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Abstract: This paper starts with dynamic response of pantograph slider, and computes the dynamic
parameters of pantograph-catenary system such as contact force, hard spot, pull-off value and contact wire
height by utilizing the transfer function matrix gained beforehand and the displacements of pantograph slider
measured with the laser range sensors configured at the low voltage side. The paper also deducts the numerical
algorithm of response matrix and transfer function matrix, demonstrates the feasibility of reducing the number
of laser range sensors, and verifies its effectiveness by simulation with a simple example.

Key-Words: OCS(Overhead Contact System); Pantograph; System Response; Contact Force; Pull-of f Value;
Hard Spot; Contact Wire Height; Laser Testing Displacement
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1

IntroductionIntroductionIntroduction

Introduction

Pantograph slider is moving fast under the overhead
catenary when electric locomot ive is running. Fig.1
shows the effect of pantograph-catenary contact
force and dynamic response of horizontal vibration
of pantograph slider [1-3, 4].

Fig.1 Analysis of system signal

Direct testing methods of pantograph-catenary
contact force are commonly used in the world.
However, because of fast motion, testing signals are
vulnerable to the interference of electromagnetic
sparks caused by pantograph-catenary contact
vibration, and the installed pressure sensor increases
the weight of slider and changes its shape. Therefore,
the stability and safety of pantograph has been

affected.
The testing method proposed in this paper is to

install several laser range sensors symmetrically at
the top of the locomot ive, calculates the dynamic
parameters of the pantograph-catenary contact force,
pull-off value, hard spot and contact wire height
according to testing the horizontal vibration
displacement at the bottom of the pantograph slider.

The study of this paper, which is helpful to
construct the high-speed pantograph vibration test
platform, can be verified and generalized by
applying different frequencies, contact forces, and
acting positions.
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Fig.2 Response testing model of pantograph slider

The vibration of slider in the pantograph-catenary
operation can be considered approximately as
compound motion which includes horizontal
bending vibration of elastic beam supported by
fixed ends, vertical fluctuation and planary wheeling
of rigid beam supported by elastic ends. Slider’s
bending vibration mode can be solved by using
Euler-Bernoulli beam [5].

expresses pantograph-catenary contact pulseiF
force exerting at the spot of the slider’s beam. Itthi
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indicates changes of the pull-off value in different
locations. represents testing value ofiY
displacement from the high-speed laser sensorthi
on the top of locomot ive corresponding to the
bottom of the pantograph slider. Their dynamic
responses can be expressed as the following matrix
form in terms of transfer function:

(1)

1 111 12 1

2 21 22 2 2

1 2

n

n

n n nnn n

F YM M M
F M M M Y

M M MF Y

      
         
                   
         

can be obtained from unit im pulseijM
response. Therefore, according to convolution
principle, pantograph-catenary contact force P
can be expressed as follows:

(2)
1 1 1

n n n

i ij i
i j i

P F M Y
  

  
The impact acceleration of pantograph

catenary , contact wire height and Pull-offG H
value can be obtained instantly from discreteZ
displacement signal tested by those laser),( ity
sensors, which are expressed as follows:

(3)
2

2

( , )max{ } 1, 2, ,d y t iG i p
dt

  

(4)),(
1

1
0 




p

i

ity
p

hH

(5)



p

i
i ityWZ

1
),(

Where
the base height of sensors on the top of0h

locomot ive.
the number of laser sensorsp

the distributing order number of laseri
sensors

symmetrical weighting coefficients atiW
geometric location of those laser sensors.

333

3

KineticKineticKinetic

Kinetic

sss

s

analysisanalysisanalysis

analysis

ofofof

of

slidersliderslider

slider

’’’

’

sss

s

beambeambeam

beam

The model shown in Fig. 2 can be decomposed into
a pantograph elastic slider’s beam supported by
fixed ends and a pantograph rigid slider’s beam
supported by elastic ends. After solving their
dynamic response, horizontal response displacement

can be added together at the same point of),( ity
the axis under static equilibrium.
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Supposing that the bracing spring stiffness is ,k
length of slider’s beam is , the line density is ,l 
mass is , centriod is , moment of inertia ofm c
slider’s rigid beam circling the centriod is ,cI
choosing centroid’s horizontal displacement y
and angular displacement of slider’s rigid beam
circling around the centriod as generalized
coordinate( ), analyzing the forces exerting on,y
the slider, differential equation of forced vibration
can be established as follows:

(6))(2 cc lxPkyym 


(7))
2
1)((

2
1 2 lllxPklI cccc 




Assuming , from which the natural0Pc 

frequency of horizontal vibration and the cycling
frequency of rigid beam around its centroid can be
obtained respectively:

(8)



l
k

m
k

n
22

1 

(9)



l
k

I
kl

c
n

6
2

2

2 

Fig .3 Mechanic model of slider’s rigid beam
imposed by external force

Adopting Duhamel integral method to solve (6)
and (7):

 
t

ncc
n

dtlxPy
0 1

1

)(sin)(
1




(10)2
1

1 )cos1)((

n

ncc tlxP




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2

1 1( )( ) sin ( )
2

t

c c c n
n

P x l l l t d   


   

(11)
2
2

2 )cos1)(
2
1)((

n

nccc tlllxP






The composite horizontal vibration displacement
caused by horizontal vibration and the),( txy

wheeling around the centroid at spot of slider’sx
rigid beam can be expressed as (12) when
pantograph-catenary contact force affects on cl
spot as shown in Fig.3.

sinxlytxy )2/(),( 

2
1

1 )cos1)((

n

ncc tlxP





)
)cos1)(

2
1)((

sin()2/( 2
2

2

n

nccc tlllxP
xl






… (12)

333

3

.2.2.2

.2

BendingBendingBending

Bending

vibra tionvibra tionvibra tion

vibra tion

modemodemode

mode

functionfunctionfunction

function

ofofof

of

pantographpantographpantograph

pantograph

slidersliderslider

slider

’’’

’

sss

s

elasticelasticelastic

elastic

beambeambeam

beam

Considering horizontal displacement of slider’sy
elastic beam supported by the fixed ends in the cross
section’s symmetrical plane as generalized
coordinate, supposing that line density of the beam
is , the cross section’s bending stiffness is EI,
analysis of forces can be obtained as shown in Fig.4.
The exerted forces on the element which isdx
intercepted from section on the beam can bex
analyzed. Supposing that the shearing force effected
on section is , moment is ; the shearingx Q M
stress effected on section isdxx 

, moment is . dxxQQ  /  dxxMM  /
According to D’Alembert’s Principle, the following
equation can be obtained:

(13)0Q
2

2














t
ydxdx

x
QQ 

Moment equilibrium equation can be obtained
by keeping arbitrary spot on section as thedxx 
centroid of the moment on the right side of the unit.

(14)0
22

2













 dx

t
ydxQdxMdx

x
MM 

Ignoring microdose of the second order  2dx
in the above equation, the relationship of moment

and shearing force can be obtained:

(15)Q
x
M





According to the knowledge of material
mechanics, moment corresponding toM
generalized displacement y can be expressed as
follows:

(16)
2

2

x
yEIM






Putting (15) and (16) into (13), a four order
homogeneous PDE of beam’s horizontal vibration
can be obtained:

(17)0
2

2

4

4








t
y

x
yEI 

Fig.4 Horizontal free vibration of slider’s elastic
beam

The nature frequency and mode about slider’s
elastic beam can be solved by using variable
separation method [1, 7]. Supposing

(18)   taxtxy )(, 
Differentiating the above equation and putting it

into (17),the following equation is available:

(19)
  2

''

4

4

)(
)(

)( nta
ta

dx
xd

x
EI 




Because is a constant, the above equation2
n

can be expressed as follows:

(20)0
)()( 2

4

4


EI

x
dx

xd n 

(21)0)()( 2''  tata n

is the natural frequency of slider’s beam,2
n

the solution about (21) is:
(22)tAtAta nn  sincos)( 21 

and in the above equation can be1A 2A
determined by initiative condition.

Assuming (23)24
nEI

 

The solution of (20) is:
(24)xchBxshBxBxBx  4321 cossin)( 

Substituting (22) and (24) into (18), the solution
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about horizontal free vibration of slider’s beam is:
  )cossin(, 4321 xchBxshBxBxBtxy  

*( ) (25)tAtA nn  sincos 21 
There are six constants to be determined. and1A

relies on the initiative condition of vibration.2A
Three of the s( =1,2,3,4) and which isjB j 

implicated in can be determined by boundaryn
conditions. Putting boundary conditions into the
expression of vibration model function, the natural
vibration model can be solved.

The expression of vibration model function can
be shown as follows by using Collenov function:

(26)       xVCxUCxTCxSCx  4321)( 

Where    2 4 1 1 3 2
1 1

, ,
2 2
C C B C C B   

   2 4 3 1 3 4
1 1

,
2 2
C C B C C B   

Finding the derivative of (26), the following
equations are available:

(27)        xUCxTCxSCxVC
dx
d




4321 

(28)        xTCxSCxVCxUC
dx
d 

4321
2

2

2



(29)        xSCxVCxUCxTC
dx
d




4321
3

3

3



Dynamic response of slider’s elastic beam
shown in Fig.4 can be considered as horizontal
bending vibration mode about elastic beam
supported by fixed ends. For the elastic beam
supported by fixed ends, its boundary condition is
that ends’ displacement and corner of the beam are
zeros. Namely,

(30)0,0
0

0 



x

x dx
d



(31)0,0 



lx

lx dx
d

Putting (30) and (31) into (26) and (27), the
following equations can be obtained:

(32)021 CC
(33)0)()( 43  lVClUC 
(34)0)()( 43  lUClTC 

and cannot be 0 so that the solution is3C 4C
not 0. Therefore, the following equation must be
required.

(35)0
)()(
)()(


lUlT
lVlU



Putting Collenov function into the above
equation:

0)sin)(sin()cos( 2  llshllshllch 
… (36)

The following identical equations always exist:

(37)122  lshlch 

(38)1sincos 22  ll 
Putting (37) and (38) into (36), frequency

equation of horizontal vibration about slider’s elastic
beam can be obtained:

(39)1cos llch
The following solution can be gained from

solving this hyperbolic equation:

(40)
2

12  ili ),2,1( i

Putting the above equation into (23),
computational expressions of natural frequency
about slider’s beam can be obtained:

(41)


 EI
l
i

ni

2

2
12







  ),2,1( i

For the facility of calculation, parameters of
vibrating slider’s beam can be chosen as Table1.

Table1 Calculation parameters of vibrating slider’s
beam

The natural frequency of 1st order model is
94.5Hz, the natural frequency of 2nd order model is
258Hz, the natural frequency of 3rd order model is
505Hz, the natural frequency of 4th order model is
829Hz.

Putting (32), (33) and (34) into (26), the
vibration mode function of the horizontal bending
vibration of slider’s elastic beam can be obtained as
(42) shows.

)()()( 43 xVCxUCx  





 




 )sin(
cos
sincos xxsh

llch
llshxxchD 





… (42)
In (42), D can be arbitrary constants. Main

vibration mode of the corresponding order about
horizontal bending vibration of slider’s elastic beam
can be obtained as long as corresponding toli

Line density of slider’s beam  2.5 m/kg

Elastic modulus of slider’s
beam EI

1720 Nm 2

Length of slider’s beam  1.0 m
Elastic coefficient of springs on

the ends of slider’s beam k 2500 N/m
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those natural frequencies is put into (42).
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Fig.5 Slider’s beam affected by unit impulse force

Supposing there exists a pantograph-catenary
contact force , the moving equation of freecP
vibration can be obtained at spot of slider’sclx 
beam:

(43))(2

2

4

4

cc lxP
t
y

x
yEI 





 

(42) is the vibration mode function of slider’s
elastic beam. Regularizing the main vibration mode,
using its orthogonal features, the equation (44) is
available.








1

)sin(
cos
sin

cos
2

0

2 



 




 dxxxsh
llch
llsh

xxchD
l

… (44)
Supposing that those natural frequencies are ,nr

main vibration mode is , where 1, 2, 3,…,)(xr r
the dynamic response to elastic beam can be

expressed by modal superposition (coordinate
transformation ) as:

(45)  )()(,
1

tqxtxy r
r

r




 

is the mode coordinate in the above tqr
equation. The response of each determined mode
can be solved respectively; then pluses them
together. Therefore, each determined mode changes
into problem of single degree of freedom.

Using orthogonal feature of main vibration mode,

order mode can be expressed as follows:thr

(46)
2

2
( ) ( ) ( )( 1,2,3, )r

nr r r
d q t q t Q t r
dt

   

Where,

)()()()(
0 crccc

l

rr lPdxlxPxtQ   
It can be solved by Duhamel integral method:

 
t

nrr
nr

r dttQtq
0

)(sin)(1)( 


(47))cos-(1
)(

        2 t
lP

nr
nr

crc 





Putting (47) into (45), response to the
generalized coordinates about slider’s elastic beam
(48) can be obtained.

(48)  





1

2
)]()cos-(1

)(
[,

r
rnr

nr

crc xt
lP

txy 


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To solve transfer function matrix [ ] in (1), theijM
response matrix [ ] in the following equation (49)ijD
should be solved first, which is just as the
calibration process of system detection.

(49)
1 111 12 1

2 21 22 2 2

1 2

n

n

n n nnn n

Y FD D D
Y D D D F

D D DY F

      
          
                    
          

The relationship of transfer function matrix
[ ] and response matrix [ ] is expressed by theijM ijD
following equation:

(50)1][][  ijij DM
Steps of computation based on analysis of system
response are as follows:
(1) As Fig.2 shows, supposing a certain pantograph-
catenary contact force , imposing on the slider at1F
the first certain spot from left to right, the
displacement response values , ,…,1Y 2Y nY
corresponding to those laser sensors can be
calculated separately from (12) and (48). can1iD
be calculated from (51):

(51)11 FDY ii 
It needs to explain that the purpose on taking the

maximum of the value is to avoid effects fromiY
time parameters in the function. Correspondingly,
the maximum measured values of the laser sensors
should be chose in unit sampling time.
(2) The method to solve the other elements ofijD
the matrix is similar to the way above-- supposing a
certain pantograph-catenary contact force jF
imposed on the slider at the certain spot.thj ijD
can be obtained by calculating from the following

equation:
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(52)
jiji FDY 

can also be calibrated and tested in lab.ijD
(3) [ ] can be calculated from (50).ijM
(4) can be calculated from (1) and (2).F
(5) Geometric parameters and dynamic parameters

of catenary can be calculated from (3), (4), and
(5) separately.
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From previous discussion, it’s necessary to use laser
sensors as much as possible to ensure the testing
precision of dynamic parameters such as
pantograph-catenary’s contact force etc. However,
it’s also important to reduce the number of sensors
under the precondition of keeping testing accuracy
from the view of cost.

Generally speaking, dynamic characteristics of
pantograph can be described through the vibration
modal superposition principle. In the actual working
condition of pantograph-catenary’s system, if the
highest vibrating frequency is , then we regard thef

order mode as the highest fundamental modethp
which is corresponding to the smallest natural
frequency that is no less than . Then, low-f p
order modal independent parameters could be
obtained and the problem be well solved by carrying
out modal superposition. In other words, testing
errors can be decreased by utilizing laserp
sensors located at the sensitive displacement spots
corresponding to the highest fundamental vibrating
mode.

The transfer matrix elements in (1) can be
expressed as follows:

(53)



p

r
rijij MM

1

'
,

Where is the transfer relationship'
,rijM

between the testing parameters sampled at the thj
laser sensors and mode of the orderthr

corresponding to the acting spot of contactthi
force.

In case that contact force of point can bethi
expressed just by sensors, expresses thep W
weight coefficient, , the following function ispn 
available.

(54)kik

n

j

p

k
ikjiji YMWYMF  

 


1 1

Pantograph slider and pantograph framework is
an attached spring-damping system, so dynamic
response of pantograph slider’s beam can be
expressed as follows.

(55)ij

p

l
ljY 




1

Where, is the row and column’sij i j
element of the mode matrix, is the displacementl
of the mode. Putting (55) and (53) into (54), thethl
following function is obtained.
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The following function comes into existence as
long as the above function is always available to
discretional .l
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Where is unknown variables, otherikW
parameters all can be solved from the system
response relationship. So (57) is a matrix.np 

Therefore, dynamic response of the system can
be tested accurately by laser sensors, and fromp
which, pantograph-catenary’s contact force can be
estimated approximately.
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According to the process of backward analysis,
configuring five laser testing displacement sensors
symmetrically to test displacements of such five
points as -0.4m, -0.2m, 0m, 0.2m, 0.4m at the
bottom of pantograph slider, the response testing
mode shown in Fig.2 can be simulated as shown in
Fig.6. Where is 2.5 , is 1720Nm2, m/kg EI

is 0.8m, is 2500 N/m. k
Followed by the assumption that pantograph-

catenary contact force 110N vertically imposed
downward to the pantograph slider orderly at -0.4m,
-0.2m, 0m, 0.2m, 0.4m, displacement response
values , , …, of the spots corresponding to1Y 2Y nY
those laser sensors can be calculated respectively
from (12) and (48). Response relation matrix (58)
can be obtained from (51).
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Fig.6 Slider beam’s deformation when apply 150N contact force on the pantograph

Fig.7 Contact forces of each corresponding points when apply 150N contact force on the pantograph

3.7871e-006 2.5405e-006 -8.9403e-008 -3.970 2e-007 -6.394e-007
1.0888e-006 8.2842e-007 -6.9536e-008 -2.659 2e-007 -3.9702e-007
-9.9337e-009 -2.9801e-008 -4.9668e-008 -6.9 536e-008 -8.9403e-008
0.00010028 -2.9547e-008 -

D
2.9801e-008 8.2842e-007 2.5405e-006

0.00030204 0.00010028 -9.9337e-009 1.0888e- 006 3.7871e-006

 
 
 
 
 
 
  

… (58)
2.6088e+005 -3.6746e+005 36664 14829 -3558.2
-3.4185e+005 4.587e+005 -7765.2 -36735 14829
-9.8061e+006 2.4319e+007 -3.6532e+007 -7765.2 36664
3.5312e+007 -6.2916e+007 2.4319e+007 4.587e+005 -3.6746e+005
-2.1932e+007 3.5

M 

312e+007 -9.8061e+006 -3.4185e+005 2.6088e+005

 
 
 
 
 
 
  

… (59)

Transfer function matrix (59) can be obtained
from inversion of the matrix D.

In the case of using the pantograph-catenary
contact force 150N again, imposing vertically on -
0.4m and -0.2m spots downwards, from which 0Y
can be obtained, and then contact force 150N can

be solved by putting into (2) in turn. In the case0Y
of using the contact force 110N again, imposing
vertically on -0.25m spots downward, from which

can be obtained, in turn, contact force 98.77N0Y
can be solved by putting into (2). The error is0Y

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Chen Tanglong, Ma Fengchao, Zhou Yan

ISSN: 1991-8763 17 Issue 1, Volume 3, January 2008



about 10%, which is mainly created by configuring
location of those sensors.

Supposing the pantograph-catenary contact force
150N imposed vertically on -0.4m spots downward,
as Fig.7 (a) shows, where abscissa is detection point
of slider’s beam and ordinate is contact force;
displacement response to the sensors’ each spot is
shown in Fig.6 (a), where abscissa is detection point
of slider’s beam and ordinate is deformation of
slider’s beam. Supposing the force imposed on -
0.2m, 0m, 0.2m, 0.4m, the function chart of forces
(Fig.7 (b) - (e)) is corresponding to displacement
response chart(Fig.6 (b) - (e)).

The simulation results using transfer function
computational method conform to the real situation
and verify the effectiveness of this method. To
distinguish from conventiona l mixed detection
method, this approach make fully non-contact
detection of OCS become reality, and therefore
avoid the side effect on testing results by itself.
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ConclusionConclusionConclusion

Conclusion

In practical application, the dynamic parameters
such as contact force and geometric parameters such
as pull-off value can be obtained through a series of
calculations with the transfer function matrix and the
measured data of pantograph slider’s displacements,
which are sampled by the laser testing displacement
sensors array installed at those vibration sensitive
positions under slider’s beam.

The method of testing dynamic parameters of
high-speed railway OCS based on the system
response principle makes sense to take the testing
sensors away completely from the pantograph slide,
which is the goal of dynamic testing of high-speed
railway OCS on locomot ive. Owning to the limit of
scan cycle and processing time, other non-contact
detection such as image processing and laser radar
can not meet the testing needs of dynamic
characteristic under high-frequency condition. In
actual application, the authors consider that data
should be tested directly in the lab and disposed by
recursive analysis, and computational model should
be rectified and verified.
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