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Abstract. This paper starts with dynamic response of pantograph slider, and computes the dynamic
parameters of pantograph-catenary system such as contact force, hard spot, pull-off value and contact wire
height by utilizing the transfer function matrix gained beforehand and the displacements of pantograph slider
measured with the laser range sensors configured at the low voltage side. The paper also deducts the numerical
algorithm of response matrix and transfer function matrix, demonstrates the feasibility of reducing the number
of laser range sensors, and verifies its effectiveness by simulation with a simple example.
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1 Introduction

Pantograph slider is moving fast under the overhead
catenary when electric locomotive is running. Fig. 1
shows the effect of pantograph-catenary contact
force and dynamic response of horizontal vibration
of pantograph slider [1-3, 4].

Contact pressure input

—— | Pantograph slider

Dynamic response ouiput

Fig.1 Analysis of system signal

Direct testing methods of pantograph-catenary
contact force are commonly used in the world.
However, because of fast motion, testing signals are
vulnerable to the interference of electromagnetic
sparks caused by pantograph-catenary contact
vibration, and the installed pressure sensor increases
the weight of slider and changes its shape. Therefore,
the stability and safety of pantograph has been
affected.

The testing method proposed in this paper is to
mstall several laser range sensors symmetrically at
the top of the locomotive, calculates the dynamic
parameters of the pantograph-catenary contact force,
pull-off value, hard spot and contact wire height
according to testing the horizontal vibration
displacement at the bottom of the pantograph slider.
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The study of this paper, which is helpful to
construct the high-speed pantograph vibration test
platform, can be verified and generalized by
applying different frequencies, contact forces, and
acting positions.

2 Testing principle of pantograph
catenary system’s contact response
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Fig.2 Response testing model of pantograph slider

The vibration of slider in the pantograph-catenary
operation can be considered approximately as
compound motion which includes horizontal
bending vibration of elastic beam supported by
fixed ends, vertical fluctuation and planary wheeling
of rigid beam supported by elastic ends. Slider’s
bending vibration mode can be solved by using
Euler-Bernoulli beam [5].

£ expresses pantograph-catenary contact pulse

force exerting atthe 7, spot of the slider’s beam. It
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indicates changes of the pull-off value in different
locations. 7, represents testing value of

displacement from the 7, high-speed laser sensor

on the top of locomotive corresponding to the
bottom of the pantograph slider. Their dynamic
responses can be expressed as the following matrix

form in terms of transfer function:

E /IJII A/U /l/l/l K
FZ — AIZI M. 22 A[2 n )g ( 1)

7 le M 7n2 e M mn }/;v;
M, can be obtained from unit impulse
response. Therefore, according to convolution

principle, pantograph-catenary contact force /A

can be expressed as follows:

P=) =3 M @
1

ol =l

The impact acceleration of pantograph
catenary G , contact wire height /7 and Pull-off
value Z can be obtained instantly from discrete
displacement signal /(7%7) tested by those laser
sensors, which are expressed as follows:

G’zmax{%} =1, 2, - p (3

1 V4
H = Iy +—2 050 ©
=1
Y
Z=2 W0 5)
=
Where
4, the base height of sensors on the top of
locomot ive.
Y/ the number of laser sensors
7 the distributing order number of laser
sensors
W, symmetrical weighting coefficients at

geometric location of those laser sensors.

3 Kinetics analysis of slider’s beam

The model shown in Fig. 2 can be decomposed into
a pantograph elastic slider’s beam supported by
fixed ends and a pantograph rigid slider’s beam
supported by elastic ends. After solving their
dynamic response, horizontal response displacement
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M(2,7) canbe added together at the same point of
the axis under static equilibrium.

3.1 Vibration of pantograph slider’s rigid
beam in plane

Supposing that the bracing spring stiffness is 4 ,

length of slider’s beam is /, the line density is p,

mass is #z , centriod is ¢, moment of inertia of

slider’s rigid beam circling the centriod is 7/, ,

choosing centroid’s horizontal displacement

and angular displacement of slider’s rigid beam
circling around the centriod as generalized
coordinate( 3,0 ), analyzing the forces exerting on

the slider, differential equation of forced vibration
can be established as follows:

my+2hv=P(x—1) (6)
1,64 2480 = PGr—1)0, 11 Y

Assuming 2.=0 , from which the natural

frequency of horizontal vibration and the cycling
frequency of rigid beam around its centroid can be
obtained respectively:

@, = /2_4’2 /2_4’ (8)
m lp

@, = fﬁz /% 9)
27, /p

static equilibrium position

Fig.3 Mechanic model of slider’s rigid beam
imposed by external force

Adopting Duhamel integral method to solve (6)
and (7):

1
y=—1/[P(x-1)sin®m (- 1)t
w}zl 0

P(x=/)1-cosm ,7)
= ; ‘ (10)

nl

w

Issue 1, Volume 3, January 2008



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

0= Lj”g(x—/(y)(/c ~Lysine (- t)ar
@, 70 2

P(x—=1 )/ - l/)(1 —COST ,7)
- 2 (11)

2
wnZ

The composite horizontal vibration displacement
Nx,7) caused by horizontal vibration and the

wheeling around the centroid at .x spot of slider’s
rigid beam can be expressed as (12) when
pantograph-catenary contact force affects on /
spot as shown in Fig.3.
Nx8)=y—(/12 —x)sin0

_ P(r=)(1-cosm )

2
nl

w

Pl =5 10 ~cosa .0

2
72

—(//2- p)sin(

.. (12)

3.2 Bending vibration mode function of
pantograph slider’s elastic beam
Considering horizontal displacement p of slider’s
elastic beam supported by the fixed ends in the cross
section’s symmetrical plane as generalized
coordinate, supposing that line density of the beam
is p, the cross section’s bending stiffness is £/
analysis of forces can be obtained as shown in Fig.4.
The exerted forces on the element &r which is
intercepted from section .xr on the beam can be
analyzed. Supposing that the shearing force effected
on section x is (), moment is AZ; the shearing

stress effected on section xX+dx is
O+(00/ox)dy , moment is M + (M | dx)dx .

According to D’Alembert’s Principle, the following
equation can be obtained:

Q—(Q+ a_de) —pdxaz—{ =0 (13)
ox ot

Moment equilibrium equation can be obtained
by keeping arbitrary spot on section .x+ &xr as the
centroid of the moment on the right side of the unit.

2
(M+ aﬂdx) M- Odv+ pr L~ (14)
ox or* 2

Ignoring microdose of the second order (a’x)z

in the above equation, the relationship of moment
and shearing force can be obtained:

oLy

15
P (15)
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According to the knowledge of material
mechanics, moment A/ corresponding  to
generalized displacement y can be expressed as
follows:

2
=18 > (16)
ox
Putting (15) and (16) into (13), a four order
homogeneous PDE of beam’s horizontal vibration

can be obtained:

64)/ 0? §%
£/ + =0 (17)
ot p o7
F .F
|:| ......................................... »
-E 2 - *dl' i .
3 dx e
'l' B 1r Mgy
e

2
o+ de
Fig.4 Horizontal free vibration of slider’s elastic
beam

The nature frequency and mode about slider’s
elastic beam can be solved by using variable
separation method [1, 7]. Supposing

Aw2)=g(nd7) (18)
Differentiating the above equation and putting it
into (17),the following equation is available:

£7 ! '
A
pp (x) dx a(?)
Because . is a constant, the above equation

can be expressed as follows:

Ip()  po, P
dr* E7

a(H+o,a?)=0

®’ is the natural frequency of slider’s beam,

n

0 (20)

2D

the solution about (21) is:

a(?)= A4, cosw, /+ A,sin o,/ (22)

A4 and A4, in the above equation can be

determined by initiative condition.

Assuming A = ﬁa)ﬂz
£l
The solution of (20) is:
d(x)= B sin Ax + B, cos Ax+ B, shix+ Bychdx (24)

Substituting (22) and (24) into (18), the solution

(23)
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about horizontal free vibration of slider’s beam is:
Ax,2)= (B sin Av+ B, cos Av+ Byshix+ B,chlx)

(25

There are six constants to be determined. .4 and

*( A cosw,z+ A, sin w,7)

A, relies on the initiative condition of vibration.
Three of the b’/. s( /=123,4) and A which is

implicated n @, can be determined by boundary

conditions. Putting boundary conditions into the
expression of vibration model function, the natural
vibration model can be solved.

The expression of vibration model function can
be shown as follows by using Collenov function:
¢(») = C.S(Ax)+ C, 7(Ax)+ C,U(Ax)+ C, 7 (Ax) (26)

Where —(C,-,)=8,5(G-C) =4,

1 1
S(GrC)=82(G+C)= 5,

Finding the derivative of (26), the following
equations are available:
D AE00)+ €,500)+ CT0)+ C00] 2T
X
e

ar? -

Z//_Zj = [ 702+ Cuix)+ )+ ¢ s(ax)] (29)

Dynamic response of slider’s elastic beam
shown in Fig4 can be considered as horizontal
bending vibration mode about -elastic beam
supported by fixed ends. For the elastic beam
supported by fixed ends, its boundary condition is
that ends’ displacement and corner of the beam are
zeros. Namely,

a4

WG UGMX)+ CF(hx)+ CS(hx)+ C,7(2x)) (28)

=0, =0 30

¢|r:0 QIXX:O ( )
a9

=0, i o R 31

¢ ., 2| (3D

Putting (30) and (31) into (26) and (27), the
following equations can be obtained:

C=C =0 (32)
CGUAH+C V() =0 (33)
G TN+ CUA) =0 (34)

C, and C, cannot be 0 so that the solution is

not 0. Therefore, the following equation must be
required.
vah 1| _,

- (35)
(M) UAD)
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Putting Collenov function into the above
equation:
(chrl—cos A0)? — (shAl—sin AJ)(shr!+sin AJ)=0
... (36)
The following identical equations always exist:
cht M — sk Al =1 (37)
cos’ A/+sin* A/=1 (38)

Putting (37) and (38) mnto (36), frequency
equation of horizontal vibration about slider’s elastic
beam can be obtained:

cosAlchr/=1 (39)

The following solution can be gained from
solving this hyperbolic equation:

e =12

(40)

Putting the above equation into (23),
computational expressions of natural frequency
about slider’s beam can be obtained:

. 2
wm=(”+1nj (=12, (1)
2/ Jo}

For the facility of calculation, parameters of

vibrating slider’s beam can be chosen as Tablel.

Table 1 Calculation parameters of vibrating slider’s
beam

Line density of slider’s beam p 2.5kg/m
Elastic modulus of slider’s 1720 Nm2
beam £/
Length of slider’s beam / 1.0m
Elastic coefficient of springs on
the ends of slider’s beam 4 2500 N/m

The natural frequency of 1st order model is
94.5Hz, the natural frequency of 2nd order model is
258Hz, the natural frequency of 3rd order model is
505Hz, the natural frequency of 4th order model is
829Hz.

Putting (32), (33) and (34) into (26), the
vibration mode function of the horizontal bending
vibration of slider’s elastic beam can be obtained as
(42) shows.
¢(x) = CU(Ax)+ GV (Ax)

- D{Célx—cosh—w(wh—smb@}
chil—cos A/
... (42)

In (42), D can be arbitrary constants. Main
vibration mode of the corresponding order about
horizontal bending vibration of slider’s elastic beam

can be obtained as long as A/ corresponding to
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those natural frequencies is put into (42).

3.3 Dynamic impulse response to pantograph
slider’s elastic beam

|

77 77

Fig.5 Slider’s beam affected by unit impulse force

Supposing there exists a pantograph-catenary
contact force /2 , the moving equation of free
vibration can be obtained at x =/, spot of slider’s
beam:
4
E/a—{+
ox
(42) is the vibration mode function of slider’s
elastic beam. Regularizing the main vibration mode,

using its orthogonal features, the equation (44) is
available.

D? '[O/[ chlx —cos Ax—

2
p L= P5(r-1) )
or

. 2

ShATESIN AL av—sindx) | dr = -

chAl—cos A/ P
.. (44)

Supposing that those natural frequencies are @, ,

main vibration mode is ¢ (), where 7=1,2,3,...,
the dynamic response to elastic beam can be
expressed by modal superposition (coordinate
transformation ) as:

A= 30, (7,0)
7,(7)

equation. The response of each determined mode
can be solved respectively; then pluses them
together. Therefore, each determined mode changes
into problem of single degree of freedom.

Using orthogonal feature of main vibration mode,

(45)

is the mode coordinate in the above

7;, order mode can be expressed as follows:

4 q.() _ 193
L2 40,4()=00r=1.23:)

Where,
0,0)= [0, (VA5 (x= L) = 2, (L)

It can be solved by Duhamel integral method:
1 .
7. (7) = —j’Q,(z) sin @, (7—1)dt
a)lii" 0

(46)
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= w(l -COS(U”/)

@ nr
Putting (47) ito (45), response to the
generalized coordinates about slider’s elastic beam

(48) can be obtained.
Aw,7)= i[’pﬂ"’z (%) (1-cosw, /)¢, (x)]
0,

7

(47)

(48)

r=1

4 Solution of response matrix and
transfer function matrix with

numerical method

To solve transfer function matrix [ 47, ] in (1), the

response matrix [Dl]] in the following equation (49)

should be solved first, which is just as the
calibration process of system detection.

}/l Dll 012 Dl// F{
)/2 _ DZ] DZZ DZ/I FZ (49)
z, Dy Dy 0 D, |7,

The relationship of transfer function matrix
[ ;] and response matrix [ ), ]is expressed by the

following equation:

[M,/] = [Df/’]il (50)
Steps of computation based on analysis of system
response are as follows:

(1) AsFig.2 shows, supposing a certain pantograph-
catenary contact force //, imposing on the slider at
the first certain spot from left to right, the
displacement response values ¥, , 7%, ..., 7,

corresponding to those laser sensors can be
calculated separately from (12) and (48). /2, can

be calculated from (51):
K=D,+F, (51)
It needs to explain that the purpose on taking the
maximum of the value 7, is to avoid effects from

time parameters in the function. Correspondingly,
the maximum measured values of the laser sensors
should be chose in unit sampling time.

(2) The method to solve the other elements /), of
the matrix is similar to the way above-- supposing a

certain pantograph-catenary contact force £
D,

/4
can be obtained by calculating from the following
equation:

imposed on the slider atthe /, certain spot.
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V=D, (52)

D, canalso be calibrated and tested in lab.
(3) [ M ] canbe calculated from (50).

g
(4) /7 canbe calculated from (1) and (2).
(5) Geometric parameters and dynamic parameters
of catenary can be calculated from (3), (4), and
(5) separately.

S Feasibility study on reducing the

number of laser range sensors

From previous discussion, it’s necessary to use laser
sensors as much as possible to ensure the testing
precision of dynamic parameters such as
pantograph-catenary’s contact force etc. However,
it’s also important to reduce the number of sensors
under the precondition of keeping testing accuracy
from the view of cost.

Generally speaking, dynamic characteristics of
pantograph can be described through the vibration
modal superposition principle. In the actual working
condition of pantograph-catenary’s system, if the
highest vibrating frequency is /', then we regard the

Pu
which is corresponding to the smallest natural
frequency that is no less than /*. Then, p low-

order mode as the highest fundamental mode

order modal independent parameters could be
obtained and the problem be well solved by carrying
out modal superposition. In other words, testing
errors can be decreased by utilizing p  laser

sensors located at the sensitive displacement spots
corresponding to the highest fundamental vibrating
mode.

The transfer matrix elements in (1) can be
expressed as follows:

»
M, = ZMW

r=1

Where

(33)

My,

between the testing parameters sampled at the /,

is the transfer relationship

laser sensors and mode of the 7,  order

corresponding to the 7, acting spot of contact
force.

In case that contact force of 7, point can be
expressed just by p
weight coefficient, 72 p, the following function is

available.

sensors, // expresses the
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” 2
F=3 MY, =% WMy, (54)
J=1 A=1
Pantograph slider and pantograph framework is
an attached spring-damping system, so dynamic
response of pantograph slider’s beam can be
expressed as follows.

2
Y :Zé/i)// (35)
/=1
Where, qb,]. is the 7 rowand / column’s

element of the mode matrix, &, is the displacement
of the /,, mode. Putting (55) and (53) into (54), the

following function is obtained.

ya 7 2 ya »
Zé[Z@ZMW—Z%mZA@,,j:o (56)
/=1 J=1 =1 J=1 =1

The following function comes into existence as
long as the above function is always available to
discretional §, .

/Z”; ¢z/ 2 M z/ s Z ”/f/(qs;%g /V,,,

Where W,
parameters all can be solved from the system
response relationship. So (57)is a p X # matrix.

Therefore, dynamic response of the system can
be tested accurately by 2 laser sensors, and from
which, pantograph-catenary’s contact force can be
estimated approximately.

(57)

is unknown variables, other

6 System

testing

According to the process of backward analysis,
configuring five laser testing displacement sensors
symmetrically to test displacements of such five
points as -0.4m, -0.2m, Om, 0.2m, 0.4m at the
bottom of pantograph slider, the response testing
mode shown in Fig.2 can be simulated as shown in
Fig.6. Where p is 2.5kg/m | £7 is 1720Nm?

? is 0.8m, £ is 2500 N/m.

Followed by the assumption that pantograph-
catenary contact force 110N vertically imposed
downward to the pantograph slider orderly at -0.4m,
-0.2m, Om, 0.2m, 0.4m, displacement response
values /], 7,, ..., ¥, ofthe spots corresponding to

those laser sensors can be calculated respectively
from (12) and (48). Response relation matrix (58)
can be obtained from (51).

simulation of response

Issue 1, Volume 3, January 2008



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Chen Tanglong, Ma Fengchao, Zhou Yan

anE T T T T T T T ]
20 - —
o I il 1 il 1 1 1 ]
-0.4 -0.3 -0.2 -0.1 o a1 oz 0.3 0.4
)
an e T T T T T T T ]
20 - —
E o 1 T I T 1 T 1 ]
= -0.4 -0.3 -0.2 -0.1 o 0.1 0.z 0.3 0.4
3 ®)
& an | T T T T T T T ]
2
= 20 —
5 0
= 1 T 1 T 1 T 1
s 04 -0.3 -0.2 -0.1 [u] 0.1 0.z 0.3 0.4
5 ©
=
]
I anf T T T T T T . —
1 T 1
.1 oz 0.3 0.4
T T T ]
L =N 1
0.1 0.2 0.3 0.4
=)
»-(Detection position of slide/m)
. . , .
Fig.6 Slider beam’s deformation when apply 150N contact force on the pantograph
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Fig.7 Contact forces of each corresponding points when apply 150N contact force on the pantograph
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Transfer function matrix (59) can be obtained
from inversion of the matrix D.

In the case of using the pantograph-catenary
contact force 150N again, imposing vertically on -

0.4m and -0.2m spots downwards, from which 7%
can be obtained, and then contact force 150N can
be solved by putting ¥, into (2) in turn. In the case

of using the contact force 110N again, imposing
vertically on -0.25m spots downward, from which

¥, can be obtained, in turn, contact force 98.77N

can be solved by putting ¥, into (2). The error is
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about 10%, which is mainly created by configuring
location of those sensors.

Supposing the pantograph-catenary contact force
150N imposed vertically on -0.4m spots downward,
as Fig.7 (a) shows, where abscissa is detection point
of slider’'s beam and ordinate is contact force;
displacement response to the sensors’ each spot is
shown in Fig.6 (a), where abscissa is detection point
of slider’s beam and ordinate is deformation of
slider’s beam. Supposing the force imposed on -
0.2m, Om, 0.2m, 0.4m, the function chart of forces
(Fig.7 (b) - (e)) is corresponding to displacement
response chart(Fig.6 (b) - (e)).

The simulation results using transfer function
computational method conform to the real situation
and verify the effectiveness of this method. To
distinguish from conventional mixed detection
method, this approach make fully non-contact
detection of OCS become reality, and therefore
avoid the side effect on testing results by itself.

7 Conclusion

In practical application, the dynamic parameters
such as contact force and geometric parameters such
as pull-off value can be obtained through a series of
calculations with the transfer function matrix and the
measured data of pantograph slider’s displacements,
which are sampled by the laser testing displacement
sensors array installed at those vibration sensitive
positions under slider’s beam.

The method of testing dynamic parameters of
high-speed railway OCS based on the system
response principle makes sense to take the testing
sensors away completely from the pantograph slide,
which is the goal of dynamic testing of high-speed
raitway OCS on locomotive. Owning to the limit of
scan cycle and processing time, other non-contact
detection such as image processing and laser radar
can not meet the testing needs of dynamic
characteristic under high-frequency condition. In
actual application, the authors consider that data
should be tested directly in the lab and disposed by
recursive analysis, and computational model should
be rectified and verified.
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