the name of the Simulink model.
The selected system states are saved in the variables
T, rxt, xt, qt and ut using To Workspace blocks. The
analysis of the simulation results is then made in
Matlab. For example, by using the following
commands:
>> xx=kin_link(qt(1,:),L); ll=plot(xx(1,:),xx(2,:));
>> axis equal, axis([-0.5 6.5 -1.5 5]), grid

>>xlabel('x-axis'),ylabel('y-
axis');set(11,'Linewidth',2);
>>Hold on; plot(rxt(:,1),rxt(:,2),':')
>>for ii=1:10:length(qt) xx=kinJink(qt(ii,:),L);
li=plot(xx(1r:),xx(2,:)); set(li,'Linewidth',1); end
the motion in the task plane can be plotted as shown
in Fig. 8. The next commands plot the task and joint
velocities versus time (Fig. 9):
>>subplot(211); plot(T,xdt);
>>xlabel(ltime');ylabel('task velocities')
>> subplot(212); plot(T,qdt);
>>xlabel('time');ylabel('joint velocities')
Actually, the user can use all the tools available in
Matlab and Simulink for the control design or the
analysis of simulation results.

Fig. 7. SIMULINK block diagram for a robot system with the redundancy resolution
at the acceleration level [control algorithm: E(25)].

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 157 Issue 3, Volume 3, March 2008

4. Conclusions

In the paper, cinematic and dynamic models of n-
DOF planar manipulators (robot) with revolving
joints are presented. Numerical effective equations
to solve the direct kinematics and dynamics are
developed. Their basic benefit is to utilize partial
results in further calculations. Additionally, some
cost functions for n-R manipulators and their
gradients are presented. Based on the derived
models, a software package "Robotic Toolbox" for
cinematic and dynamic simulation of n-R planar
manipulators with revolute joints is derived.
The package is implemented in Matlab/Simulink. It
consists of several M-files for the calculation of the
model and other functions for planar manipulators
which cannot be created using the standard ones.
 To make the simulation easier, the modules were
also integrated in Simulink environment as S-
function blocks. Additional blocks for matrix
operation in Simulink enable a straightforward
building of the simulation model.
Current experience with the toolbox has confirmed
that it is very useful and effective tool for many
purposes: cinematic simulation, dynamic simulation,
analysis and synthesis of control systems, trajectory
generation, etc. As the complexity of the model
increases slower with the number of DOF than in
the case of general manipulators, the derived
toolbox permits simulation of manipulators with
many DOF within reasonable simulation times. It is
very easy to extend and to adapt the simulation
package to different requirements.
Thus, it should be of interest to the researchers
involved in the development of advanced robot
control systems. Our further work will consider the
real-time simulation. We intend to rewrite all the
functions into C-MEX files so that the automatic
code generation will be possible.
The final goal is the development of an integrated
environment for the robot control design and testing
by using the "robot in the loop" simulation where
the model of the robot in the simulation scheme is
replaced by the real manipulator.

References:
[1] H. Asada H., Slotine J.J.E.., (1986) Robot
 Analysis and Control, Wiley, Chichester.
[2] Carignan C.R., (1991) Trajectory
 optimization for cinematically redundant
 arms, Robotic Syst. 4.
[3] Corke P.I., (1996) A robotics toolbox for
 MATLAB, IEEE Robotics Automn Mag. 3.
[4] Euler J.A., Dubey R.V., (1989) A comparison of

 two real-time control scemes for redundant
 manipulators with bounded joint velocities,
 Proceedings of the IEEE Conference on
 Robotics and Automation, Scottsdale.
[5] Ivănescu M., (1994) Roboţi industriali, Editura
 Universitaria, Craiova.
[6] Hsia T.C., Guo Z.Y, (1989) Joint trajectory
 generation forredundant robots, Proceedings of
 the IEEE Conf Robotics and Automation,
 Scottsdale.
[7] Hsu P., Hauser J., Sastry S., (1989) Dynamic
 control of redundant manipulators, Robotic
 Syst. 6.
[8] Khatib O., (1987) A unified approach for motion
 and force control of robot manipulators: the
 operational space formulation, IEEE Trans.
 Robotics Automn 3.
[9] Klein C.A., Huang C.H., (1983) Review of
 pseudo inverse control for use with
 cinematically redundant manipulators, IEEE
 Trans. Systems, Man, Cybernetics SMC 13.
[10] Lenarcic J., (1993) Optimum configurations of
 planar n-R hyper-redundant mechanism,
 International Conference on Advanced Robotics,
 Tokyo.
[11] Martin D.P., Baillieul J., Hollerbach J.M.,
 (1989) Resolution of cinematic redundancy
 using optimization techniques, IEEE Trans.
 Robotic Autom 5.
[12] Nenchev D.N., (1989) Redundancy resolution
 through local optimization, Robotic Syst. 6.
[13] Nethery J. E. Spong M.W., (1994) Robotica: a
 Mathematica package for robot analysis, IEEE
 Robotic Automn Mag. 1.
[14] Popescu M.C., (1996) Simularea numerică a
 proceselor, Tipografia Universităţii Contantin
 Brâncuşi, Târgu-Jiu.
[15] Popescu M.C., (2006) 2D Optimal Control
 Algorithms Implementation, WSEAS
 Transactions on System and Control, Issue 1,
 Vol. 1, Veneţia.
[16] Surdilovic D., Lizama E., Kirchhof J., (1995)
 A toolbox for simulation of robotic systems, E.
 Breitenecker, I. Husinsky (Eds.), EUROSIM '95
 Simulation Congress, Vienna, Elsevier,
 Oxford.
[17] Zlajpah L., Lenarcic J., (1994) On-line
 minimum joint torque motion generation for
 redundant manipulators, 25th Interntional
 Symposium on Industrial Robots, Hanover.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Popescu Marius-Constantin, Borcosi Iilie,
Olaru Onisifor, Antonie Nicolae

ISSN: 1991-8763 158 Issue 3, Volume 3, March 2008

