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Abstract: New sufficient conditions to test stability of 2-D linear continuos-time systems described by 
Roesser model with polytopic uncertainty are presented in this paper. Robust stability is guaranteed by 
the existence of a parameter-dependent Lyapunov function obtained from the feasibility of a set of 
Linear Matrix Inequalities(LMIs), formulated at the vertices of the uncertainty polytope. Two 
conditions are presented, and the results are compared with the analysis based on quadratic stability 
(same Lyapunov function for the entire set of uncertainties). Several examples are presented to 
illustrate the results.  
Keywords: 2-D continuous-time systems, Robust stability, parameter-dependent Lyapunov functions, 
Linear matrix inequalities (LMIs), polytopic uncertainty, Roesser model. 
 
1 Introduction 
Analysis of uncertain continuous-time linear 
systems is a major topic in automatic control 
[1], [2] and [21]. In these systems the 
uncertainties can be due to approximations 
when a linearized model is calculated, to 
neglected dynamics, or to parameter variations. 
In the application of Lyapunov function to 
robust control problem. The simplest approach 
consists in looking for a common quadratic 
Lyapunov function (Quadratic stability) that 
proves stability of the polytope of matrices (see 
e.g [17]). 
Unfortunately, QS tests can lead to very 
conservative results in some cases. Recently, 
different techniques based on parameter-
dependent [3], [4], [6-11] or piecewise 
Lyapunov functions [12-13] have appeared, 
providing less conservative results. Among this 
literature, some focus on continuous-time 
systems [5-7,10,11] and other on the discrete-
time ones [3], [4], [10]. The key idea in the 
above paper is to introduce new variables and 
large the dimension of the LMIs to obtain 
sufficient conditions for the existence of a 
parameter dependent Lyapunov function. 
In the study of distributed systems, partial 
differential equations will arise, these partial 
equations actually correspond to 2-D or n-D 
continuous-time systems [15], [16]. Therefore 

the study of 2-D continuous-time systems is 
both of practical and theoretical importance. 
In this paper, we deal with the problem of 
stability for uncertain 2-D continuous-time 
systems. The class of 2-D continuous-time 
systems under consideration is described by the 
Roesser model with polytopic-type uncertainty. 
New sufficient conditions for the robust 
stability are obtained from the feasibility of a 
set of linear matrix inequalities (LMIs) 
formulated at the vertices of uncertainty 
polytope. Several examples are presented to 
illustrate the results. 
This note is organized as follows: Section 2 
presents the problem formulation and some 
preliminaries results. In section 3 we give the 
main results. Section 4 uses numerical 
examples to illustrate the effectiveness of the 
proposed methods. Finally, some conclusions 
are presented. 

Notation: The following notation will be used 
throughout this paper: R denote the set of real 
numbers, nR denotes the n-dimensional 
Euclidean space and nmR ×

nm
denotes the set of 

×  real matrices. The 
notation andY , where 0>X 0> X and are 
symmetric matrices, indicates that the matrix 

Y

YX −  is positive definite. 
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2   Problem Formulation and 
Preliminaries  
Let the 2-D continuous-time system 

described by Roesser model: [20]. 
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where and aret
he horizontal and vertical states, 

respectively; i

s the dynamic matrix.  
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We first introduce the notion of asymptotic 
stability of 2-D continuous-time systems. 

Lemma 2.1[18],[19]. The 2-D linear 
continuous-time system (1) is asymptotically 
stable if there exist matrices 

and such that 
the following LMI holds 

vh nn × vh nn ×
h RP ∈<0 v RP ∈<0

                                                                                           

                                       (2) 0<+ PAPAT

where  ).,( vh PPdiagP =
Suppose now that A is not precisely known, but 
belongs to a polytopic uncertain domainΩ . In 
this way, any matrix inside the domainΩ can be 
written as a convex combination of the 
vertices of the uncertainty polytope: i.e., iA
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We begin our discussion by defining Robust 
stability with respect to system (1) and the 
structured model (3): 
Definition 2.1. System (1) is robustly stable in 
the uncertainty domain (3) if there exists a 
parameter-dependent matrix 

))(),(()( ααα vh PPdiagP = , such that  
                                                      

                 (4) 0)()()()( <+ αααα APPAT

for all α  such that .)( Ω∈αA  where  
To the authors’ knowledge, there is no 

general and systematic way to formally 

determine )(αP as a function of the uncertain 
parameterα . Such a matrix )(αP is called a 
parameter dependent Lyapunov matrix. The 
simplest method to solve this problem is to look 
for a single Lyapunov matrix PP =)(α which 
solves inequality (4). Unfortunately, this 
approach is known to provide quite 
conservative results, but it constitutes one of the 
first results in the quadratic approach. The test 
for this kind of stability, also known as 
quadratic stability (QS) test, is summarized in 
the following lemma: 

Lemma 2.2 The uncertain system (1) is 
robustly stable in the uncertainty domain (3) if 
there exist matrices and 

such that 

vh nn ×

vh nn ×
h RP ∈<0

v RP ∈<0

                                         (6) 0<+ i
T
i PAPA

for all Ni ,...,1= . 
 
3 Main Results 
We begin this section by stating the following 
equivalence. 

Theorem 3.1: The following conditions are 
equivalent: 

i) there exist matrices , and 

 such that : 

hh nn
h RP ×∈<0

vv nn
v RP ×∈<0

                              (7) 0<+ PAPA T

where ),( vh PPdiagP =  

ii) there exist matrices , 

and matrices andG such that 

hh nn
h RP ×∈<0

vv nn
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Proof of Theorem 3.1: Before giving the 
proof of this theorem, a useful lemma is 
presented. 
Lemma 3.1 [23] Let matrices 

and 
a matrix function be given. 

llnllmnm RDRCRBRA ×××× ∈∈∈∈
~,~,~,~

nnmn RRM ×× →:
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Then, the following two conditions are 
equivalent: 

i)The matrix is invertible and there 
exist

D~
mnRP ×∈~ such that  

                { })~~~~(~)~( 1CDBAPHePM −++            (9) 

ii) There exist matrices mnRP ×∈~ , and 

such that  

lnRF ×∈1
llRF ×∈2
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Moreover, for every solution PP =~ of (9), then 
exists a sufficiently small 0>ε such that 

)~,~~,(),,~( 11
21

−−= DDBPPFFP ε is a solution of 

(10). Conversely, every matrix P~ such that (10) 
holds for some and also satisfies (9). 1F 2F

Remark 3.1: In Lemma 3.1, the matrix 
inequality (9) can be regarded as an LMI for the 
analysis and synthesis frequently used in the 
previous studies (Boyd et al. 1994, skelton et al. 
1997), while (10) is a dilated LMI 
corresponding to (9). This Lemma is simple but 
crucial generalization of the results in the 
oliveira and skelton (2001) and Peaucelle and 
al. (2000). 

Proof of Theorem 3.1: Let us take 
andIDACIBAM ===== ~,~,~,0~,0

0~ >= PP . Then, the matrix inequality (9) 
reduces to the Lyapunov inequality (7) with 
respect to the Lyapunov variable . On the 
other hand, the matrix inequality (10) 
reduces to (8) with

P

GFandFF == 21 . 
Remark 3.2: Condition ii) appears as a direct 
expansion of condition i) via its ”Schur 
complement” formulation, where introducing 
the new additional matrices F and G , we 
obtain a linear matrix inequality in which the 
Lyapunov matrix is not involved in any 
product with the dynamic matrix. This feature 
enables one to write a new robust asymptotic 
stability conditions which, although sufficient, 
are assumed not too conservative due to 
presence of the extra degree of freedom 
provides by the introduction of matrices F and 

 (see the Numerical examples). 

P

G ■ 
The next two Lemmas state sufficient 

conditions for the existence of a parameter-

dependent Lyapunov function 
, given by: 0)()( >= αα TPP
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Holds. 
Lemma 3.2 The uncertain system (1) is 
robustly stable in the uncertainty domain (3) if 
there exist matrices and 

such that 
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that 0≥iα , with∑ , it is possible to 

apply the results of [21]. This results imply that 
(12) holds for all admissible
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Lemma 3.3 2-D Uncertain system (1) is 
robustly stable in the uncertainty domain (3) if 
there exist matrix  
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Proof: Following the same steps of the proof of 
Lemma 3.2, note that (12) can be written as 
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3.1  Maximum stability domain     
An important problem in uncertain system is to 
compute the maximum robust stability domain. 
In fact, as the techniques proposed in the 
literature and in this paper are sufficient, the 
best method to compare them is to estimate the 
maximum robust stability domain obtained with 
the corresponding technique: the biggest the 
domain is, the least conservative the proposed 
technique. 
It is now briefly discussed how using the results 
of this paper it is possible to estimate such 
domain of stability. For this, consider the 
system described by the following state-space 
equation       
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where and are hnh Rttx 1),( 21 ∈ vnv Rttx ∈),( 21

the horizontal and vertical states, 
respectively; is the nominal 
matrix of the system, 

, are given 
matrices representing the directions of 
perturbation and 

)()(
0

vhvh nnnnRA +×+∈

NiRE vhvh nnnn
i ,..,1,)()( =∈ +×+

NiRi ,..,1, =∈α  are 
constant values defining the amount of 
perturbations allowed 
for . The system 
(19) can be viewed as an uncertain dynamic 
system belonging to the convex compact set 
defined by its  vertices. 

NiM
i

m
ii ,..,1],,[ =−∈ ααα

N2
Supposing that is asymptotically stable and 
using the results of Lemmas 3.2 and 3.3, and 
also applying the algorithm given in [10], it is 
possible to compute an estimate of the 
maximum robust stability domain, for details 
concerning the algorithm; the reader is referred 
to [11] 

0A

4  Examples 
Some Examples have been generated in order to 
provide a numerical evaluation of the 

conditions for robust stability presented in the 
paper. They show that the conditions stated by 
Lemma 3.3 are less conservative than the ones 
stated by Lemma 3.2 and Lemma 2.2.  
 
4.1  First Example 
In the first example the stability domain radius 
(i.e., symmetric domain) is investigated. 

The system is given by (19), 
with

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0390-0.0037-0.0993-0.0647-
0.0306-0.0954-0.0155-0.0452-

0.05740.02450.0355-0.0755-
0.03000.08730.0096-0.0571-

0

#
#

……#……
#
#

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
000

000
0000

,

000
0000
000
0000

21 a
a

E

a

a
E

where a is a free parameter. 

a Lemma2.2.3 Lemma3.2 Lemma3.33 
0.1 0.1240 0.1649 0.1649 
0.2 0.0620 0.0824 0.0824 
0.5 0.0248 0.0329 0.0329 
0.8 0.0155 0.0206 0.0206 
1 0.0124 0.0164 0.0164 

Table 1: Symmetric Stability Domain 

Nsy Lemma 2.2 
a 1α 2α  

0.1 [-0.1240,0.1240] [-0.1240,0.1240] 
0.2 [-0.0620,0.0620] [-0.0620,0.0620] 
0.5 [-0.0248,0.0248] [-0.0248,0.0248] 
0.8 [-0.0155,0.0155] [-0.0155,0.0155] 
1 [-0.0124,0.0124] [-0.0124,0.0124] 

Table 2: Nonsymmetric Stability Domain 

Nsy Lemma 3.2 
a 1α 2α  

0.1 [-0.1651,0.1649] [-0.7572,0.1649] 
0.2 [-0.0827,0.0824] [-0.3784,0.0824] 
0.5 [-0.0332,0.0329] [-0.1532,0.0329] 
0.8 [-0.0206,0.0206] [-0.0967,0.0206] 
1 [-0.0167,0.0164] [-0.0775,0.0164] 

Table 3: Nonsymmetric Stability Domain 

Nsy Lemma 3.3 
a 1α 2α  

0.1 [-0.1651,0.1649] [-1.3720,0.1649] 
0.2 [-0.0827,0.0824] [-0.6857,0.0824] 
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0.5 [-0.0332,0.0329] [-0.2743,0.0329] 
0.8 [-0.0206,0.0206] [-0.1717,0.0206] 
1 [-0.0167,0.0164] [-0.1371,0.0164] 

Table 4: Nonsymmetric Stability Domain 

Table 1 exhibits the maximum values of α  
with the conditions of Lemmas 2.2, 3.2 and 3.3 
(symmetric domains). On the other hand, tables 
2, 3 and 4 show the results for maximum non 
symmetric robust stability domains, the overall 
volume of the domains achieved with the 
results of Lemma 3.3 is always greater than the 
corresponding ones obtained with Lemma 3.2 
and Lemma 2.2. 

4.2 Second Example 
The second example is given by the stable 
polytope that corresponds to the following 
vertices (randomly generated): 
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n this case, sufficient conditions presented in 
Lemmas 2.2 and 3.2 fail. However, using the 
proposed Lemma 3.3, one gets a solution, 
corresponding to the vertices of the parameter 
dependent Lyapunov matrices. 
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⎣

⎡

−−
−−

−−
×=G

.

5289.14676.07707.15544.0
6309.00168.35531.11509.0

8735.17039.27246.10351.0
5803.00470.00851.05133.1

105
4

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
×=G

 
4.3 Third ExampleNumerical Evaluation  
A numerical evaluation procedure is now 
considered, to check the improvements obtained 
with the proposed methods. Recall that the 
Kind of systems we are dealing with is 
characterized by its order ( ), and 
the number of vertices (N). For each fixed 
(n,N)∈  [2,4], 1000 systems were randomly 
generated of the form [22]. Thus, a total of 
9000 stable polytopes was generated. Each 
polytope of stable plants was evaluated by the 
different lemmas, and the results are 
summarized in Table 5, that gives the number 
of success of the different methods, which gives 
a measure of their performance and 
conservativeness. It can be seen that the tests 
given by Lemma 3.2 and Lemma 3.3 prove to 
be less conservative than test given by Lemma 
2.2. However, the test using Lemma 3.3 is more 
demanding computationally when compared to 
other tests. 

vh nnn +=

n  N Lemma2.3 Lemma3.2 Lemma3.3
 
2 
 

2 
3 
4 

958 
880 
808 

1000 
1000 
994 

1000 
1000 
1000 

 
3 

2 
3 
4 

833 
628 
445 

935 
825 
710 

950 
840 
745 

 
4 

2 
3 
4 

452 
157 
44 

588 
325 
155 

630 
352 
221 

Table I. Number of stable polytopes identified 
by the proposed Lemmas for 

 .42,42 ≤≤≤≤ Nandn

5   Conclusion 
New robust sufficient stability conditions for 2-
D linear continuous-time systems described by 

Roesser model have been given. The conditions 
are formulated in terms of a set of LMIs 
described only in terms of the vertices of the 
uncertainty domain. Several examples have 
been presented that illustrate the results, 
showing the feasibility of the proposed 
approaches. 

References 
[1] P. Battacharyya, H. Chapellat and L. H. 

Keel, ”Robust control: the Parametric 
Approach,” Prentice–Hall, Upper Saddle 
River, NJ, 1997. 

[2] P. Colaneri, J. C. Geromel and A. Locatelli, 
”Control Theory and Design: An RH2 ¡ 
RH1 Viewpoint”, New York: Academic, 
1997. 

[3] M. C. de Oliveira, J. Bernussou, and J.C. 
Geromel, ”A new discrete-time robust 
stability condition”, Systems and Control 
Letters, vol. 37, pp. 261–265, 1999. 

[4] M. C. de Oliveira, J.C. Geromel, and L. H. 
Su, ”LMI characterization of structural and 
robust stability:the discrete-time case”, 
Linear Algebra and its Applications, vol. 
296, pp. 27–38, 1999. 

[5] M.Dettori, and C. W. Scherer, ”Robust 
stability analysis for parameter-dependent 
systems using full block S-procedure”, in 
Proc. of the 37th IEEE CDC, pp. 2798–
2799, 1998. 

[6] E. Feron, P. Apkarian, and P. Gahinet, 
”Analysis and synthesis of robust control 
systems via parameter-dependent Lyapunov 
functions”, IEEE Transactions on 
Automatic Control, vol. 41, pp. 1041–1046, 
1996. 

[7] P. Gahinet, P. Apkarian and M. Chilali, 
”Affine parameter-dependent Lyapunov 
functions and real parametric uncertainty”, 
IEEE Transactions on Automatic Control, 
vol. 41, pp. 436–442, 1996. 

[8] V.J.S. Leite, and P.L.D. Peres, ”An 
improved LMI condition for robust D-
stability of uncertain polytopic systems”, 
IEEE Trans. Automat. Control, vol. 48, pp. 
500–504, 2003. 

[9] D.C.W. Ramos, and P.L.D. Peres, ”A less 
conservative LMI condition for the robust 
stability of discrete-time uncertain 
systems”, Systems and Control Letters, vol. 
43, no. 5, pp. 371–378, 2001. 

[10] D.C.W. Ramos, and P.L.D. Peres, ”An 
       LMI condition for robust stability of 

uncertain continuous-time linear systems”  

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL M. Alfidi And A. Hmamed 

ISSN: 1991-8763 502 Issue 11, Volume 2, November 2007



IEEE Transactions on Automatic Control, 
vol. 47, no. 4, pp. 675–678, 2002. 

[11] D.C.W. Ramos, and P.L.D. Peres, ”An 
LMI approach to compute robust stability 
domains for uncertain linear systems” In 
Proc.2001 American Control Conference, 
vol. 43, no. 5, pp. 371–378, 2001. 

[12] A. Trofino, ”Parameter dependent 
Lyapunov function for a class of 
uncertain linear systems: An LMI 
approach”, in Proc. 38th IEEE CDC, vol. 
1, pp. 2341–2346, 1999. 

[13]  A. Rantzer, and M. Johansson, ”Piecewise 
linear quadratic optimal control”, IEEE 
Transactions on Automatic Control, vol. 
45, pp. 629–637, 2000. 

[14]  L. Xie, S. Shishkin, and M. Fu, 
”Piecewise Lyapunov functions for 
robust stability of linear time-varying 
systems”, Systems and Control Letters, 
vol. 31, pp. 165–171, 1997. 

[15]   N. E. Mastorakis, D. H. Owens, and A. 
         E. Venetsanopoulos, ”Stability margin of    

twodimensiomal continuous systems”, 
EEE Trans. Signal Process., 48:3591-
3594,  2000. 

[16]  N. E. Mastorakis, and M. Swamy, ”A new 
method for computing the stability 
margin of two-dimensiomal continuous 
systems”, IEEE Trans. Signal Process., 
49:869-872, 2002. 

[17]   J. S. Luo, A. Johonson and P. P. J. Van 
         den Bosch, ”Lyapunov stability robust 

analysis and robustness design for linear 
continuous–time systems,” International 
Journal of Control, Vol. 61, no. 6, pp. 
1233–1251, 1995. 

[18] K. Galkowski,”LMI based stability 
analysis for 2D continuous systems”, 9th 
IEEE International Conference on 
Electronics, Circuits and Systems–
ICECS, pp. 923-926,Dubrovnik, Croatia, 

          September 2002. 
[19] M. S. Piekarski,” Algebric characterization 

of matrices whose multivariable 
characteristic polynomial is Hermitzian, 
Proc. Internat. Symp. Operator Theory, 
pp. 121-126, Lubbock, TX, 1977. 

[20] J. H. Lodge and M. M. Fahmy, ”The 
bilinear transformation of two-
dimensional state-space systems”, IEEE 
Trans . Acoust. Speech Signal Process., 
ASSP-30:500-502, 1982. 

[21] K. Zhou, J. C. Doyle and K. Glover, 
”Robust and optimal control, Prentice–
Hall, Upper Saddle River, NJ, 1996. 

[22] Valter J. S. Leite, V. F. Montagner, P. J. 
De Oliveira, R. C. L. F. Oliveira, D. C. 
W. Ramos and P. L. Peres. ”Estabilidade 
Robusta De Sistemas Lineares Atraves 
De Desigualdades Matriciais Lineares”, 
Revista Controle and Automaticao, 

          vol. 15 no.1, 2004. 
[23] Y. Ebihara and T. Hagiwara, ”A dilated 

LMI approach to robust performance 
analysis of linear time-invariant uncertain 
syatems”, Automatica, vol. 41, pp. 1933-
1941, 2005. 

 

 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL M. Alfidi And A. Hmamed 

ISSN: 1991-8763 503 Issue 11, Volume 2, November 2007


