
Automatic Gain Control for Unity Feedback Control Systems with 
Large Parameters Variations 

Tain-Sou Tsay 
Department of Aeronautical Engineering,  

 National Formosa University, 
 64, Wen-Hwa Road, Huwei, Yunlin, 63208, 

Taiwan 
tstsay@nfu.edu.tw 

 
 
Abstract:- In this paper, an automatic gain control scheme is first proposed for analyses and designs of unity 
feedback control systems. The controlled system is a nonlinear feedback control system. The overall system is 
equivalent to a conventional automatic gain control loop with command tracking error input. Therefore, it gives 
good command tracking behaviour while keeping robust characteristic of the original AGC loop. Furthermore, 
it gives good robustness for coping with fast large parameter variations. The stability and effective of controlled 
systems are verified by time responses, frequency responses, and parameter variation testing with three 
numerical examples. Comparisons are also made with the PID control. 
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1 Introduction 

Command tracking error control techniques are 
well-developed for unity feedback control systems. 
In this paper, a command tracking error square 
control scheme is first proposed. It can be 
rearranged with a fast and a slow command tracking 
error control loops. The slow loop is used for gain 
adapting. The fast loop is used for command 
tracking. The overall system is equivalent to a 
conventional Automatic Gain Control (AGC) loop 
[1-9] with command tracking error input. Therefore, 
it will give good command tracking behavior while 
keeping robust characteristic of the original AGC 
loop, especially for the system with fast large 
parameter variations. For a real application example, 
load disturbance of servo actuator of a Computer 
Numerical Control (CNC) machine is often changed 
abruptly. It implies that high gain-crossover 
frequency for coping with fast load changing is 
needed and high gain and phase margins are needed 
for coping with large load changing. These 
requirements often increase the system cost. 
Another possible way is to use adaptive control 
algorithm [10]. According to the operating condition, 
parameters of the controller are adjusted. It is 
effective but complicated. The technique to identify 
or measure the operational condition is complicated. 
Furthermore, the adaptation may not fast enough for 
coping with fast load changing. Another possible 
controller is the PID controller [11-13]. The PID 

controllers have been used widely in industry due 
to robustness and simplicity. It is well known that 
PID controllers have dominated applications for 
60 years, though there has been a lot of interest in 
research into and implementation of advanced 
controllers. However, it will be seen that the PID 
controller with fixed parameters still give bad 
robustness for coping with fast large load changing. 
Therefore, parameter adaptation is needed also for 
PID controller. The same problem may occur for 
other design techniques. 

A simple and effective control technique is 
usually expected to cope with fast changed large 
load disturbance. This is the motivation of this paper. 
For unit feedback control system, gain or phase 
changing of the plant due to load disturbance 
presented in command tracking error can not be 
clearly classified. They can be viewed roughly as 
loop gain changing of the feedback control system. 
The magnitude of the tracking error is used as 
information data for gain adapting in the AGC loop. 
It will be seen that the large tracking error, the large 
bandwidth of the AGC loop will be. Therefore, the 
bandwidth of the AGC loop is adjusted 
automatically. It implied that loop gain of the 
controlled system is adjusted automatically and need 
not extra parameters adaptation for coping with 
system parameter variations. 

Analyzing techniques and stability of the AGC 
loop are well developed for variations of receiving 
radio and video signals [1-9]. In this paper, the 
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stability of the controlled system with the proposed 
control will be verified by linearized systems. The 
linearized system is found form the steady-state 
condition [14, 15]; i.e., equilibrium point. This is 
similar to all nonlinear systems with conventional 
linear analyses and design techniques. The 
suitability of the linearization will be verified by 
frequency responses of the controlled nonlinear 
system. Other digital simulations with large 
parameter variations will be made also to show the 
performance and robustness. 

In following sections, operating theorem of the 
proposed control scheme is discussed first, and then 
applied to a simple numerical example to explain 
designing and linearizing procedures, applied to a 
rolling flight control system [16-18] to cope with 
aerodynamic coupling and finally applied to a 
complicated electro-hydraulic velocity servo system 
[19,20]. Comparisons will be made with the PID 
control in analyses and designs of the electro-
hydraulic velocity servo system. From simulation 
results with large gain and phase variation testing, it 
will be seen the proposed control scheme provides 
an effective and simple way to get good robustness 
and performances. 
 
 
2 The Proposed Method 

Consider the control law described by the 
following equation: 

)e(signe)s(F)s(PC 2=                                   (1) 

where P(s) is the plant to be controlled, F(s) is the 
controller, R is the reference command, C is the 
plant output, e  is the command tracking error(R-C), 
and sign(e) is the sign of e . The sign(e) is used to 
keep self-consistent for 0)()(lim

0
≥

→
sFsP

s
. Since F(s) 

is a selected controller, the condition 
0)()(lim

0
≥

→
sFsP

s
 will usually exist. Eq.(1) can be 

rewritten as in the form of 

CR)CR)(s(F)s(P

ee)s(F)s(P
)e(signee)s(F)s(PC

−−=

=

⋅⋅=

    

                               (2a) 

and Eq.(2a) can further be rewritten as in the form 
of  

[ ][ ]
[ ][ ] [ ]Vo)s(PVV)s(P

|CR|)s(H)CR)(s(K)s(PC

ci ≡≡
−−≡

   
                 (2b) 

where )s(F)s(K)s(H ≡ , )CR)(s(KVi −≡ , 
|CR|)s(HVc −≡ , and Cio VVV ≡ . Eq.(2b) is realized 

and shown in Fig.1a. It becomes an AGC loop with 

iV  and cV . Note that the system described by Fig.1a 
without K(s) is equivalent to the conventional 
Automatic Gain Control (AGC) loop for processing 
radio or video signal[1-9]. iV  is the receiving signal 
for processing. R is the wanted signal output level; 
e.g., wanted contrast or brightness of a picture. 
Eqs.(1), 2(a), and (2b) can be rewritten also as  

⎩
⎨
⎧

<−−
≥−+

=
CRfor)CR)(s(H)s(K)s(P
CRfor)CR)(s(H)s(K)s(PC

     
      

2

2
             (3) 

Eq.(3) represents that there are two symmetrical 
control modes. 0=−CR  is the control purpose and 
the switching line for mode changing. For simplicity, 
the control mode for CR ≥  will be analyzed only 
and the overall system includes the control mode for 

CR <  will be verified by digital simulations [20]. 

Fig.1a. The proposed command tracking error 
square control scheme. 

Relationships between iV , cV , R, and oV  with 
P(s), H(s), and K(s) are given below:  

RVsHVsPsH

VVV

ii

cio

)(])()(1[    1−+=

=                          (4) 

and the plant output C with respect to e, iV , and cV  
is in the form of 

RVsPsKVsPsK

RVsPsHVsPsH
eRsKsPsHesKsPsHC

cc

ii

)()(])()(1[    

)()(])()(1[    
)()()(])()()(1[

1

1

1

−
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−

+=

+=

+=
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alternately. Substituting command tracking error e in 
Eq.(5) with (R-C), one has 

RCRsKsPsHCRsKsPsHC ))(()()()])(()()(1[ 1 −−+= −    (6) 

From Eqs.(5) and (6), the command tracking error 
signal e is in the form of 

RVsPsK

RVsPsH
ResKsPsHe

c

i
1

1

1

])()(1[   

])()(1[   
])()()(1[

−

−

−

+=

+=

+=
                            (7) 

alternately, iV  and cV  are in the form of  
RsHVsPsKesHV cc )(])()(1[)( 1−+==                     (8) 

and 
RsKVsPsHesKV ii )(])()(1[ )( 1−+==                     (9) 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tain-Sou Tsay

ISSN: 1991-8763 538 Issue 12, Volume 2, December 2007



 3

In general, the magnitude of the loop gain 
|)()(| ωω jPjH  is very large below the middle 

frequency band. Eq.(9) can be approximated as 
)()(/)( sPsHRsKVi ≅ , and then Eq.(6) can be 

approximated as  

[ ] s)RH(s)P(s)K(s)RH(s)P(s)K(C/RT(s) 
1

1  
−

+≅=  (10) 

It is similar to linear unity feedback control systems 
except that it becomes input dependent and the loop 
transfer function is replaced by its square root. Note 
that the large value of R, the large bandwidth will be. 
This is the basic characteristic of the AGC algorithm. 
Note also that Eq.(10) is not analytic form. 
Therefore, linearizied model of the considered 
system is needed for analyses and designs. 

Now, other formulas are evaluated for finding 
steady-state conditions of the controlled system. 
Assume that K(s), H(s), and P(s) are represented by 
minimal rational polynomial realizations; i.e., 

)s(D/)s(N)s(K KK≡ , )s(D/)s(N)s(P PP≡  and 
)s(D/)s(N)s(H HH≡ , respectively. Then Eqs.(7) to (9) 

can be rewritten as in the form of 

0R)s(D)s(D)s(D
e)s(D)s(D)s(De)s(N)s(N)s(N

PHK

PHK
2

PHK

=−
+         (11) 

0R)s(D)s(D)s(N
V)s(D)s(D)s(DV)s(N)s(N)s(D

PHK

iPHK
2

iPHK

=−
+              (12) 

0R)s(D)s(N)s(D
V)s(D)s(D)s(DV)s(N)s(D)s(N

PHK

cPHK
2

cPHK

=−
+           (13) 

From Eqs.(11) to (13), steady-state solutions se , isV , 

and csV  with a specified value of R can be found by 
following equations: 

0R)0(D)0(D)0(D
e)0(D)0(D)0(De)0(N)0(N)0(N

PHK

PHK
2

PHK

=−
+           (14) 

0R)0(D)0(D)0(N
V)0(D)0(D)0(DV)0(N)0(N)0(D

PHK

iPHK
2

iPHK

=−
+          (15) 

0R)0(D)0(N)0(D
V)0(D)0(D)0(DV)0(N)0(D)0(N

PHK

cPHK
2

cPHK

=−
+          (16) 

From Eq.(5), one can find steady-state output sC  

with se , isV , and csV . It can be represented as  

Re)0(N)0(N)0(N

]e)0(N)0(N)0(N)0(D)0(D)0(D[C

sPHK

1
sPHKPHKs

•

+= −

     (17) 

RVNNVNNDDC isPHisPHPHs )0()0(])0()0()0()0([ 1−+=      (18) 

RVNNVNNDDC csPKcsPKPKs )0()0(])0()0()0()0([ 1−+=      (19) 

alternately. Since there are eight possible 
combinations of se , isV , and csV  may exist for 

solving Eqs.(14) to (16), another constrain equations 
are required. They are above three equations. Three 
relationship ( se , csV ), ( se , isV ), and ( isV , csV ) are 
derived by equaling Eqs.(17) and (19), Eqs.(17) and 
(18), Eqs.(18) and (19), respectively. 

Now, consider the existence of the steady-state 
solutions ( se , isV , csV ). From Eq.(15), one can see 
that it becomes iV  independent for )0(DK  equals to 
zero. From Eq.(16), one can see that it becomes cV  
independent for )0(HD equals to zero. These 
properties imply that only type-0 controllers K(s) 
and H(s) are suitable. Assume the plant P(s) is a 
type-0 system also, then the transfer function of K(s), 
H(s) and P(s) can be described by following rational 
polynomials. They are  

...1
....)1()( 2

21

2
21

+++
+++

=
sasa
sbsbksK

kk

kkk                             (20) 

...1
....)1()( 2

21

2
21

+++
+++

=
sasa
sbsbksH

hh

hhh                             (21) 

...1
....)1(

)( 2
21

2
21

+++
+++

=
sasa
sbsbk

sP
pp

ppp                            (22) 

Then Eqs.(14) to (16) can be simplified as in the 
form of 

02 =−+ Reekkk phk                                         (23) 
02 =−+ RkVVkk kiiph                                      (24) 
02 =−+ RkVVkk hccpk                                      (25) 

A sufficient condition for deriving real solutions of 
Eqs.(23) to (25) are values of phk kandkk    ,  given in 
Eqs.(23) to (25) greater than zeros. 

Using the found csV  to replace the multiplier 
shown in Fig.1a, then the overall nonlinear control 
system can be linearized with respect to steady-state 
conditions csV  and isV  for a specified valued of R. 
The small signal model around the steady-state 
condition will be found; i.e.; Eq.(4) can be rewritten 
as  

cicisicscsis

ccsiisoos

VVVVVVVV

VVVVVV

ΔΔ+Δ+Δ+=

Δ+Δ+=Δ+

                  

))(()(         (26) 

where oVΔ , iVΔ , and cVΔ  are small perturbations of  

oV , iV , and cV  with steady states osV , isV  and csV , 
respectively. The term iVΔ cVΔ  given in Eq.(26) can 
be neglected for small perturbations, and then 
Eq.(26) can be rewritten as in the form of 

cisicso VVVVV Δ+Δ≈Δ                                   (27) 

Replacing the block for cio VVV =  shown in Fig.1a 
by Eq.(27), the linearized system is derived. Fig.1b 
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shows the linearized system. Then, one has 

[ ] RsPsKVsHVsPsKVsHVC csiscsis  )()]()([)())()((1 1 +++= −  (28) 
and 

R
sNsDsNVsNsNsDVsDsDsD

sNsDsNVsNsNsDV
C

pHkcspHkispHK

pHkcspHkis

)()()()()()()()()(
)()()()()()(

++
+

=

                                                                              (29) 
The characteristic equation of the linearized system 
is in the form of 

)s(N)s(D)s(NV         
)s(N)s(N)s(DV)s(D)s(D)s(D)s(

pHkcs

pHkispHK

+

+=Δ       (30) 

 

Fig.1b. The linearized control system with steady-
state values. 

 
The necessary condition for existence of csV  and isV  
is to check roots of Eq.(30) are all in left half plane 
(LHP); i.e., it is a stable system. The performance of 
the closed-loop system is represented by Eq.(29). 
Eq.(29) will be verified by time responses 
simulations of the closed loop system shown in 
Fig.1a with a constant value of the reference input R 
superimposing sinusoidal testing signals.  

Summarizing above statements, design 
procedures are given below [21]: 

Step 1: Selecting a desired steady-state tracking 
error se  for a specified value of the reference 
input R. 

Step 2: Using Eqs.(23)-(25) to find DC gains kk , 

hk  and steady-state values of ( csV , isV ). 
Step 3: Using steady-state values ( csV , isV ) to get 

linearized feedback system described by 
Eq.(29). 

Step 4: Finding frequency elements of H(s), K(s) 
given in Eqs.(20) and (21) to get wanted 
bandwidth and pole locations in LHP. 

Step 5: Simulation verifications with time responses 
and frequency responses. 

Three numerical examples given in next section are 
used to show advantage of the proposed control 
scheme. 
 
 

3 Numerical Examples 
For illustration, a simple plant is considered first 

[20]. It is in the form of  

s.
)s(P

501
10
+

=                                               (31) 

Assume that the desired tracking error se = 3105 −×  
for the command R=0.5, then Eq.(23) gives 

hkkk =1980 for Pk =10. Selecting kk ≡40, then one 
has hk =49.5. Substituting found value of ( hk k,k ) to 
Eqs.(24) and (25) with constrains described by 
Eqs.(17) to (19), one has solutions isV =0.200 and 

csV =0.248. Substituting found ( hk k,k ) to Eqs.(23) 

and (25) for R=1, solutions of ( se , isV , csV ) are 
( 3101.7 −× , 0.283, 0.351). Using found values of 
( hk k,k ), controllers can be defined as below:  

s
.)s(H
γ+

≡
1

549                                                 (32) 

and  
40≡)s(K .                                                    (33) 

where γ is a designing parameter. Eq.(32) represents 
H(s) is a low-pass system which slows down the 
dynamic of cV . cV  is equivalent to feed-forward 
gain. Selecting γ=10 and substituting P(s), K(s), and 
H(s) to Eq.(30), one has system poles (-0.2, -200.4) 
for ( csis V,V )=(0.200, 0.248), and (-0.2,-281.999) for 
( csis V,V )=(0.283, 0.35). They are all in left half plane 
(LHP) and imply that linearized systems are stable 
and steady-state solutions exist. 

Fig. 2 shows closed-loop frequency responses of 
the linearized system for R=1, 5 and 10; respectively; 
in which solid-lines show the responses calculated 
by Eq.(29); dot points show simulation results with 
constant reference input R superimposing sinusoidal 
signals; i.e., )t sin(AR)t(r ω+=  to the considered 
nonlinear system. Steady-state solutions ( se , isV , csV ) 
are ( 3101.7 −× , 0.283, 0.351), ( 2106.1 −× , 0.635, 
0.785), and ( 21024.2 −× , 0.898, 1.111); respectively. 
The formula to find gain (M) and phase (φ ) from 
time responses is given as 

φω ωπ ω

ωπ ω

∠==
∫
∫

−

−

M
dtetr

dtetc
jT

tj

tj

simu /2

0

/2

0

)(

)(
)(                    (34) 

where c(t) is the time response of system output 
with input )(tr . It can be seen that responses of 
linearization of the system gives excellent 
agreement with the considered system. 
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Fig.2. Frequency responses of the closed-loop 

system. 

Fig.3 shows time responses of the controlled 
system for variable reference inputs R; in which C 
represents the system output; cV  represents the 
control voltage of the inner AGC loop; and iV  
represents the input signal of the AGC loop. Fig. 3 
shows that the control system is stable regardless of 
the sign changes of the reference input R. This is 
contrary to the conventional AGC loop, and the 
performance is nice for the considered system. Note 
that responses of cV  are dependent upon the 
bandwidth of the AGC loop. It is controlled by 
selecting proper feedback controller H(s); described 
by Eq.(32). The steady-state value csV  is dependent 
on values of R, K(0), H(0) and P(0). The large error 
between input and output is due to the value of cV  
does not approach to its steady-state value csV  
before 3 seconds; i.e., the duration for R =1. Fig. 3 
shows the steady-state value csV = 0.248 for R= 0.5 

and the steady-state error se =5x10 3− . These values 
are agree with calculated results for R= 0.5. 

 

 
Fig.3. Time responses of the closed-loop system. 

 

Fig.4 shows time responses for the value of P(0) 
varying from 10 to 5 abruptly at time 0.3 seconds, 
and then varying from 5 to 10 abruptly at time 0.6 
seconds, finally varying from 10 to 20 abruptly at 
time 0.9 seconds. It can be seen that disturbances 
due to P(0) variations are suppressed quickly, and 
the slowing loop provides suitable gains csV  
according to the value of P(0) automatically. Note 
that Figs. 3 and 4 show variations of cV  are much 
slower than those of 'SiV . This is the basic operating 
behaviors of the conventional automatic gain control 
loops [14]. 

 

 
Fig.4. Regulating properties of the closed-loop 

system with large parameter variations. 
 

Now, consider an aerodynamic coupled rolling 
flight control system [16-18]. It is a supersonic air-
to-air flight vehicle. Fig.5a shows the conventional 
control configuration, in which opK  and ipK  are 
outer and inner loop gains [17]; pLδ  and pL   are 
aerodynamic coefficients of the rolling dynamics; 
αL  and βL  are aerodynamic coupling  from 

pitching and yawing channels; α  and β  are angles 
of attack and sideslip;  p and φ  are rolling angular 
rate; and rolling angles, cφ  is the rolling command, 
Pc is the angular rate command. The rolling angle 
command is always set to be zero for skid to turn 
(STT) flight vehicle. For Bank to turn (BTT) flight 
vehicle, rolling angle command is not always zero. 
There are two summing points show the 
aerodynamic and kinematic couplings from pitching 
and yawing channels to the rolling channel. Values 
of coefficients are pLδ =15609, pL =-3.800, 

αL =684.5, 6.8551L =β [17]. The loop gain of loop 
gains opK =49.2175 and ipK =0.0054 [17]. The value 
of the aerodynamic coupling is always much greater 
than that of kinematic coupling. Therefore, only the 
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aerodynamic coupling will be discussed in next 
paragraph. Fig.5b shows the proposed AGC loop 
used in inner loop to cope with aerodynamic 
coupling. Note that another AGC loop can be used 
also in the outer loop. 

Fig.5 Rolling flight control system (a) the 
conventional scheme, (b) the proposed scheme. 

 
Assume that the desired tracking error 

se = 2101 −×  for the command Pc=1.0, then Eq.(23) 
gives hkkk =2.4102 for Pk =4107.6. Selecting 

kk ≡2.0, then one has hk =1.2051. Substituting 

found value of ( hk k,k ) into Eqs.(24) and (25) with 
constrains described by Eqs.(17) to (19), one has 
solutions isV =0.020 and csV =0.0121. Table 1 gives 

steady-state values ( se , isV , csV ) of another values 

of Pc. Using found values of ( hk k,k ), controllers 
can be defined as below:  

s
.)s(H

γ+
≡

1
20511                                              (35) 

and 
002.)s(K ≡ .                                                (36) 

Using steady-state values given in Table 1, pole 
locations of linearized systems are given in Table 1 
for 010.=γ . From Table 1, one can see that the 
large value of Pc, the less value of one pole of the 
linearized system. This implies that the large value 
of Pc, the large bandwidth will be. After the outer 
loop closed with opK , then comparisons between the 
conventional method and the proposed method can 
be made to show merit of the proposed method.  
The coupling term βα βα LL +  is added to the 
system. Low-pass filters 6.28/(s+6.28) are used to 

emulate dynamics of pitching and yawing channels; 
i.e., filtering α and β. Fig.6 shows simulating results 
of the conventional and the proposed methods with 

°= 12α  and °= 1β  between 3 and 5 seconds, and 
°−= 12α  and °−= 1β  between 7 and 9 seconds. 

The rolling command is 5.73 degrees between 0 and 
2seconds. This period is used to check the 
performance of the rolling loop only. They show 
that both of two methods give good compatible 
results. Therefore, following comparisons can be 
made. Note that the rolling command is always set 
to be zero for skid-to-turn flight vehicle. Fig.6 gives 
the maximal rolling angle is 24.9° and maximal 
angular rate is 133.06°/s under the coupling added 
with the conventional control schemes applied. For 
the proposed method applied, the maximal rolling 
angle is 1.38° and maximal angular rate is 6.279°/s. 
Therefore, the proposed method gives better results 
for coping with aerodynamic coupling than that of 
the conventional method. 
 
Table 1. Steady-State Values and Poles of linearized 

Systems. 

cP isV  csV  se  Poles 

0.10 0.0063 0.0038 0.0031 -121.385 -0.1939
0.50 0.0141 0.0085 0.0071 -269.163 -0.1972
1.00 0.0200 0.0121 0.0100 -379.900 -0.1981
2.00 0.0283 0.0171 0.0142 -536.512 -0.1986
3.00 0.0347 0.0209 0.0174 -656.684 -0.1989
4.00 0.0401 0.0242 0.0201 -757.994 -0.1990
5.00 0.0448 0.0270 0.0224 -847.250 -0.1991

 

 
Fig.6. Simulation comparison between conventional 

and  the proposed control scheme. 
 

Now, consider a complicated electro-hydraulic 
velocity servo system [19, 20] shown in Fig. 7 with 
system parameters given below:  

sK =2.3×10 7−
LVS P)X(signP − s/m2 ; PS=1.4 ×10 7  

2/ mNt ; oβ =3.5×10 7 2/ mNt ; tV = 3.3 × 10 5−  radm /2 ; 
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tpC =2.3×10 11−
tNsm //5 ; mD =1.6× 10 5−  radm /3 ; 

J=5.8×10 3− Kg-m-s 2 ; mB =0.864 rad/smKg ⋅⋅ ; 

vK = 0.5 m/v 

 
Fig.7. Mathematical Model of an electro-hydraulic 

velocity Servo-system. 

The objective of the control is to keep the velocity 
cω  of the hydraulic system following the desired 

reference input. The relation between the valve 
displacement VX  and the load flow rate QL is 
governed by the well-known orifice law [20]: 

sVLVsjVL KXP)X(signPKXQ =−= ;     (37) 

where jK  is a constant for specific hydraulic motor; 

PS is the supply pressure; PL is the load pressure and; 
sK  is the valve flow gain which varies at different 

operating points. The following continuity property 
of the servo valve and motor chamber yields  

LotLtpcmL P)4V(PCDQ &βω −++= QL;       (38) 

where mD  is the volumetric displacement; tpC  is 

the total leakage coefficient; tV  is the total volume 
of the oil; oβ  is the bulk modulus of the oil; and we 
is the velocity of the motor shaft. The torque 
balance Eq.( for the motor is in the form of 

LcmcL TBJPDm ++= ωω& ;                       (39) 

where mB  is the viscous damping coefficient and 

LT  is the external load disturbance which is 
assumed to be dependent upon the velocity of the 
shaft or slowly time varying as described by LT  
=20| cω |.  

The considered system is a nonlinear system for 
the load flow rate QL is a nonlinear function of the 
valve displacement VX  and the load pressure PL. 
Similar to the design procedure given above, Eq.(23) 
gives 7863=hk kk  for 9168.7kP =  and tracking error 

se  is chosen as 3104 −×  with the command R=1.0. 
Selecting 100≡kk , then one has 63.78=hk  and 

3999.0isV =  and 3145.0csV = . Controllers can be 
defined as )s1/(63.78)s(H γ+=  and 100)( =sK . 
Eq.(30) gives characteristic roots of the linearized 
system around ( isV , csV )=(0.3999, 0.3145) are (-

0.1997, 4100211 ×− . 310368.7j ×± ) for γ=10. Using 
found values of ( hk kk , ), steady values of 

( se , isV , csV ) are ( 31095.8 −× ,0.895, 0.704) and 
( 21027.1 −× , 1.267, 0.996) for R=5.0 and 10.0, 
respectively. Characteristic roots of the controlled 
system are (-0.1999, 4100211 ×− . 4105811 ×± .j  ) 

and (-0.1999, 4100211 ×− . 4109921 ×± .j ). For 
different values of R, one can find one pole is fixed 
at -0.1999, real parts of other complex pole pair are 
fixed at 410021.1 ×−  even when R approaches to 
infinite. Those give linearized systems are all stable. 
Step responses of the controlled system with 
different load disturbance LT  are shown in Fig. 8. 
Variations of the disturbance LT  versus time are 
given below: 

LT  = 20 | cω  |Kg-m,               0.0s < t < 0.2s; 

= 10 | cω  |Kg-m,                 0.2s < t < 0.4s; 

=  5  | cω  |Kg-m,                 0.4s < t < 0.6s; 
= 0 Kg-m,                             0.6s < t < 0.8s. 

Fig.8 shows that disturbances due to LT  variations 
are suppressed quickly, and the output cω  tracks the 
reference input R after the control voltage cV  
approaches its steady-state value csV . 
 

 
Fig.8. Time responses of the controlled electro-
hydraulic velocity servo-system with large load 

disturbance. 
 

Fig.9 shows comparisons between time 
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responses of the proposed method and those of the 
PID control. The PID controller for the electro-
hydraulic velocity servo system is in the form of 

)s./(s.s/..)s(K pid 12007805370110 +++=    (40) 

Parameters of the PID controller are found by 
optimization method to meet the response of the 
proposed method for comparing purpose. The solid-
lines in Fig.9 show time responses of the system 
controlled by the proposed controller and doted-
lines show time responses of the system controlled 
by the PID controller. Variations of the disturbance 

LT  versus time are given in the last paragraph. They 
are changed abruptly at time 0.2s, 0.4s, and 0.6s. 
Fig.9 shows that the PID controller is bad for coping 
with variations of disturbance LT . Note that 
performance of the PID control may be better than 
that of the proposed control before 0.2s, but it gives 
bad robustness than that of the proposed control 
after 0.2s. Plant input U shows the equivalent DC 
gain the plant is increasing. It is due to load changed. 
Since the proposed method has automatic gain 
control characteristic, therefore it can give better 
robustness than that of the PID control. A possible 
way to improve robustness of the PID control is to 
use adaptive parameters. They are according with 
the value of LT . On-line computing and tuning for 
PID controls are generally applicable for slow 
industry processes and can be retuning [11-13]. 
However, it is not applicable for fast processes or 
processes with fast parameter variations. This 
statement will be proven by checking robustness 
of the system with slow changed load disturbances. 
 

 
Fig.9. Comparisons between AGC control and PID 
control with fast changed large load disturbance. 

 
Fig.10 shows time response with slow 

variations of load disturbance, which is described 

by 

⎩
⎨
⎧

>−−
≤

=
s2.0t   |,|]6.0/)2.0t(2020[
s2.0t                                    |,|20

T
c

c
L ω

ω       ( 4 1 ) 

The variation of LT  is decreased slowly to zero. 
The solid-lines in Fig.10 show time responses of the 
system controlled by the proposed controller and 
doted-lines show time responses of the system 
controlled by the PID controller. Fig.10 shows that 
both of the proposed control and PID control are 
robust for coped with slow changed load 
disturbances. However, Fig.9 shows large difference 
of them with fast changed load disturbance. It shows 
that the proposed method has better robustness for 
coping with fast changed load disturbance. 

 

 
Fig.10. Comparisons between AGC control and PID 
control with slow changed large load disturbances. 

 
 
4 Conclusion 

In this paper, an automatic gain control scheme 
has been proposed for analyses and designs of unity 
feedback control systems. It kept robust properties 
of the AGC loop while getting good command 
tracking performance. The systematic analysis and 
design procedures were presented. The considered 
systems were a numerical example, an aerodynamic 
coupled rolling flight control system, and a 
complicated nonlinear electro-hydraulic velocity 
servo system. Simulation results with fast large 
parameter variations were made to show the 
proposed method could provide an effective and 
simple way for feedback control systems, especially 
for coping with large and fast parameters variations. 

Furthermore, the aerodynamic coupled rolling 
flight control system design results give that the 
proposed method has the capability to be applied to 
large flight envelope operating flight vehicles. They 
are fast large parameter variation multivariable 
feedback control systems. 
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