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Abstract-This paper investigate the stabilizability of 2-D linear discrete-time systems described by the
Roesser model with closed-loop positivity. Necessary and sufficient condition for the existence of desired
state-feedback controllers guaranteeing the resultant closed-loop system to be asymptotically stable and
positive is obtained. The synthesis of state-feedback controllers, including the requirement of positiveness
of the controllers and its extension to uncertain plants are solved in terms of Linear Matrix Inequalities
(LMIs) which can be easily verifies by using standard numerical software. Numerical examples are pro-
vided to illustrate the proposed conditions.
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1 Introduction

In last two decades, the two-dimensional (2-D)
system theory has been payed a considerable atten-
tion by many researchers. The 2-D linear models
were introduced in the seventies [3, 5] and have
found many applications, such as in digital data fil-
tering, image processing [13], modeling of partial
differential equations [6], etc. In connection with
Roesser [13] and Fornasini-Marchesini [4] models,
some important problems such as realization, con-
trollability, minimum energy control, has been ex-
tensively investigated (see for example [9]). On the
other hand, the stabilization problem is not fully in-
vestigated and still not completely solved.

Recently, we observe a growing interest in the-
ory and application of positive 2-D systems [8, 10,
12, 14]. Positive 2-D Roesser systems has been

studied in [7] and more detailed description can be
found in [10].

The stability of 2-D discrete linear systems can
be reduced to checking the stability of 2-D char-
acteristic polynomial [15, 16]. This appears to be
difficult task for the control synthesis problem. In
the literature, various types of easily checkable but
only sufficient conditions for asymptotic stability
and stabilization problems for 2-D discrete linear
systems have been proposed [17, 18, 19, 20].

In the present paper, we first analyze the stabil-
ity of positive 2-D Roesser model [7, 13] and obtain
necessary and sufficient condition for its stability.
On the other hand, we investigate the stabilization
problem of positive 2-D linear discrete-time sys-
tems in Roesser Model. Instead of using algebraic
techniques which have been widely employed for
the analysis of positive system, our development is
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based on matrix inequalities. Based on the well-
established results of Lyapunov stability theory
and nonnegative matrix, equivalent conditions in
terms of Linear Matrix Inequalities (LMIs) are ob-
tained for the existence of stabilizing state-feedback
controllers, including the requirement of positive-
ness of the controller and its extension to uncertain
plants. A remarkable advantage of these conditions
lies in the fact that they are not only necessary and
sufficient, but also can be easily verifiable by using
some standard numerical software. Moreover, these
conditions readily construct a desired controller if
its exists. To the authors’ knowledge, this work rep-
resents the first LMI treatment on control synthesis
for guaranteeing asymptotic stability and positivity.
The remainder of the paper is structured as follows:
In section 2 the problem is formulated and some
preliminary results are given. Section 3 studies the
stability problem. Section 4 present a necessary and
sufficient condition for stabilization with positivity
constraint. Robust stabilization problem is study
in section 5. In section 6 numerical examples are
given to illustrate the proposed results.

Notation: The following notation well be used
throughout this paper; N denotes the set of integer
numbers. Rn denote the n-dimensional Euclidean
space; Rm×n denotes the set of all real matrices
of dimension m × n; Rm×n

+ denotes the set of all
m × n real matrices with nonnegative entries and
Rn

+ , R1×n
+ ; The notation M > 0 (resp. M ≥ 0),

where M is a real matrix (or a vector ), means that
all the components of M are strictly positive (resp.
nonnegative); diag {...} stands for a block-diagonal
matrix. Matrices, if their dimensions are not ex-
plicitly stated, are assumed to be compatible for
algebraic operations. For a complex number z, the
quantity |z| represents its modulus.

2 Problem formulation and
Preliminaries

Consider the following 2-D system described by
Roesser model [13]:




[
xh(i + 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
+ Bu(i, j)

y(i, j) = C

[
xh(i, j)
xv(i, j)

]
+ Du(i, j)

(1)

where A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
and

C =
[

C1 C2

]
, A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 ,

A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 , B1 ∈ Rn1×m,
B2 ∈ Rn2×m,C1 ∈ Rl×n1 , C2 ∈ Rl×n2 and D ∈
Rl×m are given constant real matrices. The vectors
xh(i, j) ∈ Rn1 and xv(i, j) ∈ Rn2 are, respectively,
the horizontal and vertical states at the point (i, j)
and the vectors u(i, j) ∈ Rm and y(i, j) ∈ Rl are
respectively, the input and output signal of System
(1). Boundary initial conditions for System (1) are
given by two sequences (xh

0) and (xv
0) such that:

{
xh(0, j) = xh

0(j) ∀j ∈ N,
xv(i, 0) = xv

0(i) ∀i ∈ N.
(2)

In the sequel, the following definition will be
used.

Definition 2.1 System (1) with zeros input u = 0, is
called positive if for any given nonnegative bound-
ary conditions xh

0(j) ≥ 0 and xv
0(i) ≥ 0, the re-

sulting states and the output are also nonnegative
x(i, j) ≥ 0 and y(i, j) ≥ 0.

The following result shows how one can check
the positiveness of System (1) (see [10]).

Proposition 2.1 System (1) is positive if and only
if A ∈ R

(n1+n2)×(n1+n2)
+ , B ∈ R

(n1+n2)×m
+ , C ∈

R
l×(n1+n2)
+ and D ∈ Rl×m

+ .

Asymptotic stability for general Roesser model
[13] has been extensively studied in the literature.
A well-known necessary and sufficient frequency
condition for asymptotic stability is stated in the
following.

2
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Lemma 2.1 Let A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 ,
A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 be given constant
real matrices. Then, 2-D system described by the
Rosser model (1) with zeros input u = 0, is asymp-
totically stable if and only if the following condition
holds





det(

[
In1 − z1A11 −z1A12

−z2A21 In2 − z2A22

]
) 6= 0,

∀(z1, z2) ∈ {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}
(3)

In the sequel, our purpose is to investigate the exis-
tence of state-feedback control laws

u(i, j) = K

[
xh(i, j)
xv(i, j)

]
+ v(t) (4)

where K =
[

K1 K2

]
such that the resulting

closed-loop system given by:




[
xh(i + 1, j)
xv(i, j + 1)

]
= Ā

[
xh(i, j)
xv(i, j)

]
+ Bv(i, j)

y(i, j) = C̄

[
xh(i, j)
xv(i, j)

]
+ Dv(i, j)

(5)

is positive and asymptotically stable. where K ,
[kij] ∈ Rl×(n1+n2) is the controller gain to be deter-
mined and

Ā , [āij] = A + BK, C̄ , [āij] = C + DK. (6)

Of course, if one utilizes directly the results of
Lemma 2.1 and Proposition 2.1, one can have the
following necessary and sufficient condition for the
closed-loop system to be positive and asymptoti-
cally stable:

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

]
≥ 0,

det{
[

In1 − z1(A11 + B1K1)
−z2(A21 + B2K1)

−z1(A12 + B1K2)
In2 − z2(A22 + B2K2)

]
} 6= 0 (7)

∀(z1, z2) ∈ {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}.

However, this is a very complicated formulation
which leads to a very hard problem to solve, since
we have a linear constraint (positivity constraint)
but also mixed with the very highly nonlinear in-
finite dimensional constraint (asymptotic stabiliz-
ability constraint as stated above). A significant
contribution of this paper is reflected by its simplic-
ity and completeness. Effectively, all the provided
main results involve easily checkable necessary and
sufficient conditions. It will be shown, in the se-
quel, how we can still completely solve problem (7)
in term of Linear Matrix Inequalities which avoids
unnecessary computational burden.

3 Stability Analysis
This section provides preliminary stability results
for the free linear 2-D system described by the
Roesser model:

[
xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 A12

A21 A22

] [
xh(i, j)
xv(i, j)

]
.

(8)
In fact, it will be shown that the asymptotic stabil-
ity of System (8) (under the positivity constraint) is
equivalent to the following 1-D discrete-time sys-
tem:

x(k + 1) =

[
A11 A12

A21 A22

]
x(k). (9)

We also use the following definition for 1D
discrete-time system (9).

Definition 3.1 System (9) is called positive if for
any given nonnegative initial conditions x(0) ≥ 0,
the resulting states are also nonnegative x(i) ≥ 0.

Next, recall that the spectral radius ρ(M) of a ma-
trix M ∈ Rn×n is defined as:

ρ(M) = max{|λ1|, . . . , |λn|},

where λ1, . . . , λn are the eigenvalues of M . Also,
for a complex matrix N = [nij] we define the real
matrix |N | as the matrix formed by the components
|nij|.

Now, in order to establish our main stability re-
sult, we need some technical key role result which
is provided by the following well-known lemma.

3
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Lemma 3.1 [11] Let M be a real matrix and N be
a complex matrix such that |N | ≤ M (M − |N | is
a nonnegative matrix), then ρ(N) ≤ ρ(M).

Lemma 3.2 [2] Assume that the matrices A11, A12,
A21 and A22 are constant nonnegative matrices (or
equivalently that System (9) is positive). Then, the
following statements are equivalent:

(i) 1-D system described by (9) is asymptotically
stable.

(ii) ρ(

[
A11 A12

A21 A22

]
) < 1.

(iii) there exists a positive diagonal matrix P ∈
R(n1+n2)×(n1+n2) satisfying

AT PA− P < 0

where A =

[
A11 A12

A21 A22

]

(iv) There exists a vector d ∈ Rn1+n2 such that
[

A11 − In1 A12

A21 A22 − In2

]
d < 0, d > 0.

(10)

In what follows we present equivalent condi-
tions with regard to the asymptotic stability of 2-D
positive system described by the Roesser model (8).

Theorem 3.1 Assume that the system (8) is posi-
tive or equivalently that the matrices A11, A12, A21

and A22 are nonnegative. Then, the following state-
ments are equivalent:

(i)





det(

[
In1 − z1A11 −z1A12

−z2A21 In2 − z2A22

]
) 6= 0,

∀(z1, z2) ∈ {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}.

(ii) ρ(

[
A11 A12

A21 A22

]
) < 1.

Proof: (i) ⇒ (ii) by setting z1 = z2 = z in condi-
tion (i), then we have obviously

det(I − z

[
A11 A12

A21 A22

]
) 6= 0, |z| ≤ 1, (11)

which, in turn, is equivalent to the condition (ii).
(ii) ⇒ (i) Let z1 and z2 be any arbitrary complex
numbers such that |z1| ≤ 1, |z2| ≤ 1. So we can
easily see that

[ |z1A11| |z1A12|
|z2A21| |z2A22|

]
≤

[
A11 A12

A21 A22

]
,

then, by using the spectral property given in Lemma
3.1, we obtain

ρ(

[
z1A11 z1A12

z2A21 z2A22

]
) ≤ ρ(

[
A11 A12

A21 A22

]
) < 1.

Since z1 and z2 are arbitrary complex number with
modulus less or equal to one; the above inequality,
in turn, implies condition (i) and the proof is com-
plete. ¥
Now, we are in position to state the main result of
this section.

Corollary 3.1 The following statements are equiv-
alent:

(i) 2-D system described by Roesser model (8) is
positive and asymptotically stable.

(ii) 1-D system described by (9) is positive and
asymptotically stable.

(iii) there exists a positive diagonal matrix P ∈
R(n1+n2)×(n1+n2) satisfying

AT PA− P < 0

where A =

[
A11 A12

A21 A22

]

(iv) The matrices A11, A12, A21, A22 are nonneg-
ative and there exists d ∈ Rn1+n2 such that:[

A11 − In1 A12

A21 A22 − In2

]
d < 0, d > 0.

Proof: Recall that the equivalence (ii) ⇔ (iii) re-
sults from Lemma 3.2 and then the proof will be
complete if we only show (i) ⇔ (iii).
(i) ⇒ (iii) First, using Proposition 2.1 we have that
A11, A12, A21, A22 are nonnegative. Next, since by
Lemma 2.1 the asymptotic stability of the 2D sys-
tem (8) is equivalent to





det(

[
In1 − z1A11 −z1A12

−z2A21 In2 − z2A22

]
) 6= 0,

∀(z1, z2) ∈ {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1},

4
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which by Theorem 3.1 is also equivalent to

ρ(

[
A11 A12

A21 A22

]
) < 1,. Finally by using Lemma

3.2 this implies (iii).
Reciprocally, to show that (iii) ⇒ (i) it suffices
to follow the same line of arguments by utiliz-
ing Proposition 2.1 combined with (in this order)
Lemma 3.2, Theorem 3.1 and Lemma 2.1. ¥

4 Controller synthesis
This section studies the stabilization problem of lin-
ear 2-D systems described by Roesser model for
which the control law to be investigated has the
state-feedback form

u(i, j) = K

[
xh(i, j)
xv(i, j)

]
+ v(t).

This control law is designed in order to ensure the
positivity and the asymptotic stability of the result-
ing closed-loop system given in (5).
The following Lemmas will be useful in the subse-
quent development [12], [10].

Lemma 4.1 Given the open-loop system (1) and
the controller given by (4), the closed-loop system
(5) is positive if and only if Ā ∈ R

(n1+n2)×(n1+n2)
+ ,

B ∈ R
(n1+n2)×m
+ , C̄ ∈ R

l×(n1+n2)
+ and D ∈ Rl×m

+ .

Lemma 4.2 Given the open-loop system (1) and
the controller given by (4), assume that the closed-
loop system in (5) is positive. Then it is asymptoti-
cally stable if and only if there exists a positive di-
agonal matrix P ∈ R(n1+n2)×(n1+n2) satisfying

ĀT PĀ− P < 0 (12)

In what follows we provide the main result of this
section.

Theorem 4.1 The closed-loop Roesser system
(5) is positive and asymptotically stable for
any initial boundary conditions, if and only if
there exist a positive diagonal matrix Q ,
diag{q1, q2, ...q(n1 + n2)} and matrix K̄ , [k̄ij] ∈
Rm×(n1+n2) such that

[ −Q AQ + BK̄
∗ −Q

]
< 0 (13)

aijqj +
m∑

z=1

bizk̄zj ≥ 0, 1 ≤ i, j ≤ n1 + n2 (14)

cijqj +
m∑

z=1

dizk̄zj ≥ 0, 1 ≤ i, j ≤ n1 + n2 (15)

with A = [aij], B = [bij], C = [cij] and D = [dij].
Under the above conditions, the matrix gain of de-
sired controller (4) is given by

K = K̄Q−1. (16)

Proof: (Sufficiency) First from (16), we have
kzj = k̄zjq

−1
j . By noticing qj > 0, (14) and

(15) trivially ensure that Ā ∈ R
(n1+n2)×(n1+n2)
+

and C̄ ∈ R
l×(n1+n2)
+ . Then, by the positivity of

B ∈ R
(n1+n2)×m
+ and D ∈ Rl×m

+ , from Lemma 4.1
we know that the closed-loop system is positive.
Second, from (16), we have

K̄ = KQ. (17)

By substituting (17) into (13), we obtain
[ −Q AQ + BKQ

∗ −Q

]
< 0 (18)

By applying to (18) the congruence transformation
defined by diag{Q−1, Q−1} and keeping in mind
(6), one obtains

[ −Q Q−1Ā
∗ −Q

]
< 0

By defining P , Q−1, we readily obtain (12)
via schur compliment equivalence [1]. Then, from
Lemma , we know that the closed-loop system is
asymptotically stable.
(Necessity) Suppose there exists a controller of
form given in (4) such that the closed-loop sys-
tem given in (5) is asymptotically stable and
positive. Then, from Lemmas and , we know
that Ā ∈ R

(n1+n2)×(n1+n2)
+ , C̄ ∈ R

l×(n1+n2)
+ ,

and there exists a positive diagonal matrix P ,
diag{p1, p2, ..., p(n1+n2)} ∈ R(n1+n2)×(n1+n2) sat-
isfying (12). First, by Schur compliment, (12) is
equivalent to

[ −P PĀ
∗ −P

]
< 0 (19)

5
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By applying to (19) the congruence transformation
defined by diag{P−1, P−1} and keeping in mind
(6), one obtains

[ −P−1 AP−1 + BKP−1

∗ −P−1

]
< 0

By defining

Q , P−1, K̄ , KQ (20)

we readily obtain (13).
Second, Ā ∈ R

(n1+n2)×(n1+n2)
+ and C̄ ∈ R

l×(n1+n2)
+

trivially imply (14) and (15), respectively, by notic-
ing (20). ¥

The importance of the above result is relevant,
because it provides not only checkable necessary
and sufficient condition but also a simple approach
to address numerically the computation of the prob-
lem. Then, these conditions can be solved as a stan-
dard Linear Matrix Inequalities problem. In addi-
tion, based on the same formulation we can take
into account the positiveness of the state feedback
control law by just adding an additional constraint
on the variables k̄ij . This is shown in the following
result.

Theorem 4.2 The following statements are equiv-
alent:
(i) There exists a positive state-feedback law

u(i, j) = K

[
xh(i, j)
xv(i, j)

]
+v(t) such that the closed-

loop (5) is positive and asymptotically stable.
(ii) There exists a matrix K ∈ Rm×(n1+n2) such that
K ≥ 0 and Ā is nonnegative stable matrix.
(iii) there exist a positive diagonal matrix Q ,
diag{q1, q2, ...q(n1+n2)} and matrix K̄ , [k̄ij] ∈
R

m×(n1+n2)
+ such that

[ −Q AQ + BK̄
∗ −Q

]
< 0 (21)

aijqj +
m∑

z=1

bizk̄zj,≥ 0 1 ≤ i, j ≤ n1 + n2 (22)

cijqj +
m∑

z=1

dizk̄zj,≥ 0 1 ≤ i, j ≤ n1 + n2 (23)

k̄ij ≥ 0, i = 1, .., m, j = 1, ..., n1 + n2 (24)

with A = [aij], B = [bij], C = [cij] and D = [dij].
Moreover, the gain matrix K is given by:

K = K̄Q−1.

Proof: By a simple convexity argument the proof
is straightforward. ¥

Now, some significant remarks are provided.

Remarks 4.1 Note that if a negative state-feedback
control law is to be considered it suffices to impose
k̄ij ≤ 0 instead of k̄ij ≥ 0 in the previous LMI for-
mulation.

Remarks 4.2 As the matrices B and D are invari-
ant state-feedback law (4), their positivity is neces-
sary for closed-loop system (5) to be positive. How-
ever, no such condition is imposed on A and C for
open-loop system (1), which means that the open-
loop system (1)is not necessarily positive. There-
fore the controller is designed not only to stabilize
the system, but also to render the closed-loop sys-
tem positive

5 Synthesis with uncertain
plant

An important issue in the control design is robust
stability, that is, ensuring stability under uncer-
tainty or against possible perturbations. In this sec-
tion, we consider robust stabilization of Roesser
systems for which the dynamics are not exactly
known and subject to uncertainties which are cap-
tured in a polytopic domain. Consider the following
uncertain system:[

xh(i + 1, j)
xv(i, j + 1)

]
= Aα

[
xh(i, j)
xv(i, j)

]
+ Bαu(i, j),

(25)
where the matrices Aα ∈ R(n1+n2)×(n1+n2) and
Bα ∈ R(n1+n2)×m are supposed to be not exactly
known but it is assumed that they belong to the fol-
lowing convex set:

[
Aα Bα

] ∈ D,

D :=
{ r∑

p=1

αp

[
Ap Bp

]
,

r∑
p=1

αp = 1, αp ≥ 0
}

,

where [A1 B1], . . . , [Ar Br] are known matrices.
Our robust synthesis design consists in finding a

6
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single constant gain matrix K for which the follow-
ing closed-loop system is positive and asymptoti-
cally stable for every [Aα Bα] ∈ D:

[
xh(i + 1, j)
xv(i, j + 1)

]
= (Āα)

[
xh(i, j)
xv(i, j)

]
. (26)

where Āα = (Aα + BαK) This kind of uncertain-
ties in the model (5.1) can be directly handled by
the proposed approach as is stated in the following
result.

Theorem 5.1 The closed-loop Roesser system is
positive and asymptotically stable for any initial
boundary conditions, if and only if there exist a pos-
itive diagonal matrix Q , diag{q1, q2, ...qn1+n2}
and matrix K̄ , [k̄ij] ∈ Rm×(n1+n2) such that

[ −Q ApQ + BpK̄
∗ −Q

]
< 0 (27)

ap
ijqj +

m∑
z=1

bp
izk̄zj ≥ 0,

1 ≤ i, j ≤ n1 + n2, p = 0, ..., r (28)

cp
ijqj +

m∑
z=1

dp
izk̄zj ≥ 0

1 ≤ i, j ≤ n1 + n2, p = 0, ..., r (29)

with Ap = [ap
ij] and Bp = [bp

ij].
Under the above conditions, the matrix gain of de-
sired controller (4) is given by

K = K̄Q−1. (30)

Proof: By a simple convexity argument the proof
is straightforward. ¥

6 Numerical Examples
Example 6.1 (Stability synthesis)
As an illustration of our stability synthesis design,
we treat the following Roesser system (1) described
by the matrices:

A =



−1.2 0.1 0
0.2 0.5 0.3
1 1 0.2


, B =




1
1
0


 .,

C =
[ −0.1 0.3 | 0.2 ]

, D = 0.1.

Of course, as the matrices A and C are not non-
negative, the open-loop system (1) is not positive.
This fact is also illustrated by the open-loop re-
sponse of xh

1 depicted in Figure1 (starting from ini-
tial nonnegative boundary). According to the result
given in [4], the system in open-loop is also un-
stable, i.e the spectral radius ρ(A11 + A12(zIn2 −
A22)

−1A21)) > 1, where z = ejω, for all ω ∈
[−π, π] (see Figure1 and Figure2). Our purpose
is to design a state-feedback controller on the form
(4) such that the closed-loop system is asymptoti-
cally stable and positive. By applying Theorem 4.1,
we obtain the following matrix variables:

Q = diag{0.8866, 13.4709, 34.1739}
K̄ = [1.2097 − 1.1171 0.4538]

Then, according to (16), the feedback gain matrix
K of the controller (4) is given by:

K = [1.3643 − 0.0829 0.0133] (31)

so the matrices of closed-loop system (5) are given
by

Ā =




0.1643 0.0171 0.0133
1.5643 0.4171 0.3133
1.0000 1.0000 0.2000


, B̄ =




1
1
0


 .,

C̄ =
[

0.0364 0.2917 | 0.2013
]
., D̄ = 0.1.

Hence, it suffices to look at the entries of the ma-
trices Ā, B̄, C̄, D̄, to conclude that the closed-loop
system is positive (according to proposition 2.1).
In addition, according to Corollary 3.1, the closed-
loop system is asymptotically stable (also, it can be
checked that the matrix Ā has all eigenvalues inside
the unit circle, namely λ1 = 0.9357, λ2 = 0.0961
and λ3 = −0.2504. The closed-loop responses of
the closed-loop system for xh

1 is shown in Figure 3
(The other state responses are similar, and hence,
omitted). Thus, the simulation results shows that
the closed-loop is positive and asymptotically sta-
ble.

Example 6.2 (Positive feedback)
Let us consider the following non-positive Roesser
system (1) described by:
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A =

[
0.2 0.7
0.9 −0.8

]
, B =

[
0
1

]
.

Note that the system in open-loop is unstable,
since the spectral radius ρ(A11 + A12(zIn2 −
A22)

−1A21)) > 1 where z = ejω, for all ω ∈
[−π, π] (see Figure 4). Here, our task is to utilize
a positive state-feedback controller of the following
form:

u(i, j) = K

[
xh(i, j)
xv(i, j)

]
(32)

such that the closed-loop system
[

xh(i + 1, j)
xv(i, j + 1)

]
= Ā

[
xh(i, j)
xv(i, j)

]
(33)

where Ā = A + BK
in order to stabilize the system and enforce the state
to be positive. By applying Theorem 4.2 we obtain
the following matrix variables:

Q = diag{4.1364, 5.9289}
K̄ = [0.4338 5.1540]

Then, according to (16), the feedback gain ma-
trix K of the controller (4) is given by:

K = [0.1049 0.8693] (34)

so the matrix of closed-loop system (31) is given by

Ā =

[
0.2000 0.7000
1.0049 0.0693

]
.

It can be seen that the closed-loop response of the
closed-loop system for xh

1 is convergent see Fig-
ure 5 and asymptotically stable, (The other state
responses are similar, and hence, omitted). It can
be also checked that matrix Ā has all eigenvalues
inside the unit circle, namely λ1 = 0.9759, and
λ2 = −0.7066 .From this it follows that the sys-
tem is asymptotically stable according to condition
3 of Theorem 3-1, by simple looking at the entries
of dynamic matrices Ā and B̄, we can conclude that
the governed system is positive according to Propo-
sition 3.1.

Example 6.3 (Uncertain plan)
In this example, we consider an uncertain Roesser
system (25) subject to a parametric perturbation as
follows:

Aα =



−1.2 0.1 0
0.2 0.5 0.3
1 1 0.2− 0.01α


 ,

Bα =




1
1− 0.01α

0


 ,

where 0 ≤ α ≤ 1.
We are looking for a robust state-feedback con-

trol which stabilizes and enforces the positivity of
all the plants between the two extreme plants (α =
0 and α = 1). By applying Theorem 5.1, we obtain
the following matrix variables:

Q = diag{17.2102, 259.0649, 654.3670}

K̄ = [23.1671 − 21.0130 9.9411]

Then, according to (16), the feedback gain matrix
K of the controller (4) is given by:

K = [1.3461 − 0.0811 0.0152] (35)

Hence, with this gain all the closed-loop sys-
tems between the two extreme plants (α = 0 and
α = 1) are positive and asymptotically stable. The
state responses of the closed-loop system for xh

2 for
the two extreme plants (α = 0 and α = 1), start-
ing from initial positive boundaries, are depicted in
Figure 6 and Figure 7 (The other state responses
are similar, and hence, omitted).

7 Conclusion

The control problem for stability and positivity is
treated in this paper for 2D linear discrete-time sys-
tems described by the Roesser model. Necessary
and sufficient conditions are derived in terms of
LMIs for the existence of desired controllers guar-
anteeing the closed-loop system to be asymptoti-
cally stable and positive. Also, it has been shown
how our method can take into account the positiv-
ity of the control and also the uncertainties in the
model. Numerical examples are provided to illus-
trate the proposed results.
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Figure 1. Open-loop response of xh
1(i, j)
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Figure 2. The spectral radius in open-loop system
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Figure 3. Closed-loop response of xh
1(i, j)
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Figure 4. The spectral radius in open-loop system
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Figure 5. Closed-loop response of xh
1(i, j)
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Figure 6. Closed-loop response of xh
2(i, j)forα = 0
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Figure 7. Closed-loop response of xh
2(i, j)forα = 1
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