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Abstract: - An uncontrolled motion of a reentry vehicles in the rarefied Mars’s atmosphere is investigated. Such 
reentry vehicle has small lengthening and a blunted form for effective braking [1]. This type of Lander can 
have three balancing positions of a spatial angle of attack: * 0, * 0, *α α α π= ≠ =  depending on the position of 
the center mass. The change of a dynamic pressure the descent into the atmosphere can lead to resonance. It is 
shown, that the numerical integration of motion equations does not give reliable results due to the probabilistic 
character of transients with related to resonance. The conditions of movement stability are received identified 
for various areas of movement under resonance. The suggestion is to calculate the top and bottom parameters of 
movement using averaged equations. The research shows that the resonance could cause the accident the 
Beagle 2 Lander. 
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1   Introduction 
One of the principal causes, resulting in abnormal 
behavior Reentry vehicle in an atmosphere, it is 
considered a parametrical resonance [2, 3] which 
arises at presence of small asymmetry when 
movement concerning the center of mass depends on 
two angular variables: a spatial angle of attack α and 
a angle of own rotation.  If frequency of fluctuation 
of the angle of attack and average angular speed of 
own rotation under action of indignations become 
multiple to the relation of simple integers then the 
resonance arises. The resonance as the phenomenon 
of big change of amplitude fluctuations can to arise 
when small asymmetry does not have also movement 
depends on one angular variable: a spatial angle of 
attack, if coefficient of the aerodynamic static 
moment ( )mα α  addresses in a zero in three points 
on a interval [ ]0,π . In this case on a phase portrait 

( )α α α=� �  three areas divided separatrices [4] can to 
take place. The dynamic pressure changes with 
height of flight and the phase portrait any more does 
not answer conservative system.   In connection by it 
the evolution of phase trajectories takes place. As a 
result, these trajectories can to cross separatrices and 
fall into various phase portrait areas, which is 
followed by qualitative changes in the motion 
character. This is a resonance. In similar tasks 
frequently apply methods of chaotic dynamics [5-8], 
for example, Melnikov method [9]. However this 
method gives good result when phase trajectories are 
in a vicinity of unperturbed separatrices. In this 
paper the methods based on averaging of phase 
trajectories are used [10]. 
 
 

 
2   Problem Formulation 
Uncontrolled reentry vehicle has small lengthening 
of the blunted form, which provides effective 
braking for descent in a rarefied atmosphere of Mars. 
This paper considers spatial motion around a re-
entry’s center of mass with the angle of attack 
dependence of the coefficient restoring moment 
having form of a biharmonical series   

( ) sin sin 2m a bα α α α= + . 
Such the angle of attack dependence of the 
coefficient restoring moment is typical for 
uncontrolled reentry vehicles of segmentally-conical, 
blunted conical, and other shapers  (Soyuz, Mars, 
Apollo, Viking, Beagle 2 Lander). The presence of 
second harmonic in the moment characteristics 
causes the possibility of appearance of an additional 
equilibrium position of a reentry vehicle in the angle 
of attack, i.e., an additional singular point on a phase 
portrait * (0, )α π∈  of the system, which causes the 
transient mode – resonance. Fig. 1 shows a 
segmentally - conic body (analogue of the Beagle 2 
Lander) and dependences of the coefficient static 
moment on the spatial angle of attack ( )mα α  at 
various positions of the center of the mass 

/T Tx x L= , counted from nose of a body ( -
reference length), received on the shock theory of 
Newton. 

L

     For considered reentry vehicles position 0α =  is 
stability. If the condition 
2b a>                       (1) 

take place, then there is an intermediate  position of 
balance * (0, )α π∈ . 
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     The purpose of the given report - to show an 
opportunity of occurrence of resonance, to find 
conditions of stability of the perturbed motion, to 
construct procedure of calculation of the top and 
bottom estimations of parameters of movement with 
use of the average equations [4]. 

 
Fig. 1. The coefficient of the aerodynamic restoring 
moment at varicus positions of the mass center. 
 
 
 
3 The disturbance equations of motion 
The motion of an axial-symmetric body around the 
center of mass at descent in an atmosphere is 
described by the system with slowly varying 
parameters of type [3] 

( ), (z )F z m zα α ε+ = −�� �α ,  

( ) ( )x RR m z R zε ε= − = Φ� , 

{ }( ) ( ) ( ) cos

( , ),
y x y

G

G m z G m z m z R

z

ε α

ε α

⎡ ⎤= − + − ⋅⎣ ⎦
= Φ

�
 

( ) sin ( , )x V
qSV c g z
mα α θ ε= − ⋅ − = Φ� α , 

2cos ( ) (
P

Vg
V R H θ
θθ ε= − − = Φ

+
� , )zα , 

sin ( , )HH V θ ε α= = Φ� z ,    

( ) ( )( )
3

cos cos
sin

sin sin 2 ,

G R R G
F

A B

α α
α

α
α α

− −
=

− −
  

aSLA q
I

= , bSLB q
I

= ,       (2) 

where ( , , , , )z R G V Hθ=  is the vector of slowly 
varying parameters; ε  is the small parameter; R and 
G are, to an accuracy of a multiplier, the projections 
of the angular momentum vector onto the 
longitudinal axis and onto the velocity direction, 
respectively; V is the spacecraft motion velocity, θ  
is the trajectory inclination angle, H is the flight 
altitude, g is the acceleration of gravity, ( )xc α α  is 

the drag force coefficient,  is the 
dynamic pressure, 

2 / 2q Vρ=
ρ  is the density of the 

atmosphere, S is the middle cross section area, m is 
the spacecraft mass, I is the transverse moment of 

inertia of the body, and L is its characteristic size, 
PR  is the planet’s radius; ( )xm zε , ( )ym zε  and 

( )zm zε  are the projections of a small damping 
moment onto the axes of the right-handed coordinate 
system Oxyz chosen in such a manner that the Ox 
axis is directed along the spacecraft’s axis of 
symmetry, the Oy axis lies in the plane formed by Ox 
and velocity vector V. 
Evolution of motion occurs under action of 
disturbance at 0ε ≠ . 
 
 
4 The unperturbed solution  
The disturbance system (2) is reduced to non-
perturbed system with one degree of freedom at 

0ε =   
( ) 0Fα α+ =�� .        (3) 

Let's find the common decision of this equation. The 
energy integral of system (3) has the form of   
 ( )2 / 2 Wα α E+ =� ,       (4) 
where   

( ) ( )
2 2

2

2

2 cos
2sin

cos cos

G R GRW F d

A B

αα α α
α

α α

+ −
= =

+ +

∫  

is potential energy. 
     We introduce a new variable cosu α= , and then 
the energy integral (4) takes the form 

2 2 2
2

2 2

2
2(1 ) 2(1 )

u G R GRu Au Bu E
u u

+ −
+ + + =

− −
�

 

or   
2 ( )u f u=� ,         (5) 

2 2

2 2

( ) 2(1 )( )
2 .

f u u E Au B
GRu G R

= − − −

+ − −

u
      (6) 

 The equation  (5) may be resulted in a quadrature 

( )
0

1 2
0

u

u

t t f u du
−

− = ⎡ ⎤⎣ ⎦∫ .       (7) 

     The polynomial ( )f u  has the fourth degree be 
relative u. It means, that the integral (7) is elliptic 
[12]. Four roots  of the polynomial (6) 
depend on coefficients 

1 2 3, , ,u u u u4

, , , ,A B R G E . There is 
a limited number of characteristic variants of an 
arrangement of roots. We research function ( )f u . 
This function at u = ±∞ ,  is equal        1u = ±
( ) ( )f sign b±∞ = ⋅∞  ,   

( ) ( )21f G R 0± = − ≤∓ .                 (8) 
     For real motion cosu α=  belongs to an interval 
[ 1, 1]− +  and function  by virtue of the 
equation (5). 

( ) 0f u ≥

     From (8) follows, that at  function 1u = ±
( ) 0f u ≤  then on the specified interval the 

polynomial (6) should have even amount of the real 
roots. 
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     First of all let us consider the case .  All 
four roots are real and two of them are in an interval 

 according to conditions (8) (see Fig. 2 a).  
We choose number of the root so that for real 
motion . Two others of the root 

satisfy to the conditions: 

0b >

[ 1, 1]− +

[ ] [2 1, 1,u u ⊂ − + ]1
13 −≤u , .  14 ≥u

 

 

 

 
Fig. 2. Roots of the polynomial ( )f u . 

 
     If , there are some variants of an 
arrangement of roots. Let roots  are real then 

exists two variants when these roots are located 
outside of the interval [ :  and 

 (see Fig. 2.16 c, d), and two variants - 
when inside the interval [

0b <
3 ,u u4

1, 1]− + 4 3 1u u< < −

3 4 1u u> >
1, 1]− + : 

4 3 2 11 1u u u u− < < < < <  and  

2 1 4 31 u u u u 1− < < < < <   (Fig. 2 b). When roots 
 are in a conjugate complex, the real part is at 

the left, on the right or inside the interval 
3 4,u u

[ ]2 1,u u  
(see Fig. 2 b, c, d). All variants of position of the 
roots are in Tab. 1. 
 

     Table 1. 
All variants of position of the roots polynomial 
( )f u  

Var. b  1 2,u u  3 4,u u  Type of roots
0b >

R0 3 1,u < −  

4 1u >  

R1 4 3 1u u< < −  

R2 3 4 1u u> >  

R3 

4

4 3

3 2

2 1

1

1 ,
,
,
,

1

u
u u
u u
u u
u

− <
<
<
<
<

 All roots 
1 2 3 4, , ,u u u u

are real roots

R4 

2

2 1

1 4

4 3

3

1 ,
,
,
,

1

u
u u
u u
u u
u

− <
<
<
<
<

 

C0 2 34 1u u u< <  

C1 34 2u u<  

C2 

0b <

21 u− < ,

2u u< ,

1 1u <  

Roots  1 2,u u
are real roots.

Conjugate 
complex roots34 1u u>  

3,4 34u u iv= +

 
     The integral (7) may be reduced to normal elliptic 
integrals with the change of variables  ( )u u γ= [12]. 
For variants R0..R4 the change is    

( ) ( )
( ) ( )

2
1 2 3 3 1 2

2
2 3 1 2

cos
cos

u u u u u u
u

u u u u
γ

γ
− + −

=
− + −

 ,                 (9) 

for variants C0..C2 - 
( ) ( )

( ) ( )
2 1 2 1 cos

1 1 cos
u u u u

u
ξ ξ γ
ξ ξ γ

+ − −
=

+ − −
 ,               (10) 

Where 1 2cos / cosξ χ χ= ( )1 34 /tg u u vχ = −1, , 

( )2 2 34 /tg u u vχ = − . 
 The changes (9) and (10) give the following 
expressions for (7)   
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(0 1 22 2
0

,
1 sin

dt F
k

γ γβ τ γ
γ

+ = =
⎡ ⎤−⎣ ⎦
∫ )k ,    (11) 

where 2 /bβ μ= , ( , )F kγ  is incomplete elliptic 
integral of the first kind [12], , kμ  - parameters 
which are expressed through roots , 1 4...u u 0τ  - a 
constant of integration.  
     Making use of inversion of integral  (11) 

[ 0 ,am t kγ β τ= + ]   
and formulas (9) or (10),   the general solution of 
equation (3) can be written as 

( )0

cos
1 ,

Mu L
Ncn t kδα

β τ
= = +

+ +
 .                 (12) 

     The values of coefficients , , , ,L M N β δ and 
 are determined depending on the type of roots: k

- four roots are real: change (9) ( 2δ = ) 

( )( )
( )( )

3 1 3

1 2

2 3

1 2 3 42

1 3 2 4

, ,

,

,

L u M u u
u uN
u u

u u u u
k

u u u u

= = −
−

=
−

− −
=

− −

   

( )( ) 1 2
1 3 2 40.5 ;b u u u uβ = − − −⎡⎣ ⎤⎦               (13) 

- two roots are real and two ones are complex-
conjugate: change (10) ( 1=δ ) 

( )

( ) ( )
( )

( ) ( )

2 11 2
2

2

2 2
1 2 2 34

2 2
1 34

2 22
1 34 2 34

2
,

1 1
1 1, 1 ,
1 2

2 ,

,

u uu uL M

N k

u u v
b

u u v

u u v u u v

ξξ
ξ ξ

ξ
ξ

β η ξ

η

−−
= =

− −

⎛ ⎞−
= = −⎜ ⎟+ ⎝ ⎠

− +
= − =

− +

= − + − +

( )( ) 2
1 34 2 34 .u u u u vζ = − − +

2

,

,

ζ
η

              (14) 
The size 0τ  is defined from entry conditions 

(0 0 ,F kτ γ= ) ,           

( ) ( )

1

0
0 0

0

cosarccos .
cos

L Msign
N L

δ
αγ α

α
⎡ ⎤+ −

= − ⎢ ⎥−⎣ ⎦
�   (15) 

Taking into account, that the period elliptic cosine 
 is equal ( , )cn x k 4 ( )K k , where ( )K k  is complete 

elliptic integral of the first kind, the period Tα  and 
frequency αω  of fluctuations of the angle of attack 
can be found from the general solution (12).  

( ) ( )4 , 2T K k K kα αδβ ω δπβ= = .  
     Let's consider transient cases: 

R3-C0, R4-C0, when ,2 3u u= 0=v 1 4u u= or , 
0v = ; R1-C1, R2-C2, R3-C1, R4-C2, when 

3 4u u= 0v =,  (Fig.2.). 
 Cases R1-C1 and R3-C1 or R2-C2 and R4-C2 also 
can coincide among themselves, forming 
accordingly cases R1-R3-C1, when , or 
R2-R4-C2, when 

3 4 1u u= = −

3 4 1u u= = . 
     From (13), (14) follows, that in variants R1-C1, 
R2-C2, R3-C1, R4-C2 the module of elliptic 
integrals 0k = . It is possible to show, that in this 
case formulas (13), (14) at substitution in (9) and 
(10) give the same common decision in which 
elliptic functions are replaced trigonometrical. 
Variants R3-C0, R4-C0 correspond to motion on a 
separatrice, 1k =  and T .    0αω → α →∞, 

  
 

5 The phase portrait 
Let us consider the energy integral system (3). The 
energy potential can be expressed as function of the 
variable cosu α=  in the form of two components 

( ) ( ) ( )g rW u W u W u= + ,                 (16) 

where  ( )
2 2

2

2
2(1 )g

G R GRuW u
u

+ −
=

−
,     

( ) 2
rW u Au Bu= + . 

We research behavior of the function (16) at various 
combinations of the parameters: , , ,R G A B .  

( )gW u     Let's find a derivative of the function on 
the variable  u

( ) ( ) (
( )

)2 2 2

22

1

1
g

R G u RG u
W u

u

+ − +′ =
−

 .          

     The numerator of this expression has the valid 
mutually return roots  and  from which 
only one belongs to interval 

/R G /G R
[ ]1, 1− + . Thus, there is 

a unique extremum of the function , and it is 

a minimum equal .  

( )gW u
2 20.5max( , ) 0R G ≥

     The second derivative 

( ) ( )( )( 2 2 21 3gW u R G u″ = + +      

( ))( ) 32 22 3 1RGu u u
−

− + −               (17) 

shows, that it and the function , everywhere 

on the interval 

( )gW u

[ ]1, 1− +  are nonnegative. Really, the 
numerator has extremums in already known points 

 and , equal ( )22 2 2 0G R R− ≥/R G /G R  and 

( )22 2 2 0G R G− ≥ , and it on the ends of the 

interval 1u = ±  equals . From here 

follows, that function  has no points of 

( )24 G R ≥∓ 0

( )gW u
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inflexion, and the derivative  is 
monotonically increasing quantity on the interval 

( )gW u′ 0R G= =  the saddle point takes place to provide its 
absence for any values of energy E  according to 
(17), (18) it is possible a choice enough big on the 
module [ ]1, 1− + . 

     Let's consider now the quadratic function ( )rW u . 

It has an extremum in a point ( 2 )A B− where its 

derivative  go to zero.  The 

second derivative  is a constant. 
Therefore at performance of the condition   
   

( ) 2rW u A Bu′ = +

( ) 2rW u B″ =

( )( ) *

1 1
min 0.5 gu

B W u B
− ≤ ≤

″⎡≥ − ≡⎢⎣
⎤
⎥⎦

,                (18)  

the second derivative  is 

positive or equal to zero. Function 

( ) ( ) ( )g rW u W u W u″ ″′′ = +

( )W u  has no 

points of inflexion on the interval [ ]1, 1− + . It means, 
that on a phase portrait of the system there is a 
unique steady position of balance, and saddle point is 
absent. From (18) follows, that  is positive or 

equal to zero always. The function 

*b

( )gW u″  

degenerates at , therefore,  and the 
condition (18) can be written . From (17) 
follows, that the size  decreases at increase in 
absolute values of parameters 

0R G= = * 0b =
0b ≥

*b
R  and G , i.e. the 

condition (18) is weakened. Obviously, the saddle 
point will be absent also at enough small absolute 
size of the coefficient . Really, if b
 0.5b a≤ ,                   (19)  

that function  on all the interval has the 
same sign and the derivative 

 is zero in a unique point, 

and function 

( )rW u″

( ) ( ) ( )g rW u W u W u′ ′′ = +

( )W u  has a unique extremum - a 
minimum. 
     If any of conditions (18), (19) is not satisfied, 
presence of two minima and one maximum of 
function  on the interval [( )W u ]1, 1− +  that 
corresponds to presence on a phase portrait of a 
unstable point such as a saddle (fig. 3) is possible.   
The specified situation will take place at 
performance of a condition 
    ( ) ( )*1 *2 0W u W u′ ′⋅ < ,      (20) 
where ,  are roots of the equation: *1u *2u

( ) ( )2

2 0
d W u

W u
du

′′ = = . 

From the condition (20) follows, that if inside the 
interval [ ]1, 1− +  the saddle point is absent in a plane 

case ( ) it will be absent and in case of 
spatial fluctuations irrespective of size of the 
parameters 

0R G= =

R  and . On the other hand, if at G

R  and . G
The phase plane divided the separatrice into three 
areas: external and two internal and 0A 1A 2A , if the 
condition (20) satisfies.  
     It is possible  to find connection between three 
balancing positions * 0, * 0, *α α α= ≠ =π  and 
positions of balance of the system  (3) on a phase 
portrait at performance of conditions (1). 

( )W u, where  is value        If *E W> *W  in saddle 
point *u u= , then motion occurs in external area 0A , 
as can been from fig. 3. Otherwise ( *E W< ) motion 
can to take place in any of internal areas  or 1A 2A  
depending on entry conditions. Equality *E W=  
satisfies to motion on the separatrice. 
 

 
Fig. 3. Phase portrait. 

 
 

6   Disturbed motion stability 
We investigate the disturbed motion research in 
areas , , 0A 1A 2A . Movement can begin both in 
external area , and in any of internal areas  and 0A 1A

2A . If the area in which began movement, is 
unstable, the phase trajectory will cross through 
separatrice some limited time by virtue action of 
disturbances. It is obvious, that at the moment of 
crossing separatrice two situations take place: two 
areas are unstable, one is stable and, on the contrary, 
one is unstable, and two are stable. At action of small 
disturbances the average of full energy E  and of 
potential energy  in saddle point *W *u u=  slowly 
changes. For definition of stability it is enough to 
calculate derivatives on time from these functions 
[3]. The internal area (  or 1A 2A ) will be stable, if in 
neighborhood separatrice the following condition 
satisfies 

*( ) ( , )E z W u z<� � .     (21) 
For external area 0A  the condition of stability looks 
like: 

*( ) ( , )E z W u z>� � .     (22)  
Function (21) in saddle point  is equal *u u=
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*

*

( )

( , )

( , ) .

m m

m

m

m m

W W

,

E z z
z

WF z z
z

WW z z
z

α α α α

α α

α α

α
α

α α

α

= =

=

=

∂ ∂
= ⋅ + ⋅
∂ ∂

∂
= ⋅ + ⋅

∂

∂
= ⋅

∂

� � �

� �

� �

2
* * * *( , ) 2(1 )[ ( ) ( , )]f f u z u E z W u z≡ = − − .     (23) 

In neighborhood separatrice take place 
*( ) ( , ) ( )E z W u z O ε− = ,    * ( ) ( )u z O ε=� . 

     Differentiation of function (23) on time gives the 
following result to within of the order  
infinitesimal 

 

2ε  
2

* * *2(1 )[ ( ) ( , )]f u E z W u z= − −�� � .                (24) 
From (24) follows, that conditions (21) and (22) are 
answered with the following conditions, accordingly 
(see Fig. 4, 5) 

     For definition of stability of the disturbed motion 
in neighborhood separatrice we introduce new 
criterion 

* 0f <� ,  . * 0f >�

*

( , )
m

m m
WF z z
z

α

α

α α ∂
Λ ≡ ⋅ +

∂
� �⋅ ,          (25)  

     Then conditions of stability (21) for internal area 
(  or ) and (22) for external area 1A 2A 0A  will 
become, accordingly 

, 0Λ > .      (26) 0Λ <
     On the basis of the carried out analysis it is 
possible to offer the following procedure of 
calculation of the top and bottom estimations of 
motion parameters with use of the average equations 
[4]. Numerical integration of the average equations is 
carried out from an initial point belonging to one of 
areas till the moment of crossing separatrice. Then it 
is calculated criterion (25) for each of areas , , 0A 1A

2A , and with the help of conditions (26) stability of 
disturbed motion is defined. The area from which 
there is an exit on separatrice, always is unstable, 
therefore there can be or one, or two stable areas. In 
the first case, numerical integration proceeds in 
stable area. In the second case, numerical integration 
for each stable area is carried out, in result is 
received the top and bottom estimations of the 
decision. 

 
A0-stable          A1, A2- unstable 

 
Fig. 4. Evolution of the phase portrait. 

     As an example the uncontrolled motion of 
analogue the Beagle 2 Lander is considered in the 
rarefied Mars’s atmosphere. On fig. 6 two branches 
of decisions for angle attack are shown: → 0A 1A  
and → .  0A 2A
 

 
A0- unstable            A1, A2- stable 

 
Fig. 5. Evolution of the phase portrait. 

 
     From integral of energy (4) follows, that at  0α =�

( )( ) ,mE z W zα= , 
where  is amplitude of attack angle. mα α=  

Fig. 6.  Amplitudes of oscillations of the  
angle of attack. 

    For system (2) average equations of motion, are 
received in [4, 11]. We calculate derivatives ( )E z�  
and  by virtue of the average equations: 

 
*( , )W zα�  
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7   Conclusion 
     Thus, we have shown, that exist transitive modes 
(resonance) at which parameters of motion 
considerably change at descent in the atmosphere of 
Mars for an axial-symmetric bodies having the 
biharmonic restoring moment.  Criteria of stability of 
transitive modes are found and procedure is offered 
for the analysis of motion uncontrolled reentry 
vehicles of blunted conical shaper.   It is shown, that 
if not to carry out the similar analysis of stability it is 
possible to overlook one of branches possible 
decisions, hence, to receive not genuine result.  
     Work is executed at support of the Russian 
Foundation for Basic Research (Project № 06-01-
00355-а). 
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