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Abstract: � This work presents numerical algorithms for simulation of distributed-parameter systems with direct
applications in electrical engineering. The algorithms are developed in the context of the finite element method.
Many works in the professional literature present coupled models for the electromagnetic devices and this work is
toward this direction with emphasis on the development of efficient algorithms in numerical computation of the
coupled models.

Our work describes the solution of coupled electromagnetic and heat dissipation problems in two dimensions
and cylindrical-coordinates system for devices with cylindrical symmetry.

The purpose of the work is to define both conventional algorithms and parallel algorithms for coupled problems
in context of the finite element method. The mathematical models for electromagnetic field are based on potential
formulations. Some numerical results are presented.
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1 Introduction
The reality forces us to deal with complex coupled
systems where two or more physical systems interact.
Two or more fields coexist in the same geometry, in
the same electromagnetic device. These fields interact.
For example, induction heating is used for surface
treatment of materials. In this practical application, the
eddy currents generated by an electromagnetic
inductor are used as the thermal heat sources through
the Joule effect. More, any change in the physical or
geometric parameters of an electromagnetic device
will affect both magnetic and thermal fields. In our
target examples the physical phenomena are
electromagnetic and thermal. The physical properties
of the materials are strongly dependent on the
temperature, especially the following characteristics:
electric conductivity, magnetic permeability, and
specific heat and thermal conductivity.

In this work we limit our discussion to coupled
electromagnetic and thermal fields. Mathematical
models for the problems in which the electromagnetic

field equations are coupled to other partial differential
equations, such as those describing thermal field, fluid
flow or stress behaviour, are described by equations
that are coupled [1]. The coupling between the fields is
a natural phenomenon and only in a simplified
approach the field analysis can be treated as
independent problem.

 In several cases, it is possible a decoupling and a
cascade solution of the coupled equations. Another
attractive and efficient approach of solving coupled
differential equations is to consider the set as a single
system. In this way a single linear algebraic system for
the whole set of differential equations is obtained after
discretization, and is solved to a single step. If one or
more equations are non-linear, non-linear iterations of
the whole system are required.

The equations of the electromagnetic fields and
heat dissipation in electrical engineering are coupled
because the most of the material properties are
temperature dependent and the heat sources represent
the effects of the electromagnetic field [1].
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The thermal effects of the electromagnetic field are
both desirable and undesirable phenomenon. Thus, in
conducting parts of some electromagnetic devices
(coils of the large-power transformers, current bars,
cables conductors, conductors of the electric machines
etc) the heating is an undesirable phenomenon. The
heat is generated by ohmic losses of the driving
currents and eddy currents induced in conducting
materials. But in induction heating devices for welding
the heating is a desirable phenomenon. The thermal
effect of the electromagnetic field is the treatment base
for many electric materials in industry [12].

With the terminology of the system theory, we
identify two kinds of the heat sources (and commands
in an inverse problem):
•  Distributed sources (electrical currents)
•  Boundary sources (Dirichlet's condition,

Neumann's condition, convection and radiation)
In the heating of the electromagnetic devices, the

internal heat sources (position, amplitude) are
represented by:
•  Ohmic losses from driving (source) currents
•  Ohmic losses from eddy currents induced in

conducting materials of the time variable magnetic
field

•  Dielectric losses due to friction in the molecular
polarisation process in solid dielectrics that form
the insulation of the high-voltage apparatus

•  Hysteresis loss in magnetic problems. It is due to
magnetic domain friction in ferromagnetic
materials.

 The boundary sources  (commands) can be [3]:
•  Dirichlet command, that is, an imposed

temperature on the boundary of the spatial domain
•  Neumann command that involves an imposed

flux temperature on the boundary of the spatial
domain

•  Convective command (the temperature of the
ambient medium or a cooling fluid, a parameter of
the cooling fluid as the speed etc)

•  Radiation commands (the temperature of the
ambient medium or other parameters that are
outside the spatial domain of the field problem and
influences the temperature of a device by radiation
phenomenon).

2 Mathematical modelling of the
electromagnetic field
For numerical simulation of the coupled systems we
must have in mind some practical aspects:

♦  Mathematical models of electromagnetic field
and thermal field

♦  Mathematical tools for field problems
♦  Mathematical methods for coupled problems
A complete mathematical model for coupled

electromagnetic-thermal fields involves Maxwell�s
equations and the heat conduction equation.
Combining these equations yields a coupled system of
non-linear equations.

A complete physical description of electromagnetic
field is given by Maxwell�s equations in terms of five
field vectors: the magnetic field H, the magnetic flux
density B, the electric field E, the electric field density
D, and the current density J. In low-frequency
formulations, the quantities satisfy Maxwell�s
equations [3]:

JH =×∇ (1)

t
B

E
∂
∂

−=×∇ (2)

0=Bdiv (3)

cDdiv ρ= (4)
with ρc the charge density, σ � the electric

conductivity, and µ the magnetic permeability. For
simplicity we give up to the bold notations for vectors.

The second set of relationships, called the
constitutive relations, is for linear materials:

EJEDHB σεµ === ;;
The B-H relationship is often required to represent

non-linear materials. The current density J in Eq. (1)
must represent both currents impressed from external
sources and the internally generated eddy currents.

The formulation with vector and scalar potentials
has the mathematical advantage that boundary
conditions are more often easily formed in potentials
than in the fields themselves. The magnetic vector
potential is a vector A such that the flux density B is
derivable from it by the operator curl or  ( ×∇ ).

The mathematical models for the electromagnetic
field problems may be included in two formulations:
♦  Integral equation formulations (Fredholm integral

equations)
♦  Differential equation formulations (partial

differential equations of elliptic or parabolic type)
♦  Hybrid formulations

The complexity of the mathematical model for
electromagnetic field was one of the main reasons to
find and develop new computational methods. All
methods can be included in one of the following
classes [3]:
•  Manipulation of the equations so that some

unknowns are eliminated
•  Definition of some potential functions from where

the field unknowns can be obtained by simple
processing
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•  Finding of some assumptions that simplifies the
computation for practical problems

The potential formulations seem attractive because
of their computational advantages. One of these
consists in the fact the boundary conditions are easily
framed in the potentials than in the field themselves.

2.1 The eddy-currents problem
The time-varying magnetic field within a conducting
material causes circulating currents to flow within the
material. These currents called eddy-currents can be
unwanted or desirable phenomena. Thus, the eddy-
currents in electrical machines give rise to unwanted
power dissipation. On the other hand the induction
heating is a wanted phenomenon in industry of the
metal treatment.

Industrial equipment in which the eddy currents are
essentially can be included in one of the following
classes:
♦  long structures, in which the electric field and the

current density posses only one component
♦  complex structures in which we use models 3D

In the long structures, the currents are generated by
an electric field applied at the terminals of the
conductor, or by a time-varying magnetic field linking
the loop formed by the conductors. These structures
belong to electric transmission network or the
distribution networks (bus bars, large-power cables
etc). In these problems the applied voltage of the bar
or cable is known and we seek to compute the current
density distribution within the conductor in order to
determine some electromagnetic quantities of interest
(the electrodynamic forces, mutual inductances, local
heating etc).

The complex structures create difficulties in
simulation and computation of their characteristics
although these structures possess construction
simplicity. One of these structures is the device for
electric heating by electromagnetic induction. In this
type the applications it is necessary to compute
accurately the eddy currents. If the eddy-currents
distribution is non-uniform, the resulting high-
temperature gradients may crack the workpiece.

The problems are different in the two different
types of applications but for any given application the
presence of the saturable iron sheets introduces
saturation phenomena and the problem becomes non-
linear.

For each class we can apply general mathematical
methods but it is more efficient to develop a particular
algorithm for each kind of classes.

The effects of the eddy currents are:

♦  The time-varying magnetic flux density is non-
uniform within the conductor. The alternating
magnetic flux is concentrated toward the outside
surface of the material (phenomenon known as the
skin effect).

♦  Power losses are increased in the material
Eddy current computation appears in two types of

problems:
♦  Stationary problems where the structures are

fixed and source currents are time varying
♦  Motion problems where the field source is a coil

in moving
Many practical engineering problems involve

geometric shape and size invariant in one direction.
Let z denote the Cartesian co-ordinate direction in
which the structure is invariant in size and shape. This
is the case of a plane-parallel field or translational
field problem, where A has one component, namely
Az. This component is independent of the z co-
ordinate and the Coulomb gauge is automatically
imposed and V is independent of x and y.  In such a
case both the magnetic vector potential and the source
current JS reduce to a single component oriented
entirely in the axial direction and vary only with the
co-ordinates x and y.

Consequently, the component Az (for simplicity we
give up the subscript z) satisfies the diffusion equation
in fixed bodies [1]:

sJ
t
A

A −=
∂
∂

−∇∇ σν )( (5)

or, in Cartesian co-ordinates:
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t
A
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∂

∂
∂
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∂

(6)

The boundary conditions are set-up for the single
component A and can be Dirichlet and/or Neumann�s
condition. The interface conditions between two
materials with different properties are:

N

A

N

A
AA

∂

∂
=

∂

∂
= 2

2
1

1;21 υυ

where n is the normal at the common surface of the
two regions with different material properties.

2.2  Modelling of time-dependent fields
The time dependent electromagnetic field problems
are usually solved using differential models of
diffusion type. Many practical problems of great
interest in electromagnetics involve time-harmonic
fields and this case will be considered in this work.

In general, computer software for time-varying
problem can be classified into two classes [3]:

1. time-domain programs
2. frequency-domain programs
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Time-domain programs generate a solution for a
specified time interval at different time moments.
Frequency-domain programs solve a problem at one or
more fixed frequencies.

The first class has some disadvantages. One of
these consists in the large amount of data that must be
stored to recover the field behaviour. Although the
second class has an essential advantage (a compact
and a cheap program in terms of the computer
resources), the area of problems that can be solved is
limited. It is applicable only to linear problems (all
phenomena are sinusoidal).

The usual mathematical model for time dependent
electromagnetic field problems is with Maxwell�s
equations in their normal differential form. For low
frequency the displacement current term in Maxwell�s
equations can be neglected. At a surface of a
conducting material the normal component of current
density Jn can be assumed to be zero.

3 Mathematical modelling of the
thermal field
The thermal field is described by the heat conduction
equation [2]:

qTTkTT(c
t

=∇⋅−∇+⋅
∂
∂

])([]))([ γ  (7)

where:  T (x, t) is the temperature in the spatial
point x at the time t; point k is the tensor of thermal
conductivity; γ is mass density; c is the specific heat
that depends on T; q is the density of the heat sources
that depends on T. In the coupled problems we use the
formula:

2)( JTq ⋅= ρ              (8)
with ρ the electrical resistivity of the material.

Equation (7) is solved with boundary and initial
conditions. The boundary conditions can be of
different types: Dirichlet's condition for a prescribed
temperature on the boundary; Neumann's condition;
convection condition; radiation condition, and mixed
condition [2]. These boundary conditions have the
following form on different parts of the boundary
surface S:
•  Dirichlet's condition:

),,,(
1

),,,( tzyxDT=StzyxT

•  Neumann's condition:

0=|S 2]nq+
n
T

[k
∂
∂

•  Convection:

0=|S 3)]T-h(T+
n
T

[k ∞∂
∂

•  Radiation:

0=|S 4]T-T 4
B+

n
T

[k )4( ∞∂
∂

εσ

where the boundary surface S is:

4321 SSSSS ∪∪∪=

The significances of the quantities that appear in
the boundary conditions are: TD is a known function
defined on the boundary S1; h is the convection
coefficient; T∞ is the ambient temperature; qn is the
normal heat flux; σB is Boltzman's constant in
radiation and ε is the emissivity coefficient. The
coefficients of the heat transfer as h and ε depend on
the temperature and the surface quality. For these we
use empirical formulas based on the experiments.

For many eddy-current problems the magnetic flux
penetration into a conductor without internal sources
of the magnetic field is confined mainly to surface
layer. This is the skin effect. The skin depth δ depends
on the material properties µ, ω and σ so that for the
small depths all effects of the magnetic field are
confined to a surface layer.

In steady-state low-frequency eddy current
problems in magnetic materials, the mathematical
model is the diffusion equation defined by Eq. (6).

The skin effect can be exploited in two directions:
•  To reduce the space domain in analysis with a

fine mesh close to conductor surfaces
•  To reduce the material volume since a

significant proportion of the conductor is
virtually unused

The penetration depth is given by the formula:

ωσµ
δ 2= (9)

For example, in a semi-infinite slab of conductor
with an externally applied uniform alternating field,
parallel to the slab, the amplitude of flux decays
exponentially. In other words for problems with the
skin depth very small all the effect of the field is
confined to a surface layer. In a numerical model
based on finite element method (FEM) this effect can
be exploited by the use of domain decomposition at
the level of the problem. In this way we reduce the
run-time of a program based on FEM.

Designer engineers use the formula (9) considering
the permeability and the conductivity as numbers. In
reality the two physical parameters change during
heating. The changes in the value of δ affect the loss in
the material and depend on the process (conduction or
induction). For example, if the conductivity decreases
by x, the depth increases by √x, that is the current
penetrates deeper into the metal.  If the magnetic
material heats, its resistivity (the inverse of the
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conductivity) rises but its relative permeability remains
substantially constant up to the Curie point. In this
point it drops suddenly to unit.

Another simplifying assumption for the designer
engineers is based on that all heat enters at the surface
of the conductor. In reality, this is only true if the
frequency of the magnetic field source is very high and
the depth of heating is small compared with the
geometrical dimensions of the conductor. This fact can
be exploited in numerical simulation of these devices
by reduction of the analysis domain.

For an accurate computation of the penetration
depth of the magnetic field we must consider two
practical conditions:

•  The heat is distributed in the conducting part
•  There is an important heat lost by radiation at

the conductor surface
Radiation can be regarded as a simple surface loss

subtracting from the surface power input.  The Stefan-
Boltzmann's law gives the radiation loss. If the body is
radiating to a surface at absolute temperature T∞
Kelvin, the radiation loss is defined by:

)44(0 ∞−= TTcrrP ε

where εr  is the emissivity coefficient of the surface
(dimensionless), and T is the absolute surface
temperature in grades Kelvin (K). The constant c0 is
5.67.10-8 W/m2K4.  For low temperatures, the radiation
loss is negligible but in the induction-heating device it
must be considered.

Consequently, it is convenient to use coupled
models and accurate methods for computation of the
heat penetration in the conductors, especially in the
induction heating devices.

3.1 Transient problems
Many engineering applications are described by
parabolic partial derivatives equations. When applying
the FEM to time dependent problems, the time
variable is usually treated in one of two ways:
•  Time is considered as an extra dimension and

shape functions in space and time are used
•  The nodal variables are considered as functions of

time and the shape functions in space are used.
A common approach for transient problems is to

solve time dependent differential equations by finite
differences approximation of time derivative terms,
combined with some weighted residual method in
space.

A widely used finite difference scheme for the first-
order equations is the so-called θ. Certain values of θ
correspond to known methods for time stepping:
•  θ =0 the forward difference method;

•  θ =1/2 Crank-Nicholson�s method;
•  θ =2/3 central difference method;
•  θ =1 the backward difference method.

3.2  θ-rule combined with Galerkin�s method
We illustrate the method by applying the θ-rule in time
and Galerkin�s method in space to the following heat
conduction equation:

0,)( ftxqTk
t
T

Ω∈+∇∇=
∂
∂

(10)

Ω∈= xxfxT )()0,( (11)

0,),( ftxtxg
n
T

k Γ∈=
∂
∂

− (12)

We shall present the numerical models obtained by
two strategies.

Applying the θ-rule to the heat equation (10) results
in the following spatial problem:

)()0( xfT =

Ω∈−+−∇∇−+

+∇∇=
−−

xmqmTk

mqmTk
t

mTmT

])1())1(()[1(

])())(([
)1()(

θ

θ
δ  (13)

0,),(
)(

ftxmtxg
n

mT
k Γ∈=

∂
∂

−

where the superscript m denotes the iteration
number, that is T(m)=T(x,tm).

Discretizing the Eq. (13) by the method of
weighted residuals, with T(n) approximated by

∑
=

=
r

i
xiNm

iTmT
1

)()()(

gives an algebraic equations system:

{ } { } )1()(])[]([ −=+ mbmTKM
where the matrices [M] and [K] have the entries:

∫
Ω

Ω= djNiNijM

∫
Ω

Ω∇⋅∇⋅⋅= djNiNktijK δθ

Instead of first discretizing in time by a finite
difference method, first we can apply the discretizing
in space by the weighted residual method, with T
approximated by:

∑
=

=
r

i
xiNtiTtxT

1
)().(),(

By this procedure a first order differential
equations system is obtained in the form:

{ } { } { }fTA
dt
Td

=+ ].[
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The θ-method for the time integration leads to [3]:

)()1(

)(

}{}]){)[1(]([
}]){[]([

mm

m

gTAtI
TAtI

+−−

=⋅⋅+
−θδ

δθ

)}){1(}{(}{ )1()()( −−+⋅= mmm fftg θθδ
For θ=0 the forward Euler's scheme is obtained and

we can get T(m) explicitly; otherwise, a linear system
must be solved at each time step. When θ>1/2 there is
no stability restriction on time step δt, which can be
convenient for the simulation algorithm. The choice of
θ=1/2 leads to an optimal combination of stability and
accuracy.

4 Coupled models
With a correct formulation of the mathematical models
and a good selection of the mathematical tools for a
specified field problem, we must select the method for
the numerical solution of the field problem. Ones of
these methods for field problems are moment�s
method, finite element method (FEM), boundary
element method (BEM), hybrid method BEM-FEM,
finite volume method (FVM), and edges element
method (EEM).

In our works we considered the FEM [6]. This
method can be viewed as a particular case of the
general method of moments, or a case of the Rayleigh-
Ritz method.

When applying the FEM to time dependent
problems, the time variable is usually treated in one of
two ways:

•  Time is considered as an extra dimension and
shape functions in space and time are used

•  The nodal variables are considered as
functions of time and the shape functions in
space are used.

4.1 Coupled magnetic and thermal fields
For magnetic field we consider the A-formulation, that
is we define the magnetic vector potential A by B =
curl A.  More, the domain is the same for temperature
and the electromagnetic field although in practice the
interest is for different field domains.

In order to solve the transient coupled set of
equations a numerical model can be developed using
the finite element method [4]. The finite element
discretization in space is used, leading to a system of
first-order differential equations:

{ } { } 0][][ =++
∂

∂









JfAAK
t

A
AS (14)

{ } { } 0][][][ =++
∂
∂







 AATKTTK

t
T

TS (15)

where the matrices have the entries defined in
accordance the FEM. The subscripts A and T refer to
the magnetic and thermal field respectively. The
vector {fJ} is generated by the heat source.

HHJq ×∇⋅×∇== ρρ 2

The two equations are coupled and non-linear.
Finally, the two models can be considered as a coupled
system defined in matrix form [12]:
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In a discrete form the unknowns are the nodal
values of the temperature T and the magnetic vector
potential A. The non-linear equations for T and A are
straightforwardly obtained by a Galerkin's finite
element method. For the case of 2D steady-state
problems we do the following approximations at the
element level [1]:

∑
=

=
r

j jTyxjNyxT
1

),(),(

∑
=

=
r

j jAyxjNyxA
1

),(),(

where the interpolation functions Nj are basis
functions in the mesh over Ω, and r is the number of
nodes of an element.

The usual procedure for the FEM applications
leads to a system of 2p equations where p is the total
number of the unknowns in each field problem.
Finally, the coupled problem is described by a system
of algebraic systems in the form:

0),...,1,,...,1( =pTTpAAAf (16)

0),...,1,,...,1( =pTTpAATf (17)
where the subscript denotes the original problem (A �
for the magnetic field in the magnetic vector potential
formulation; T � for the thermal field).

5 Iterative algorithms for coupled
problem
The finite element method has three distinct logical
stages: pre-processing, processing (solution) and post-
processing.  Each stage has an inherent parallelism that
can be exploited for parallel computing. New
algorithms for the parallel computers were developed
and presented in the professional literature.  We shall
limit discussion to one of them: domain decomposition
[8]. This algorithm uses the subdomain-to-subdomain
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iteration. Although the procedure is well known, we
must modify it for coupled problems.

5.1 Conventional algorithms
The numerical model for coupled problem defined by
Eq. (16) and Eq. (17), can be solved by two different
basic strategies [7]:
♦  Solving the equations for Ti and Ai simultaneously
♦  Solving the equations for the two fields in

sequence with an outer iteration, technique known
as operator-splitting technique (for example
Newton-Raphson procedure)

In the area of the first strategy, Gauss-Seidel and
Jacobi methods are well known. We present these
methods in brief.

The Gauss-Seidel algorithm for coupled fields has
the following pseudo-code [7]:

For  m:=1 , 2, � until convergence DO
•  Solve

0))1(,...,)1(
1;)(,...,)(

1( =−− m
pTmTm

pAmAAf
 with respect to A1(m), � Ap

(m)

•  Solve

0))(,...,)(
1;)(,...,)(

1( =m
pTmTm

pAmATf
with respect to T1(m) , � Tp

(m)

In other words, the system is solved firstly with
respect to A, using the values of T from the previous
iteration. Afterwards, the equation derived from the
thermal field model is solved using the computed
values of A from the current iteration. The equations
fA=0 or/and fT=0 are non-linear and must be solved by
an iterative procedure (for example Newton-Raphson's
method).

The algorithm Jacobi-type is similar to Gauss-
Seidel method, except that at the iteration m when we
must solve the model for T, the values for A are from
the previous iteration, that is A(m-1). The algorithm has
the following pseudo-code:

For m:=1 , 2, � until convergence DO
•  Solve

011
11 =−− ))(m

p,...,T)(m;T(m)
p,...,A(m)(AAf

with respect to A1(m), � Ap
(m)

•  Solve

0))(,...,)(
1;)1(,...,)1(

1( =−− m
pTmTm

pAmATf
with respect to T1(m) , � Tp

(m)

This algorithm has an inherent parallelism so that
can be implemented in a parallel program. Practically,

we decomposed the coupled problem in two
subproblems: one for the magnetic field, another for
the thermal field.  At a time step of the algorithm, the
numerical models for the two fields can be solved
independently.

5.2 Advanced algorithms
The domain decomposition method [8] is the best
among three possible decomposition strategies for the
parallel solution of PDEs, namely, operator
decomposition, function-space decomposition and
domain decomposition. This is one of the motivations
to present the principles of the domain decomposition
methods in this section.

The domain decomposition could be determined
from mathematical properties of the problem (real
boundaries or interfaces between subdomains), or
from the geometry of the problem (pseudo-
boundaries). For elliptic partial differential equations,
there exists a mathematical approach based on the
ideas given earlier in 1890 by Schwarz [8]. In Schwarz
procedure there is an inherent parallelism with a data
communication time for the passage of pseudo-
boundary data between the subproblems.

There is no general rule for the domain or/and
operator decomposition. It is defined in a somewhat
random fashion. The problems and solutions that
appear in the decomposition techniques depend on the
following aspects [1]:

•  If it is used domain decomposition or the
operator decomposition

•  If the partition has disjoint or overlapping sub-
domains

•  The type of boundary conditions that are set up
on the pseudo-boundaries of the sub-domains

•  If the decomposition is static or dynamic
A general criterion for the decomposition does not

exist so that the experience of the engineer can be a
useful reference for many algorithms and software
products.

5.3  Decomposition techniques
The desire of the scientific community for faster
processing on lager amounts of data has driven the
computing field to a number of new approaches in this
area. The main trend in the last decades has been
toward advanced computers that can execute
operations simultaneously, called parallel computers.
For these new architectures, new algorithms must be
developed and the domain decomposition techniques
are powerful iterative methods that are promising for
parallel computation. Ideal numerical models are those
that can be divided into independent tasks, each of
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which can be executed independently on a processor.
Obviously, it is impossible to define totally
independent tasks because the tasks are so inter-
coupled that it is not known how to break them apart.
However, algorithmic skeletons were developed in this
direction that enables the problem to be decomposed
among different processors. The mathematical
relationship between the computed sub-domain
solutions and the global solution is difficult to be
defined in a general approach.

In the area of the coupled fields we define two
levels of decomposition that is we define a hierarchy
of the decompositions:

•  One at the level of the problem
•  The other at the level of the field

In other words, we decompose the coupled
problem in two sub-problems: a magnetic problem and
a thermal problem, each of them with disjoint or
overlapping spatial domains. This is the first level of
decomposition. At the next level, we decompose each
field domain in two or more subdomains. The
decomposition is guided both by the different physical
properties of the materials, and the difference of the
mathematical models. At this level of decomposition
the Steklov-Poincaré's operator can be associated with
field problem [8]. This operator reduces the solution of
the coupled subdomains to the solution of an equation
involving only the interface values. One efficient and
practical solution of elliptical partial differential
equations is the dual Schur complement method [3].

6 Software products
A finite element (FE) program may be developed in a
modular form (see the block diagram from the Fig. 1).
FEM involves three stages:

1. Pre-processing
2. Solution (or processing)
3. Post-processing

Each stage involves more steps that are not shown
in the block-diagram. The details of the finite element
programs are presented in a large professional
literature so that it is not the purpose to present them in
this work.

The influence of the temperature on the material
properties can be used in development of efficient
programs in terms of the computing resources:
memory and the execution time. Some relevant aspects
in the design of the CAD software for coupled
magneto-thermal problems are:

•  The thermal source in the heat equation can be
defined by the time-mean of the ohmic power
loss. The motivation is simple: the time constant

of the magnetic phenomenon is small compared
to the diffusion time of the heat transfer.

•  A cascade solution may be more efficient than a
fully coupled model. In some applications there
is a strict coupling between magnetic and
thermal equation at each time instant, but in
many situations we can do separate analyses of
the magnetic field and the thermal field.

•  It can be used a predefined temperature profile
of a material for updating the magnetic field at
specified temperatures. For example, at Curie
temperature the material properties change
dramatically. After this critical point the
magnetic field equation must be updated. The
material characteristics are shown in the Fig. 2

•  The analysis domain can be divided in more
subdomains with different solvers for each
subdomain. In other words we can divide the
analysis domain in accordance with the
mathematical model of the problem.

The numerical model can be obtained by θ-rule
combined with the Galerkin�s method.

n
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Fig. 1� Block diagram for software CAD
We must have a measure of confidence in the
umerical solution. An approach for this requirement

Fig.2 - Characteristics vs. temperature
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is a control of the solution accuracy.  In adaptive mesh
generation, the mesh is refined iteratively on the basis
of error estimates. Advantages of this approach are:

•  The solution is accompanied by an error
estimate that is a measure of the confidence

•  The solution is cheap because the nodes are
added only where the accuracy is necessary

•  The uninitiated can use complex programs
without any fore-knowledge of the refinement
strategies

The disadvantages are:
•  The matrix size is increased
•  The software complexity is increased
•  The CPU time increases with the estimating

errors
There are basically the following methods of

refinement [3]:
•  h - refinement (subdividing elements)
•  p - refinement (increasing the polynomial

order p)
•  r � refinement (nodal positions are moved)
•  hp � refinement  (a combination of h- and p-

refinements)

7 Some industrial applications
In any electromagnetic device there are power losses
that are transformed in heating so that the modelling of
device involves coupled mathematical models. In
electrical engineering the coupled electromagnetic and
thermal fields represent both desirable phenomena and
undesirable phenomena. Two examples illustrate this
assertion: induction heating and the high-voltage (HV)
electrical cables.

Induction heating describes the thermal
conductivity problem in which the heat is generated by
eddy currents induced in conducting materials, by a
varying magnetic field. Induction heating is an
efficient procedure for bulk-heating metals to a set
temperature. The heating is generated by the eddy-
currents induced from a separate source of alternating
current.

Figure 3 shows a long cylindrical workpiece
excited by a close-coupled axial coil [13]. The device
has a cylindrical symmetry so that the problem can be
reduced to a 2D-problem in the plane Orz. An axial
section is presented in Fig. 4 with: 1- the workpiece, 2
� the air and 3 � the coil. The coil is assimilated with a
massive conductor. In this case we cannot ignore the
eddy currents in the coil. We consider a low-frequency
current in the coil so that the penetration depth is large.
In this case we can decompose the whole domain of
the field problem into overlapped subdomains for the
two coupled-fields.

The domain for the magnetic field can be reduced
to a quarter of the device bounded by a boundary at a
finite distance from the device. For the thermal field
we consider the workpiece as the analysis domain. The
penetration depth of the magnetic field in the
workpiece imposes the overlapping domains for the
two fields [5]. The numerical model is considered in a
cylindrical co-ordinates with the vertical axis Or and
the horizontal axis Oz.

f
p
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Fig.3 - Device for induction heating
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Another example that we present is a high-voltage
cable with three phase conductors and a neutral
conductor [13]. The HV cables are important
components of the energetic system for distribution of
the electric energy.  Fig. 5 shows the cross-section of
the system.
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The loads of the conductors are currents of
amplitude equal to 250 A at the frequency of 50 Hz.

In post-processing stage of the FEM program, a lot
of physical quantities can be obtained [3]. They are of
great importance for the electrical engineers in the
evaluation of the device performance. These derived
quantities are presented in user�s manual of any
software CAD [13]. The voltage amplitude is 7000 V.

Fig. 6 � The current density map
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Fig. 5 � Cross section of the cable
This high-voltage tetra-core cable has three triangle
tors with phase conductors and round neutral
ductor in the lesser area of the cross-section above.
 the conductors are made of copper. Each
ductor is insulated and the cable as a whole has a

ee-layered insulation. The cable insulation consists
inner and outer insulators and a protective braiding
el tape). The sharp corners of the phase conductors
 chamfered to reduce the field crown. The corners
the conductors are rounded. Empty space between
ductors is filled with some insulator (air, oil etc.)

umerical results
 shall present the results of the numerical
ulation for the electrical cable described in the
vious section.  This system can be analysed for
ferent operating regimes. When the cables are in
d, the conductor currents can generate local heating
t destroys the insulation and finally, the whole
tem. Consequently, the temperature distribution is
great importance for the designer.
Each cable-core has its own insulation but there are
 layers of insulation: inner cable insulation and
er cable insulation more thick than the internal
ulation. Also, there is a protective steel braiding.

Fig. 7� The temperature map

The non-uniformity of the temperature is due to the
non-uniformity of the current density in system. In
Fig. 6 the map of the total current density is shown.  In
computation of the total current in the cable, the skin
effect and proximity effect of the cable cores were
considered. Fig. 7 shows the temperature map of the
system.

The forces that appear between different
components and the displacements of the cable
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components generate another important field in the
cable. Stress analysis plays an important role in design
of many different electrical components. Generally the
quantities of interest in stress analysis are:

•  displacements
•  strains
•  different components of stresses.
In the electric cables the loading sources are:
•  Thermal strains
•  Electric forces from electromagnetic analysis
Mathematical models are Navier's equations of

elasticity [13].

Fig. 8 - The displacement vectors and map

In Fig. 8 the map of the displacement and the
vectors are shown [13]. The electric currents are the
source of the electrodynamic forces. These forces in
short-circuit regime can be very strong and destroy the
system configuration. Also, the heat can lead to a
dilatation of the conductors and important
displacements can appear. Consequently, the forces
field is very important for the engineer, especially in
the dangerous operating regimes.

9 Conclusions
The problem of coupled fields in electrical engineering
is a complex problem in terms of computing resources.
In practice the coupled fields are treated independently
in some simplified assumptions. The accuracy of the
numerical computation is poor. With the new
architectures, a multidisciplinary research is possible.
Some iterative procedures were presented with
emphasis on the coupled problems.

Domain decomposition offers an efficient approach
for large-scale problems or complex geometrical
configurations. This method in the context of the finite
element programs leads to a substantial reduction of
the computing resources as the time of the processor.

In coupled problems a hierarchy of decomposition
can be defined with a substantial reduction of the
computation complexity. The finite element method
was used for the numerical result. The program
Quickfield was used in our target examples [13].

In our future research we shall extend our results to
coupled magnetic, thermal and stress analysis for
important devices from the energy distribution systems
as the electrical transformers and reactors. More, we
have in our projects some important objectives:
optimal design of the electromagnetic devices using
coupled models and gradient techniques [10]. Also, we
published some works in the area of CAD for optimal
control of the heat transfer in large-power cables [3].

We shall extend the results of this research to
electrical transformers using parallel algorithms. In
some previous works we presented the computation of
the electrodynamic forces in the large power
transformers using uncoupled models. This approach
was a practical approach for many designers motivated
by the computation complexity and a limited
computing power of the conventional computers. With
the new computers we can use coupled models for
transformers and other devices of high voltage and
large power.

In this work we limited our presentation to
conventional algorithms. But FEM has an inherent
parallelism in any stage: pre-processing, processing
and post-processing. These features will be exploited
in our next software. We developed our own software
for mesh generation using multiblock method with
good results for parallel computing [11].
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