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Abstract: - The aim of this paper is to present a constrained pole assignment controller that is based on the 
analysis of optimal settings for the double integrator system. It takes into account parasitic delays in the control 
structure and constraints imposed on the control signal. In addition, one can find here approximation procedure 
resulting to the models that were used at the controller design. The whole design is illustrated on two examples. 
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1 Introduction 
The pole placement method belongs to frequently 
used method for controller setting (e.g. [2], [3], [12], 
[13], [14]). Its aim is to specify the position of 
closed loop poles. Although the pole assignment 
control is considered as a typical linear technique, in 
[9] it was shown that the philosophy can easily be 
extended to the constrained systems using a new 
constrained pole assignment (CPA) controller. In the 
paper presented concept introduces dynamical 
classes of the CPA control, corresponding to the 
well-known Feldbaum's theorem [4] about n-
interval of optimal control. However, the intervals 
of saturated pulses are separated by smooth control 
intervals and, eventually, not each control interval 
must reach a saturation limit.  

The CPA control design for systems with the 
second order plant dynamics leads to a PD 
controller. In this way, the closed loop behavior is 
described by two poles 1α  and 2α . Since the control 

signal is constrained, only admissible reference 
signals can be achieved. Looking for analogies with 
the 1st order constrained pole assignment control, in 
[8] and [9] it was shown that the first pole 1α  

ensures a regular decrease of the distance between 
an actual state and the required steady state (e.g. the 
origin). The distance decrease can be guaranteed 
only along a line specified by an eigenvector of the 
closed loop matrix corresponding to 1α . On the 

other side, the second pole 2α  ensures a regular 

decrease of the distance between an actual 
representative point and the already mentioned line. 
Two ordered combinations of the closed loop poles 

[ ]1 2,α α  yield two different lines, i.e. two different 

transient responses. If the velocity of the transient 
response is the basic criterion of the controller 
design, the value of both poles should be the same. 
In the case that disturbance robustness is required, it 
is more suitable to choose the line with a smaller 
slope by the appropriate choice of two different 
poles.  

As will be shown, the proposed algorithms can 
also be used in controlling higher order systems 
approximated by integral models. 
 

 

2 CPA PD controller for I2 system 
Considering the pole assignment controller for a 
double integrator system one gets a control structure 
that is shown in Fig.1.  
 

 
 
Fig. 1. Pole assignment controller for double integrator 

system 
 
Its modification leads to the structure of a pole 

assignment PD controller (Fig.2).  
Characteristic polynomial of both presented 

structures is  
 ( ) 2

1 0S Schp s s K r s K r= + +  (1) 
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Fig. 2. Pole assignment PD controller 
 
The aim of the control is to achieve aperiodical 

transient responses at the maximal possible 
controller gain. This can be ensured by double pole 
of the polynomial (1) that can be found solving a set 
of equations  

 ( ) ( )0;  0
d

chp s chp s
ds

= =  (2) 

where  

( ) 12 S

d
chp s s K r

ds
= +  

Then, denoting a closed loop pole as α , there result  
2

0
S

r
K

α=  

 1

2

S

r
K

α= −  (3) 

whereby ( )0α ∈ −∞, . 

The choice of the closed loop pole α  enables 
one to influence the velocity of the transient 
responses. However, as it will be shown later, the 
closed loop pole can also be used for a 
compensation of parasitic delays in the control 
structure. 

 
Considering a constrained control signal 

1 2u U U∈ ,  the constrained pole assignment   PD 

controller can be specified. Its concept was firstly 
introduced in [6] and later explained in [10] or [8].  

Without loss of generality it is supposed that the 
required state has to reach zero position ( 0w = ). 
Then, the continuous PD control algorithm (see also 
[10], [7]) can be described by the formula 

 1 2 1 2
r

S S

u y y
K K

α α α α+= − + &  (4) 

for 2 1

1 1

S S
K U K U

y
α α

 
 
 
 
 
 

∈&  and by the formula 
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 
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 (5) 

elsewhere, whereby if 0y <  then 1jU U=  else 

2jU U= . 

In the last step the constraints are imposed on the 
control signal when 

 ( )
22
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usatu
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r

r

r

>

<
==  (6) 

Considering the introduced control algorithm, the 
linear pole assignment control as well as the ''bang-
bang'' minimum time control are involved as limit 
cases. For the closed loop poles tending to minus 
infinity, the algorithm tends to the relay minimum 
time one, and conversely. For the closed loop poles 
close to zero, the representative point does not leave 
the zone of linear pole assignment control. 

 
 

3 PD controller for delayed  systems 
In the next section the influence of elementary 
parasitic time delays (transport delay – dead time or 
accumulated delay – time constant) on the controller 
settings is considered.  
 
 
3.1 PD controller for I2Td system 
Let us consider the control structure (Fig.3) with PD 
controller in the form  
 ( ) ( )1C DC s K T s= +  (7) 

In the case of double integrator system combined 
with a dead time  

 ( ) 2
dT sSK

F s e
s

−=  (8) 

the characteristic equation of the close loop system 
is  
 ( ) 2 d dT s T s

C D S C Schp s s K T K e s K K e
− −= + +  (9) 

       

 

Fig. 3. PD controller with the double integrator system 
and a parasitic delay 

 
The time optimal setting of PD controller 

follows the requirement of the fastest possible 
monotonic transient response. The controller 
parameters are to be found by solving equations  

 ( ) ( ) ( )
2

2
0;  0;  0

d d
chp s chp s chp s

ds ds
= = =  (10) 
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where  

( )

( )
2

2
2

2

2

2

2

d

d d

d d

d

T s

C D S d

T s T s

C D S C S d

T s T s
C D S d C D S d

T s
C S d

d
chp s K T K T e s

ds

K T K e K K T e

d
chp s K T K T e s K T K T e
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K K T e

− 
 
 

− −
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−
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+ −
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+ +

 

Then, the optimal controller parameters can be 
expressed in the form  

 

2 2

2 2

7 5 2 0 079
2C

S d S d

e
K

K T K T

  − +
  
 
− + .= =&  (11) 

 3 2 2 5 828D d dT T T
 
  
 

= + = .&  (12) 

whereby the close loop pole is 

 
2 2 0 586

opt

d d

s
T T

− + .= = −&  (13) 

 
 
3.1.1 Equivalent pole 

As it was mentioned before, the closed loop pole in 
the derived CPA PD controller can also be used for 
a compensation of parasitic delays in the control 
structure. For this purpose, it seems to be convenient 
to introduce a notion of equivalent pole that firstly 
was mentioned in [10]. 

The equivalent pole is the closed loop pole that 
after substitution in the pole assignment control law, 
deduced for an ideal double integrator system, gives 
the same controller setting as would be calculated 
for the control structures considering parasitic 
delays. 

It means, in the structures with parasitic delays 
equivalent poles will yield the same controller 
setting as closed loop poles in the ideal control 
structure (Fig.1). Considering the control structure 
(Fig.3) with PD controller (7) the equivalent pole 
can be found by fulfilling two requirements:  

0CK r
!

=  

 1C DK T r
!

=  (14) 

whereby r0 and r1 are given by (3). In this way there 
arises a set of two equations for one variable α . 
Considering 2 various poles instead of one double 
pole one gets  

1 2
C

S

K
K

α α!

=  

 
( )1 2

C D

S

K T
K

α α! +
−=  (15) 

 
 

Hence  

2 2 2
1 2

1 1
4

2 2S C D S C D S CK K T K K T K Kα , = − ± −  

Since a pole assignment controller is designed 
only for the case of real poles, the complex pair has 
to be approximated by the real part, or by the 
module. Both approximations give relatively close 
solutions and therefore it is sufficient to consider the 
simpler approximation by the real part. Then  

 
1

2e S C DK K Tα = −  (16) 

Solving (15) for I2Td system one receives  

( )

2 2

1 2

2 2 2 2

1 2

2 2 3 10 2 14
         

d

d

e

T

e e
i

T

α
  − +
  
 

,

− + − +

−
= ±

 − + −
 ±

 

and following (16) the equivalent pole of the 
continuous   controller (CPA PD controller) is 

 
0 231

e

dT
α .= −  (17) 

In Fig.4 it is possible to compare transient 
responses of the I2Td system that is controlled by 
two sets of the continuous PD controller. The first 
one is done according to the optimal setting given 
by (11, 12) and the second one is calculated on the 
base of equivalent pole approximation (17). There 
are also presented corresponding control signals.   

 
Fig. 4. Transient responses and control signals of I2Td  
system (KS=1; Td=0.4) that is controlled by the optimal 
PD controller (dashed line) and by the PD controller set 

according to the approximation by equivalent  
poles (solid line) 

 
It is evident that with the equivalent pole 
approximation the dynamics of the structure is 
slowed down and there seems to be no sense in 
using it. However, when the constrained control 
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signal is used, the optimal setting can lead to 
overshoot as it is evident from Fig.5. 

 
Fig. 5. Transient responses and constrained control 

signals of I2Td system (KS=1; Td=0.4) that is controlled by 
the optimal PD controller (dashed line) and by the CPA 
PD controller set according to the approximation by 

equivalent poles (solid line) 
 
 
3.2 PD controller for I2T1 system 
Now, let us consider a double integrator system with 
one time constant that can represent a parasitic delay 
in the feedback (Fig.3).  

 ( ) ( )2
1 1
SK

F s
s T s

=
+

 (18) 

After introducing the extended state vector 

( )Trx y y u= &  it can be written in the form  

 

1 1

0 1 0 0

0 0 0

1 1
0 0

S

r r

y y
d

y K y u
dt

u u

T T

   
   
   
   
   
   
   
   

   
   
   
   = +
   
   −   
   

& &  (19) 

The control structure with the PD controller  

( )0C C D
u rx K K T x= − = −  

leads to the closed loop matrix  

1 1

1

0 1 0

0 0

1
r S

C C D

A A br K

K T K T T
T

 
 
 

= + =  
 
 − − − 
 

 

The aim of the controller design is to achieve a 
well-balanced dynamics, when the characteristic 

polynomial ( )chp s  has a triple pole. This can be 

fulfilled following conditions (10) where 

( ) ( )
3 2

1 1 1

det

1
          

r

C D C
S S

chp s sI A

K T K
s s K s K

T T T

= − =

= + + +

( ) 2

1 1

2
3 C D

S

dchp s K T
s s K

ds T T
= + +  

( )2

2
1

2
6

d chp s
s

ds T
= +  

Hence, one receives  

 
2
1

1

27Copt

S

K
K T

=  (20) 

 19DoptT T=  (21) 

 
1

1

3opts
T

= −  (22) 

 
The equivalent pole can be found solving the set 

of equations (15) and taking the real part of the 
solution:  

 1 2
1

3 3

18

i

T
α ,

− ±=  (23) 

or directly according to the relation (16) when  

 
1

1

6e
T

α = −  (24) 

 
 

4 Process approximation  
The design of control algorithms introduced in 
previous sections follows the predefined simplified 

dTI 2  and 12TI  models of the “real” systems. The 

approximation of systems can be done in various 
ways. Process dynamics are very often determined 
from a step response experiment. This requires, 
however, that the system is at rest before the input is 
applied, and that there are no measurement errors 
[2]. In practice it is difficult to ensure such 
conditions. So, the step response method is limited 
to the determination of simple models. Models 
obtained from a step experiment are, however, often 
sufficient for the controller tuning. 

One of the first approximations of the system by 
an integrator based model was described in [15]. 
The model corresponded to an integrator with dead 
time ( dTI1  model) and it was characterized by two 

parameters. The process gain R and the dead time L 
can easily be determined graphically from the step 
response (see Fig.6).  
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Fig.6. Typical process reaction curve  
 
The symbol R was used for the slope of a tangent 
drawn to the point of inflection of the unit step 
response. Parameter L was defined as the time at 
which this tangent cuts the time axis. The model is 
the basis for the Ziegler-Nichols tuning procedure 
discussed in [15] and it can also be fitted to an 
unstable process. The Ziegler-Nichols 
approximation of the process may also be accepted 
as an approximation for 11TI  models. Other 

methods can be found e.g. in [11].  
The mentioned dTI1  and 11TI  models can be 

estimated in different ways and after generalization 
the proposed methods can also be used for 
determination of approximate models of higher 
order. 

One solution is to approximate the initial phase 
of a process reaction curve given by points iy  by 

dTI 2   model using the least squares method. Then, 

the initial part of the curve can be described by  

           
( )

2
ˆ

2
d

Si

TiT
Ky

−
=              (25) 

The procedure is based on a successive increase 
of dead time dT  from the starting value 0=dT  

using the step T until the square of difference 
between the process and model outputs  

          ( )∑
=

−=
m

i

ii yyS
0

2ˆ               (26) 

reaches a minimum value. For dTI 2  model  

( )

( )
mk

m

i

Si

m

i

d
Si

ki
TKy

TiT
KyS

,

!

0

22
2

0

22

min
2

   

2

=










 −−=

=










 −
−=

∑

∑

=

=
 

                 (27) 
 

The interval of approximation is specified by the 
parameter m which is gradually increased.  Then, 
the gain of the process model SK  is determined as 

the maximum gain calculated for various values of 
m. Another possibility is to find the maximum value 
of the transport delay kTTd = . However, in both 

cases the same results are achieved. 
The reason for looking for the maximum values 

of either model gain SK  or dead time dT  is that 

they lead to the minimal overshoot of the process 
output.  
The identification algorithm for the system 
approximation by dTI 2  model is shown in Fig.7. 
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Fig.7. Identification algorithm for the system 
approximation by dTI 2  model 
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Approximation of the process reaction curve by  

12TI  model can be accomplished using the modified 

Prony's method (see e.g. [5]). Since the structure of 
the model is known, there is no problem to find 
characteristic polynomial of discrete transfer 
function and to determine parameter 1T  from the 

related equation. Precision in the calculation of the 
parameter 1T  can be increased by solving the 

predetermined system of equations for example by 
means of the least squares method. The gain of the 
approximated model SK  is computed from the 

analytical form of transient response  

( ) miDTT
iT

iTKy i
Si ,0   ;1

2
2

11 ∈







−+







 −=  

                 (28) 
whereby also in this case the predetermined system 
of equations can be solved. The approximation 
interval is chosen to guarantee a maximal possible 
gain SK  (time constant 1T ). 

 
 

5 Examples 
In following two examples let us illustrate both the 
system approximation and the controller design as 
well. 
 
 
5.1 Example 1 
Let’s consider the fourth order system given by the 
transfer function  

( )
( )( )( )( )2 3

1

1 1 1 1
F s

s s s sα α α
=

+ + + +
; 0.2α =  

The system has 4 poles whose spacing is determined 
by the parameter α . It is to be controlled by CPA 
PD controller described in this article. The control 
signal is limited to min 2U = −  and max 2U = . The 

pole of the controller is designed according to the 
approximation of the system by I2Td and I2T1 
models. The effort of both approximations is to 
copy the beginning of the transient response (Fig.8). 
In this way one can receive models in Table 1.  
 

Model Transfer function 

I2Td 
0.05

2

3.8 se
s

−  

I2T1 ( )2

3.05

0.03 1s s +
 

Table 1. Approximation models of the system in Ex.1 

 
Fig. 8. Example 1: approximation of the system step 

response (solid line) by I2Td (dashed line)  
and by I2T1 model (dotted line). 

 
The equivalent pole of the controller that should 

compensate a parasitic delay in the control loop 
(modeled by the transport or time constant delay), 
can be computed according to (17) or (24) 
respectively. For I2Td model it is 4 6116eα = − .  and 

for I2T1 model  5 5556eα = − . . 

 
Fig. 9. Transient responses and control signals for the 

first benchmark example controlled by CPA PD 
controller. The system is approximated by I2Td (solid 

line) and by I2T1 model (dashed line). 
 
The simulation results are presented in Fig.9. Both 
transient responses are monotonic. The controller 
based on I2Td approximation is a little bit slower 
than the second one but the advantage is that its 
control signal has a flatter character.  
 
 
5.2 Example 2 
The CPA PD controller can also be used for the 
system with damped oscillatory character (2 
complex poles). Let’s consider the system with 
transfer function  

 ( )
( )( )2

1

0 2 1 0 1 1
F s

s s s
=

. + + . +
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Following the beginning of the transient response 
it can be approximated by the integral models in 
Table 2. As it can be seen in Fig.10 both 
approximation methods give similar results. 
  
 

Model Transfer function 

I2Td 
0.1

2

0.76 se
s

−  

I2T1 ( )2

0.795

0.128 1s s +
 

Table 2. Approximation models of the system  
in Example 2 

 
 

 
Fig. 10. Example 2: approximation of the system step 

response (solid line) by I2Td (dashed line)  
and by I2T1 model (dotted line). 

 
 

The equivalent pole of CPA PD controller is set 
to 2 3058eα = − .  for I2Td and 1 3021eα = − .  for I2T1 

approximation. The computed control signal is 
limited to min 1 5U = − .  and max 1 5U = . . The 

simulation results can be seen in Fig.11.  
It is evident that both approximations are good 

enough to be used as a starting point for the whole 
controller design. The resulting transient responses 
have a monotonic character and the control signal is 
also acceptable. 

 
 

6 Conclusion 
The introduced controllers, presented here as 
constrained pole assignment controllers (CPA 
controllers), are derived for the double integrator 
plant models. The controller design enables to 
consider the influence of elementary parasitic time 
delays (transport delay - dead time or accumulative 
delay - time constant) on controller setting. 

The poles of the controller are adapted according 
to delays present in the control loop. The controller 

analysis of optimal setting enables one to determine 
the so-called equivalent poles that account for the 
present delay and can be substituted into the pole 
assignment control law computed for a delay free 
system. Since the controller structure remains fixed, 
i.e. it doesn't change its form and order due to the 
identified time delays, the controllers can be 
associated with the well-known group of parameter-
optimized controllers.  

 

 
Fig. 11. Transient responses and control signals for the 
second benchmark example controlled by CPA PD 
controller. The system is approximated by I2Td (solid 

line) and by I2T1 model (dashed line). 
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