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Abstract: - In this study, a distributed system which could be used to detect and track an explosive carrying mobile 

human is designed. As a novel approach to existing odor detection and tracking methods, a technique which combines 

odor and sound detection is proposed for increased accuracy. To this aim, a MEMS sensor network including a 

pressure sensor, an accelerometer, a microphone, an odor sensor and electronic unit is proposed. For the electronic unit 

of this system a sensor network and least square estimation based sensor fusion algorithm is developed and simulated. 

The results are evaluated with respect to various paths of two humans, one carrying the explosive. The results show 

that odor sensing alone is not sufficient for the accurate determination of the odor track, and that by adding other 

conventional tracking methods, accuracy could be increased. 
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1 - Introduction 
Although there is sufficient technology to detect metal 

weapons, detection of plastic explosives such as C-4 

with methods that are harmless to humans, still remains 

to be a challenge. Metal detectors or X-ray facilities 

commonly used at airports and customhouses cannot 

find plastic explosives. Y-ray detection using irradiation 

of neutron beams is recognized as an effective method 

for C-4 detection at this point, but few actually use this 

method due to doubts about the safety of using nuclear 

radiation on the public. Hence, methods must be sought 

to carry out C-4 inspection safely, nondestructively, and 

without physical contact. One possible method is the use 

of THz radiation, which is claimed not to harm the 

human body in [1]. 

    Detection of explosives using odor sensors is already 

in use for the detection of land mines and there has been 

ongoing research on odor sensor based detection of 

plastic explosives [2][3],[4],[5], which mostly develop 

ways to detect the different odorants in a specific odor.  

    There are numerous studies in the literature for odor 

source localization; some studies try to locate the odor 

source by triangulation [6], while some studies try  

stochastic estimation techniques like Least Square 

Estimation Method [6] and Maximum Likelihood 

Method [7], or Bayesian based methods like PQS 

(Process Query System) [8]. A common characteristic in 

all these algorithms is their low accuracy and sensitivity 

to environmental effects like the wind.  

    The major contribution of this study is the 

development of a method that could be used with odor-

sensor based microelectromechanical (MEM) sensor 

networks for the detection and tracking of a human 

carrying a plastic explosive while moving among several 

other mobile, unarmed humans. In this study, it is also 

demonstrated that combining odor detection with sound 

detection will provide higher accuracy than finding the 

odor source directly, with the use of odor detection 

alone. In the developed algorithm, commonly used 

passive target tracking techniques such as acoustic, 

seismic and pressure based techniques are fused to 

accurately detect and track the target trajectory.  These 

targets are then matched with the odor detection results, 

which are obtained via the conventional triangulation 

method. The resulting performance provides a higher 

accuracy in comparison to other odor source localization 

techniques reported in the literature    

 

Another contribution of the study is the detection and 

tracking of mobile odor sources (i.e explosives in this 

case) with the use of stationary sensors, unlike most 

studies in which stationary targets are pursued using 

mobile sensors [9].  This approach will also increase the 

chances of tracking and disarming the intruder without 

his/her awareness and at an appropriate moment and will 

significantly limit the harm caused to innocent    

bystanders and security officers. The use of odor sensors 

will further contribute to optimize energy consumption 

in the network in that all sensor groups in the module 

will be kept on standby, unless a command is received 

from the odor sensor.  
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This study will combine these approaches for the aim of 

accurate detection and tracking of a human carrying an 

explosive in a public place. To this aim,  a multisensor 

network (MSN) will be designed based on  n-MEM 

sensor modules; each MEM sensor module will include 

low-cost, low-power passive sensors, namely odor 

sensors for the detection of the explosive, and a 

microphone, accelerometer, passive infrared sensors 

(PIRs) and a pressure sensor for the tracking of the 

human carrying the explosive.  Each MEM module will 

also include circuitry for the data fusion of the odor 

sensors, signal conditioning circuitry as well as RF 

communication and power supply circuitry in the same 

case. Signal conditioners will convert sensor outputs in 

each module to appropriate levels, which are then 

processed via analog-to-digital converters (ADCs). Data 

from the odor sensors will also undergo a fusion process. 

The fused data will then be transmitted from each 

module, along with the outputs of the multiple sensors to 

the hub unit, via RF transmission. This unit is the major 

processing unit located in each subdivision of the 

network and performs fusion and decision tasks, while 

also conducting communication with each sensor 

module, other hub units in the network and the base 

computer for higher level data fusion and decision-

making. This process will be further discussed in the 

“Proposed multisensor networking and sensor/data 

fusion approaches” section. A functional block diagram 

of the process is given in Figure 1. 

 
Figure 1. Functional block diagram of each MEM sensor 

module and hub unit 
 

    Four different sensor types are considered for each 

MEM sensor module; namely, odor sensor, microphone, 

accelerometer [10], and pressure sensor. Structural 

diagram of this mechatronic module is shown in Figure 

1. Odor sensors detect the explosives while microphones 

serve as passive radars, which detect the location of 

mobile objects from their vibrations in the air. 

Accelerometers, which detect seismic waves, also serve 

the same purpose. Finally, pressure sensors are activated 

upon direct contact, in that sense; they produce highest 

accuracy and hence, are also used to calibrate the other 

sensors. The Zigbee Network protocol [11], in RF 

Communication Block, is used to collect the sensor data, 

which are then used in fusion and decision algorithms 

[12]. The Rf Communication block also supplies sensor 

localization by using trianglization method [13,14].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Structural diagram of this mechatronic module. 

  

   The odor sensor is comprised of a sensor array [15] to  

measure the density of a variety of odorants constituting 

an odor, a classifier to fuse and classify the collected 

data [16,17]; This sensor detects the odor of weapon, and 

estimate the source of odor. [18]. Although the 

resolution of odor sensors is lower than the other 

sensors, their use in combination with the odor sensor 

for the approximate localization of the target proves to 

be very effective as demonstrated by simulations in this 

study.   

    The following sensors is designed individually and 

then, combined in a single case to constitute the above 

mentioned MEM sensor module: 

    Sound sensors (MEM microphones): A microphone is 

a sensor, which converts acoustic pressure to voltage by 

using a thin diaphragm.  When voice pressure strikes a 

diaphragm, stress and depletion occurs. This stress can 

be easily measured by piezoresistors, or depletion can be 

detected by capacitance change. Figure 3 depicts the 

architecture of a piezoresistive microphone. Signals 

output by the microphone provide some information on 

the position of the intruder based on the duration of time 

required for the intruder-transmitted sound waves to 

arrive at the microphone. This data component will be 

further fused with data produced by other sensor 

modules at different locations to yield the position of the 

intruder. The need for other sensors in addition to the 
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sound sensor arises from the fact that sound waves are 

subject to losses and reflection; reliable detection and 

tracking requires the ability to filter out these effects. 

masspiezoresistor piezoresistor

diaphragm
 

 

Figure 3. MEM Piezoresistive Microphone. 

 

    Pressure sensors: Pressure sensors, given Figure 4, 

operate on the same principles as microphones. The 

main difference is the strength and resonance frequency 

of the diaphragm. The pressure sensors operate as logic 

sensors, giving the exact position of the intruder (if 

stepped upon), hence serving as a calibrator for the other 

sensors. 

capacitance

bulk

gas
diaphragm

 
Figure 4. MEM Capacitive Pressure Sensor 

 

  Accelerometers: When acceleration occurs, proof mass 

applies force on the beam, giving rise to stress and 

depletion. This stress can be easily measured by using 

piezoresistors, or depletion can be detected by its 

capacitance change. The architecture of a MEM 

piezoresistive accelerometer appears in Figure 5, which 

demonstrates how this system will be used to sense 

motion in a certain area via vibrations on the ground. 

The PI and her PhD student have already designed a 

MEM multiple accelerometer module, also including the 

data fusion and RF circuitry in the same case. The 

product is currently under testing. 

 

 
Figure 5. MEM Accelerometer. 

    Odor Sensors: These sensors operate based on 

odorants. Each odorant compound signifies a different 

odor.  Typical ways of measuring odor is by designing 

filters for the desired odorants, and placing a sensor at 

the output of each filter (see Figure 6 for a 

demonstration of this process). For instance, if a 

capacitive sensor is used, the capacitance value varies 

based on the action of these odorants, which affects the 

dielectric part of the capacitance, as demonstrated in 

Figure 7. Each odor consists of one or more odorant 

types. For instance Odor 1 can consist of 30-40% 

Odorant A and 77-79% Odorant B. Another odor may 

consist of 50-55% of Odorant A and 20-25% Odorant B. 

Hence, recognizing an odor requires more than one 

sensor and the fusion of their outputs. 
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Figure 6. Odor Measurement Process. 
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Figure 7. MEM Odor Sensor. 

 

 

 

     There are basically five different odor sensing 

methods: Conductivity Sensors, Piezoelectric Sensors, 

Metal-oxide-silicon field-effect-transistor (MOSFET), 

Optical Fiber Sensors, and Spectrometry-Based Sensors.      

Methods for odorant sensing under consideration in this 

study are the following: One method is measuring the 

change in the dielectric coefficient of a certain polymer 

which reacts with the certain odorant. The dielectric 

coefficient can be easily measured by making a 

capacitance using this polymer. The proposed structure 

is given in Figure 8. 

 

 

proof mass

piezoresistor piezoresistor 

beam

proof mass

piezoresistor piezoresistor 

beam
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Figure 8. Structure of resistive and capacitive sensors 

and cross-sectional view 

 

    The second approach is measuring the resistance of a 

certain polymer which reacts with the certain odorant. 

By making a resistance using this polymer, the 

conductivity coefficient which changes as a result of the 

reaction can be measured. The structure is similar to the 
capacitance method, but a different polymer is involved. 

The third approach is measuring the chemical properties 

(like pH) of a special polymer to identify the odorant. 
Once again the appropriate polymer reacting to the 

odorant is chosen, but in this approach, the change in the 

chemical properties is measured by a chemical FET. The 

source drain current of the FET is affected by the 

chemical properties of the polymer. The structure of the 

chemical FET is given in Figure 9.  
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Figure 9. Chemical FET 

 

    The design of the MEM odor sensors in this study 

requires for a hybrid structure. Since the odor detection 

will require several odor sensors to be incorporated in 

the same module, with each sensor reacting to a different 

attribute of the explosive’s odor, a data fusion algorithm 

taking place inside the module will also be developed to 

fuse the data  from the odor sensor array. 

     For energy optimization purposes, the sensors and 

fusion/communication process in each module and in the 
sensor network will be activated only when the odor 

sensor in a sensor module indicates a potential explosive 

in that subdivision. Additionally, to minimize the energy 

consumption, the fused data in each SM is transferred to 

the hub unit via the neighboring SMs . Hence, in the 1st 

year, the duties of each SM involve sensing motion and 

odor, detecting odor and passing on its data and data 
from other SMs to the hub unit.  

    Hub Units (HU):  These units possess a higher 

processing power and memory in comparison to the 
sensor modules and conduct the fusion of data coming 

from sensor modules in its subdivision. HUs are also 

equipped with power and wireless communication 
circuitry. Each HU is in charge of a certain subdivision 

(indicated by the circles in Figure 10), hence, collects 

data coming from SMs related to the location of the 

target and odor of the explosive to further perform data 

fusion and decision-making for the proper determination 

of the “mobile” explosive’s motion trajectory. This 
information is then transmitted to the neighboring HUs 

and the base. For optimized energy consumption, the 

transmission of the data to the base is also done via other 
HUs, where all data is fused for decision-making. 
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Figure 10. Sample configuration of the MEM-MSN 

 

2 - Physical Model for Intruder Detection 

and Tracking using Sound Sensors and 

Accelerometers Used In Simulation 
    Figure 11 gives a configuration example for the 

random locations of the sensor modules, hub unit and the 

explosive–carrying human (intruder). As will be 

demonstrated with the derived equations, the location of 

the intruder is determined with a minimum of 3 sound 

sensors, denoted by S1, S2, and S3, the data from which is 

fused at the hub unit via Least Square Estimation. The 

hub unit in that sense is assumed to be just another 

sound sensor, which hears the intruder as soon as any 
one of the sensors sends it a signal. In the simulations, 

S1 is assumed to have heard the intruder first; hence, 

both S1 and hub unit are assumed to hear the intruder in  
dT seconds. As can be seen in Figure 1, the unknown 
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distance between the hub unit and the intruder is denoted 

by d. 

    The derivation of the equations are based on the 

notation used in Figure 12. The coordinate axes of the 
hub unit is taken as reference; x,y are the coordinates of 

the intruder, while (x1,y1), (x2, y2) and  (x3, y3) are the 

coordinates of S1, S2 and S3, respectively.  
    Sound is a traveling wave of pressure and can be 

modeled as, 

 

)()(),,( tftKtvdf =     (1) 

 

    where f(t) is the sound signal and K(t) is an amplitude 

coefficient which decreases in time; v is the velocity of 
sound, which is approximately 332m/s  in the air at 

20°C. 

    At an arbitrary instant, t, an intruder appears within 

the range of S1 at a distance, d1 from S1 as demonstrated 

in Figure 2. At different time instants, S2 and S3…S50  
also hear the intruder, with d2 denoting the distance 

between  S2 and intruder, d3 denoting the  distance 

between S3 and intruder, and so on... dT denotes the 
arrival time of the sound at  S1 and hence, at the hub 

unit. dT12 denotes the arrival time differences between S1 

and S2; dT23 denotes the arrival time differences between  
S1 and S3. Note that dT is unknown, while dT12 , dT23 are 

measured. 
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Figure 11. Configuration and definitions for intruder, 

sensors and hub unit 
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Figure 12. Intruder initiated sound waves with respect to 
sensors and hub unit 

 

    Base on these definitions, the following relationships 
can be derived: 
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     Using (2), the following relationships can be given 

between each sensor and intruder coordinates: 
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     Combining (3) with (4) we get (6), (3) with (5) we 
get (7), and (4) with (5) we get (8). 

     As can be seen from the equations,  x,y, and dT  are the 

unknown variables, while all terms on the right are known. 
Hence, it can be seen that determining the intruder’s 

location in 2-dimensional spece requires 3 sensors, while 3-

dimensional space would require a minimum of 4 sensors. 

At this point, to reflect the more realistic nature of sound 

velocity, v, which is actually dependent on the material and 

temperature, a white noise is added to the above equations 

and the solution is sought in terms of a Least Square 

Estimation problem. 
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2 - Physical Model for Intruder Detection 

and Tracking using Pressure Sensors In 

Simulation 

   Each module has a pressure sensor operating as logic 

sensors. In the experiments, they will be activated upon 

stepping and hence, serve as a calibrator for the other 
sensors and detection/tracking algorithm; however, in 

the simulations, these sensors are assumed to be 

activated  when the intruder comes within a very close 
range of that certain point representing the sensor 

module.  For example, in the presented simulation 

results, only S5 (sensor 5) was stepped on.  

 

3 - Preliminary model for odor diffusion 

and measurement in the simulations 

    Further assumptions in the simulations are that the 

explosives are emitting a gas constantly, which gives rise to 
a certain gas density at every instant, t, and this gas disperses 

into the environment by diffusion. Hence, a gas starting to 

disperse into the environment at t1, will lose its effect in time 
but will exist forever. From the following instant, t2 and on, 

new gas amounts will be effective cumulatively at any given 

point (or sensor module) in the environment.. The new gas 

amount will also disperse into the environment via diffusion, 

but with a reduced effect as time advances. Each odor sensor 

senses and measures the cumulative gas amount at that point. 

    Since Fick´s 2nd law is a partial differential equation 

with only a few analytical solutions available for special 

cases, numerical methods have to be used to apply it to 

technical problems. An analytical solution of Fick´s 2
nd

 
law is given by Equation (12): [19] 

 






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Γ
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d
erfccdtc
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.),(    (12) 

 

where c: dispersed gas amount,  cΓ : gas amount at 
source,  d: distance from source,  D: constant. In the 

simulations, odor is considered as a gas dispersing in 

amounts of ∆c at every t. As the explosive-carrying 

human moves, at every point he/she moves at an new 

instant t, a new gas source, cΓ  starts its dispersion based 

on (12).  A given odor sensor in the environment located 

at a distance, d from the intruder will  accumulate n gas 

amounts, from n cΓ sources, giving rise to a gas amount, 

Si as expressed below: 
 

∑
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ki dtcS
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    Although a fusion and ANN based decision algorithm 

will be conducted for the multiple odor sensors in one 

module, only one odor sensor per module is considered 

in the simulations. Hence, for the determination of the 

coordinates for the explosive-carrying intruder, a 

weighted-average is performed combining the measured 

S1, S2, S3, ...amounts collected from all odor sensors (50 
in this case) at coordinates x1, y1, x2, y2, x3, y3... to 

determine the explosive-carrying intruder’s coordinates, 

x and y. 
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     As the simulation also considers more than one 

humans (without explosives) in the environment, the 

distinction of a “different human” is made by evaluating 

the traveled distance in the expired time interval in terms 

of its feasibility for a human-being. The same approach 

is applied for the determination of coordinates using the 

sound and pressure sensors.  

 

4 - Simulation Environment 

    In the simulation, a hub unit and randomly deployed 

fifty sensor modules are considered in a 10 by 10 square 

meter area. The area is assumed to have no air draft, no 
boundaries, hence no reflection effects. The environment 

temperature and the velocity of sound throughout the 

simulations are assumed to be constant. It is also 

assumed that the 2 humans (one carrying explosives) are 

emitting sound waves periodically. 

    At this point of the studies, it is also assumed that the 

location of each sensor module and hub unit is known. 

Each module in the 50-sensor network consists of an odor 

sensor, microphone, accelerometer and pressure sensor. 
The total simulation time is 50 seconds, with the sampling 

times for sound/pressure/ accelerometers taken as 0.01 sec 

and that of odor sensors (with a slower response) taken as 
1sec. In these results, data fusion is performed using a 

Least Square Estimation algorithm, which fuses all odor 

signals and motion signals separately combining data 

coming from sensors of the same type. However, a 

decision-making process which evaluates odor and 

motion signals together is also performed in determining 

the motion of the “mobile” explosive and separating it 

from the trajectory of the unarmed human. 

    In the simulation results, the motion of sound and 
odor diffusion is taken into consideration with the 

following models: 
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5 - Simulation Results 

    The simulation results for the detection and tracking of 

the explosive-carrying human (in an environment where 
an innocent human is also walking around) are given in 

Figure 13. In the figures, the *’s indicate the location of 

the sensor modules; the straight lines indicate the actual 

trajectories of the humans in the environment; the dark 

grey triangles represent the estimated trajectory of the 

innocent human and light grey triangles represents that of 

the explosive-carrying human; finally the black circles 

indicate the trajectory of the “mobile” explosive estimated 

based on data collected from the odor sensors only. 
     In Figure 13a we see two people walking parallel in 

north east direction. People at the south has bomb. It is 

easily seen that algorithm find the correct person easily. 
In Figure 13b we see two people walking in parabolic 

trajectory from west to east. And the person at the north 

has bomb. In the figure we can predict the person who 

has the bomb. And we also see that we should trace the 

peoples before we sense the odor and use these data. 

Because the odor diffuse too slowly. In Figure 13c we 

simulate two person one of them is walking to north east 

directly, and other one is walking on a spiral trajectory 

of increasing radius. And in Figure 13d both two people 

walking on the same kind of spiral trajectory. As it is 
easily seen that, the bomb can be easily detected again  

in these 2 case. In Figure 13e one person is walking to 

south west directly, and other one is walking to south 

east directly. And their trajectories are intersected. As 

seen in this Figure this case can also be determined. And 

in Figure 13f the people is walking on parabolic 

trajectory, which are intersected. As it is seen in the 

figure determining the person who has bomb get much 

more complicated, but still it can be done. Main problem 
is the speed of odor with respect to the intruder. So other 

sensors are getting a necessity. 

     The proposed odor sensor-based network activation 
strategy, which will obviously yield reduced energy 

consumption,  is also analyzed in terms of  mean square 

error(MSE) of tracking accuracy.  With a trial simulation 
run using this strategy, only 20 sensors became active to 

track the “mobile” explosive. The strategy resulted in an 

MSE of 0.0205 as opposed to the conventional strategy 

keeping all 50 sensors in the network, yielding an MSE 

of 0.200. The very minor accuracy drop with this 

simplistic simulation run motivates the use of the 
proposed strategy in the actual network for energy 

optimization. 

 

6 - Conclusions 

    Odor diffuses very slowly so we can easily say that, 

although accelerometers and sound sensors are more 
effective in tracking due to their fast response, odor 

sensors are effective in “detecting” the odor, but not in 

“tracking” due to their slow response.  

   Moreover, in a noisy environment, accelerometers 

could effectively assist the sound sensors. Non-
uniformities of the ground are very effective on the 

performance of accelerometers; hence, sound sensors 

could be more efficient in such cases. Velocity of sound 
depends on ambient temperature, hence could benefit 

from calibration. Pressure sensors could serve this 

purpose. Pressure sensors have high accuracy, but low 
possibility of being stepped on. Therefore we can say 

that sensor fusion is needed supplying system more 

accurate and robust. 

     With the developed algorithm, it is possible to detect 

and track the target using data gathered from a minimum 

3 sensors of the same type. However, using data also 
from different sensor types helps distinguishing the  

 

     
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

Figure 13. Simulation of the system by various 

trajectories. 

 

 
    With information obtained by fusing the data from 

each different sensor type, it is possible to exclude data 
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13c)    13d) 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

 
13e)    13f) 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Ahmet Kuzu, Metin Gokasan, Seta Bogosyan 

ISSN: 1991-8763
69

Issue 2, Volume 3, February 2008



that is not in harmony with data collected on the target. 

Hence, fusing the data coming from each sensor in the 

MEMS sensor modules with a scaling factor helps 

increase “target” detection and tracking. The evaluation 
of the multiple sensor data in relation to the odor sensor 

data is essential in the accurate tracking of  the “mobile’ 

explosive in this study.  Odor sensors are not only 
capable of the initial detection of the explosive, but also 

capable of serving as a somewhat slow guide in relating 

the detected odor to the possible trajectories with the 
help of the other sensors, as observed in the simulation 

results. Logic data coming from pressure sensors will act 

as a calibrator for position determination and contribute 

to accuracy. Odor sensor based network activation may 

possibly cause a small decrease in tracking accuracy, 

hence should be considered for reduced energy 
consumption in the network 

     Thus, the above combination of sensors will be 

considered in the preliminary design process of the 
MEM sensor module. While designing the MEM odor 

sensors, the decision on the choice of the supporting 

motion sensors will also be fine-tuned with more 
detailed and realistic simulation tasks given as student 

and/or master thesis projects. 
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