
Function Approximation Based Augmented Backstepping Control
for an Induction Machine

MOHAMMED BELKHEIRI
University of Amar Thelidji

Department of Electrical Engineering
PO.Box G37, M’kam, 03000 Laghouat

ALGERIA
mbelkhiri@yahoo.com

FARES BOUDJEMA
Ecole Nationale Polytechnique

Process Control Laboratory
PO.Box 162, Elharrach, 16200 Algiers

ALGERIA
fboudjema@yahoo.fr

Abstract: A new control approach is proposed to address the tracking problem of an induction machine based on
a modified field-oriented control (FOC) method. In this approach, one relies first on a partially known model to
the system to be controlled using a backstepping control strategy. The obtained controller is then augmented by an
online neural network that serves as an approximator for the neglected dynamics and modeling errors. The pro-
posed approach is systematic, and exploits the known nonlinear dynamics to derive the stepwise virtual stabilizing
control laws. At the final step, an augmented Lyapunov function is introduced to derive the adaptation laws of the
network weights. The effectiveness of the proposed controller is demonstrated through computer simulation.
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1 Introduction
Nonlinear control theory has been applied ex-
tensively to the control of induction machines
[5],[15],[6],[10],[7] such as nonlinear state feedback
control and input-output linearization strategies based
on the nonlinear coupled differential equations de-
scribing the machine dynamics. Feedback lineariza-
tion controllers are among the most successful tech-
niques to achieve input/output decoupling, high dy-
namic performance, and higher power efficiency [17].
The main drawback of such methods is that they rely
on a known model of the machine with precise param-
eters. Backstepping control is applied in the control of
induction machines trying to gain from the stabilizing
nonliner terms rather than eliminating them in feed-
back linearization. However, the problem of unknown
parameters is usually addressed by authors in litera-
ture [3]. Many variants of the developed control laws
try to relax the constraints of applying such methods
to real systems where the uncertainty is structured and
linear in the unknown parameters. Linearly parame-
terized adaptive control results motivate researchers to
find new structures that does not rely on known non-
linearities by using approximation property of neu-
ral networks and fuzzy logic approximators. Lewis
et al. have developed online adaptive control laws
with a one hidden layer neural network based on Lya-
punov theory for nonlinear systems affine in control
[11],[12]. Calise et al. [8], proposed a method to relax

the affine in control limitation based on the compen-
sation for the inversion error of a feedback lineariza-
tion controller. The objective of this paper is to de-
velop a control law to control the induction machine
that augments a backstepping controller by an artifi-
cial neural network which can be extended for a larger
class of nonlinear systems with partially known mod-
els. In section 2 the problem will be formulated, then
field oriented control method is presented in section 3.
Backstepping will be applied for the known part of the
system in section 4. Neural network augmentation is
detailed in section 5. Simulation results are presented
in section 6. Section 7 is devoted to some concluding
remarks.

2 Induction Machine Modeling
Under the assumptions of linearity of the magnetic cir-
cuit and neglecting iron losses, the dynamics of a np
pole-pair two phase induction motor are given by the
following system of differential equations [5]:


usa = Rsisa + Ls

disa
dt

+M d
dt (iracos(npθ)− irbsin(npθ))

usb = Rsisb + Ls
disb
dt

+M d
dt (irasin(npθ)− irbcos(npθ))

(1)
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0 = Rrira + Lr
dira
dt

+M d
dt (isacos(npθ) + isbsin(npθ))

0 = Rrirb + Lr
dirb
dt

+M d
dt (−isasin(npθ) + isbcos(npθ))

J dωdt = npM [isb (iracos(npθ)− irbsin(npθ))
−isa (irasin(npθ)− irbcos(npθ))]

(2)
with the flux linkages of the motor phases given

by
λsa = Lsisa +M (iracos(npθ)− irbsin(npθ))
λsb = Lsisb +M (irasin(npθ)− irbcos(npθ))
λra = Lrira +M (isacos(npθ) + isbsin(npθ))
λrb = Lrirb +M (−isasin(npθ) + isbcos(npθ))

(3)
where Ls = µ0πl1l2N2

S
8g , Lr = µ0πl1l2NSNR

8g .

Here Ns and NR are the number of windings per
pole-pair of the stator and rotor phases, respectively.
The retarding torque produced by the friction in the
ball bearings of the machine is modeled here by−fω,
where f is the viscous friction coefficient .

The control problem is to choose the input stator
voltages usa and usb in such a way to make the motor
angular velocity ω tracks a given reference trajectory
and to achieve a given desired torque. The stator cur-
rents are usually accessible. whereas, the rotor cur-
rents are typically not available for feedback. In fact,
the most common type of induction motor is the squir-
rel cage motor, where rotor currents are distributed on
the surface of the rotor making it impractical to mea-
sure the current in each rotor bar. The resulting flux
can be measured using expensive Hall effect sensors
placed in the air gap. The control problem is still diffi-
cult due to the coupled complicated model of the sys-
tem described in equations (1,2). To overcome this
problem one could transform it into a simplified form
in which cos(npθ) and sin(npθ) expressions are elim-
inated. Using the following transformation for the flux
linkages[

ψra
ψrb

]
=

[
cos(npθ) −sin(npθ)
sin(npθ) cos(npθ)

] [
λra
λrb

]
(4)

Then the dynamic model of the machine in terms
of the new state variables ω, ψra, ψrb, isa, and isb can
be written in this form

dω
dt = µ (isbψra − isaψrb)− f

Jω −
1
J τL

dψra

dt = −ηψra − npωψrb + ηMisa
dψrb
dt = −ηψrb + npωψra + ηMisb
isa
dt = β (ηψra + npωψrb)− γisa + 1

σLs
usa

isb
dt = β (ηψrb − npωψra)− γisb + 1

σLs
usb

(5)

with µ = npM
JLr

, σ = 1 − M2

LrLs
, η = Rr

Lr
, β =

M
σLrLs

, and γ = M2Rr
σL2

rLs
+ Rr

σLs
.

3 Conventional Field Oriented Con-
trol

The key idea of field-oriented control is to transform
the system to to another state space representation
where the currents regulating the flux and the speed
are decoupled [1]. The new coordinate system is
a rotating system whose angular position is defined
by ρ = arctan(ψrb

ψra
). So, instead of working with

(ψrb, ψra), one uses the polar coordinate representa-
tion (ρ, ψd) given by

ρ = arctan(
ψrb
ψra

), ψd =
√
ψ2
ra + ψ2

rb. (6)

The stator phase currents and voltages are then ex-
pressed in this new coordinates as follows[

id
iq

]
=

[
cos(ρ) sin(ρ)
sin(ρ) cos(ρ)

] [
isa
isb

]
(7)

[
ud
uq

]
=

[
cos(ρ) sin(ρ)
sin(ρ) cos(ρ)

] [
usa
usb

]
(8)

The electromagnetic dynamic model of the induc-
tion motor in the fixed stator (direct and quadrant) d-q
reference frame can be developed yielding

dω
dt = µψdiq − f

Jω −
1
J τL

dψd
dt = −ηψd + ηMid
id
dt = −γid + βηψd + npωiq + ηMi2q/ψd + 1

σLs
ud

iq
dt = −γiq − βnpωψd − npωid − ηMidiq/ψd + 1

σLs
uq

dρ
dt = npω + ηMiq/ψd

(9)
Note that the electromagnetic torque τe = Jµψdiq is
now just proportional to the product of two state vari-
ables ψd and iq. Furthermore, applying the nonlinear
state feedback control for system (9)

[
ud
uq

]
= σLs

[
−βηψd − npωiq − ηMi2q/ψd + ūd
βnpωψd + npωid + ηMidiq/ψd + ūq

]
(10)

Then the closed loop system is obtained as follows:

dω
dt = µψdiq − f

Jω −
1
J τL

dψd
dt = −ηψd + ηMid
id
dt = −γid + ūd
iq
dt = −γiq + ūq
dρ
dt = npω + ηMiq/ψd

(11)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohammed Belkheiri, Fares Boudjema

ISSN: 1991-8763 451
Issue 9, Volume 2, September 2007



From (11), it is clear after field-oriented control
and nonlinear state feedback, the final closed-loop
system has a simpler structure. Moreover, the flux am-
plitude dynamics depend only on the direct current id
and the direct voltage ud. Thus, it can be regulated
to achieve a given flux amplitude that can generate
the desired electromagnetic torque τ . However, the
robustness to parameter variation of field orientation
and nonlinear state feedback control cannot be guar-
anteed since the designed controller relies entirely on
the exact values of the induction motor parameters
which are usually estimated so any mismatch could
cause system instability and the desired objective is
no longer achieved.

4 Backstepping Control
Backstepping is a constructive tool for nonlinear sys-
tems tries to find a stabilizing control law along a Lya-
punov function ensuring closed loop system stability.
In this section, it is applied for a known model of the
Induction Machine. Let τ∗e = Jµψ∗diq be the desired
torque to be generated with the corresponding refer-
ence flux ψ∗d. Defining the flux and the speed errors
as: [

ψ̃d
ω̃

]
=

[
ψd − ψ∗d
ω − ω∗

]
(12)

Differentiation of equation (12) yields to the following
error dynamics{ ˙̃

ψd = −η(ψ̃d + ψ∗d) + ηMid − ψ̇∗d
˙̃ω = µψdiq − f

J (ω̃ + ω∗)− 1
J τL − ω̇

∗ (13)

4.1 Step 1
Let us define the first candidate Lyapunov function:

V1 =
1
2

[
ψ̃d

2
+ ω̃2

]
(14)

For which the time derivative is expressed as:

V̇1 = ψ̃d
˙̃
ψd + ω̃ ˙̃ω (15)

Substituting for the error dynamics in (15) yields

V̇1 = ψ̃d
[
−η(ψ̃d + ψ∗d) + ηMid − ψ̇∗d

]
+ω̃

[
µψdiq − f

J (ω̃ + ω∗)− 1
J τL − ω̇

∗
]
(16)

To render it negative definite, we may choose the ficti-
tious control signals, the direct and quadratic currents
id and iq as

 i∗d = 1
ηM

(
ηψ∗d + ψ̇∗d

)
− k1ψ̃d

i∗q = 1
µψd

(
f
Jω
∗ + 1

J τL + ω̇∗ − k2ω̃
) (17)

with k1 and k2 are positive design parameters en-
suring that the tracking error dynamics will converge
exponentially to zero.

4.2 Step 2
Let ĩd and ĩq be the direct and quadratic current errors
defined as: [

ĩd
ĩq

]
=

[
id − i∗d
iq − i∗q

]
(18)

The augmented error dynamics become

 ˙̃
ψd = −η(1 +Mk1)ψ̃d + ηMĩd
˙̃id = −γĩd + ūd − γi∗d − i′∗d{
˙̃ω = −( fJ + k2)ω̃ + µψdĩq
˙̃iq = −γĩq + ūq − γi∗q − i′∗q

(19)

Defining the fictitious control signals{
vd = ūd − γi∗d − i′∗d
vq = ūq − γi∗q − i′∗q

(20)

The second step of backstepping suggests the fol-
lowing Lyapunov candidate

V2 = V1 +
1
2

[
ĩd

2 + ĩq
2
]

(21)

The derivative of V2 along the augmented error
dynamics (19) is given by

V̇2 = V̇1 + ĩd
˙̃id + ĩq

˙̃iq
V̇2 = −η(1 +Mk1)ψ̃d

2
+ ĩd

(
ηMp̃sid − γĩd + vd

)
−( fJ + k2)ω̃2 + ĩq

(
µψdω̃ − γĩq + vq

)
(22)

This is the last step of standard backstepping
where the control signals appear and could be chosen
in a manner to render the derivative of the Lyapunov
candidate negative definite as follows:{

vd = −ηMp̃sid − k3ĩd
vq = −µψdω̃ − k4ĩq

(23)

with k3 and k4 are positive parameters selected to
ensure that the current dynamics converge faster than
those of the speed and flux.
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The obtained control law is implemented given all
the state variables are available for feedback and the
induction motor parameters are known exactly. In the
next section we will propose a control technique to
make our designed controller robust and we will use
instead of the missed states their estimates.

5 Error Approximation Augmented
Control

The control law given in equation (24) can be imple-
mented if these conditions are fulfilled:

• All the state are accessible for feedback, and

• All the nonlinear functions are precisely known.

To relax the first two conditions we can use the same
idea as in [9] by introducing a function approxima-
tor structure that can overcome the mismatch between
IM Model used in control design and the real system.
This approximator can be an Artificial neural network,
a fuzzy logic approximator or any other structure.
To derive the adaptation rules for the approximator,
we can proceed further byaugmenting the Lyapunov
function found in the last step of backstepping .

According to equations (10,15 and 22) the con-
trol signals depend on all the system parameters, as-
suming that for each parameter % we have available
an estimate %̂. The control strategy will be changed
by adding an adaptive signal which is the output of
a function approximation structure in equation (24)
which becomes:{

vd = −ηMp̃sid − k3ĩd + uad
vq = −µψdω̃ − k4ĩq + uaq

(24)

Substituting for vd, and vq in system equations
(19) and assuming that all neglected terms for each
subsystem as an error signal ei. The extended error
dynamics take the form: ˙̃

ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d + ed − uad{ ˙̃ω = −c2ω̃ + µψdĩq
˙̃iq = −c4ĩq − µψdω̃ + eq − uaq

(25)

The two subsystems are almost identical, for the
rest of the paper we will consider only the dynamics
of the flux subsystem to simplify writing:

 ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d + ed − uad

(26)

Usually in the literature, neural networks are used
in function approximation in the modeling phase [19],
however we will use them in controller design to can-
cel the effect of uncertainty due to neglected dynam-
ics and unknown or varying system parameters,given
some conditions are fulfilled.

Assume that there exists an artificial neural net-
work as shown in fig. 1 that approximates the ne-
glected dynamics ed.

 

Output 
Layer 

W 

Hidden
Layer 

V 

Output 
Vector 

Input 
Vector 

Figure 1: A Neural Network with two layers

The approximated error signal can be expressed
as:

ed = WTΦ(V, µ) + ε(µ) ∀µ ∈ D (27)

where

V ∈ DV ⊂ <N1 is the hidden layer weight vector

W ∈ DW ⊂ <N2 is the output layer weight vector

Φ is a set of basis functions

µ is the network input vector, and

ε is the neural network reconstruction error

Assuming that the approximation reconstruction
error is bounded on some domain D by ‖ε(µ)‖ ≤
ε∗, ∀µ ∈ D.

The weight vectors are assumed to be bounded
‖W‖ ≤ W ∗ and their adjustment can be done online.
However the whole controller implementation will be
difficult as the number of the parameters increases for
complex problems. So the first layer parameters can
be adjusted off-line in such a way Φ(V, µ) is a basis
[19] whereas the adaptation law for the second layer
is included in the controller design.

5.1 Neural Network Inner Weight Vector
Adaptation

Substituting for ed in equation (26) yields
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 ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d +WTΦ(V, µ) + ε(µ)− uad

(28)
The adaptive control signal uad is designed to can-

cel the effect of unknown nonlinear terms and is cho-
sen to take the following form.

uad = ŴTΦ(V, µ) (29)

Since the inner layer weights V are adjusted off-
line to fit the real weights V then we can write the mis-
match between the adaptive signal and the real neural
network as:

ed − uad = WTΦ(V, µ)− ŴTΦ(V, µ) + ε(µ)
= WT(Φ(V, µ) + ev)− ŴTΦ(V, µ) + ε(µ)
=
(
WT − ŴT

)
Φ(V, µ) + δ

(30)
where δ ≤ δ is a bounded signal represents the re-

construction error of the neural network plus the error
caused by the inner weights mismatch.

Let W̃ = W − Ŵ the error between the real neu-
ral network weight and its estimate.

Thus equation (28) can be rewritten as

 ˙̃
ψd = −c1ψ̃d + ηMĩd
˙̃id = −c3ĩd − ηMψ̃d + W̃TΦ(V, µ) + δ

(31)

To get the adaptation law for the network weights,
We suggest the augmented Lyapunov function

V a
d =

1
2

(
ψ̃d

2
+ ĩ2d + W̃TF−1W̃

)
(32)

where F > 0 is an adaptation gain. Differentiating
V a
d with respect to the error dynamics in equation(31)

yields

V̇ a
d = −c1ψ̃d

2−c3ĩd
2+W̃TF−1 ˙̃W+ĩd

[
W̃TΦ(V, µ) + δ

]
(33)

Using the fact that ˙̃W = − ˙̂
W , equation (33) can

be written as

V̇ a
d = −c1ψ̃d

2−c3ĩd
2−W̃TF−1 ˙̂

W+ĩd
[
W̃TΦ(V, µ) + δ

]
(34)

Hence, we can derive this adaptive law for the net-
work parameters W which will make the derivative
augmented Lyapunov function to be negative definite
in some predefined domain.

˙̂
W = −F

[
Φ(V, µ)̃id + 2G(Ŵ −W0)

]
(35)

It can be proven that the adaptive law (35) ensures
that V̇ a

d ≤ −N . Which is negative definite in some
domain.

Substituting (35) in (34) yields

V̇ a
d = −c1ψ̃d

2 − c3ĩd
2 − W̃T

[
Φ(V, µ)ĩd + 2G(Ŵ −W0)

]
+ĩd

(
W̃TΦ(V, µ)− ε(µ)

)
(36)

or

V̇a = −c1ψ̃d
2 − c3ĩd

2 − 2W̃TG(Ŵ −W0)− ĩdε(µ)
(37)

Using the fact that the neural networks weight
vector is bounded, the derivative of the augmented
Lyapunov candidate can be upper bounded as

V̇a ≤ −c1ψ̃d
2 − c3ĩd

2 + |ĩd|ε∗
−G‖W̃‖2 −G‖Ŵ −W0‖2 +G‖W −W0‖2

(38)
Putting U = c1ψ̃d

2
+G‖Ŵ −W0‖2 yields

V̇a ≤ −U − c3ĩd
2 + |ĩd|ε∗

−G‖W̃‖2 +G‖W −W0‖2
(39)

Completing the squares using ε∗|ĩd| =

−1
2

(
ε∗ − |ĩd|

)2
+ 1

2ε
∗2 + 1

2 ĩd
2

, we get

V̇a ≤ −U − c3ĩd
2 −G‖W̃‖2 +G‖W −W0‖2

−1
2

(
ε∗ − |ĩd|

)2
+ 1

2ε
∗2 + 1

2 ĩd
2

(40)
Further, it can be written as

V̇a ≤ −U − (c3 − 1
2)ĩd

2 −G‖W̃‖2 − 1
2

(
ε∗ − |ĩd|

)2

+G‖W −W0‖2 + 1
2ε
∗2

(41)
The following conditions

|ĩd| >
√

2ε∗2+2G‖W−W0‖2
2c3−1

‖W̃‖2 >
√

ε∗2+G‖W−W0‖2
G

(42)

with c3 > 1
2 , and G > 0 ensures that V̇a ≤ −U .

Which is negative definite in some domain defined by
conditions in (42).

The resulting controller looks like the controller
proposed in [9] however here it is obtained in a
constructive manner for a triangular system without
adding an SPR condition. It can be implemented and
we have a freedom in selecting the linear controller
gains ci to achieve a desirable performance.
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5.2 Hidden Layer Weight Off-Line Selection
As stated earlier, we have many choices in design-
ing the hidden layer weights depending on the used
type of neural network. In this note we will show
a design alternative based on Radial Basis Function
Neural Networks (RBFNN), which are highly recom-
mended for function approximation due to their sim-
ple training.

An RBFNN is composed of two layers; a hidden
layer contains a set of neurons with their associated
centers, the output of each neuron gives the distance
between the input vector µ and its center νi. The out-
put ψ of the network is a linear combination of the
outputs of the hidden layer as.

ψ(µj) =
N1∑
i=1

wiϕij (43)

where ϕij = exp
(
‖µj−νi‖

ρ

)
is a Gaussian activation

function of the distance between the input µj and the
ith center νi.

Defining W =
[
w1 · · · wN1

]
, V =[

ν1 · · · νN1

]
. The design of an RBF network

to approximate a given function consists of select-
ing V in such a way that we construct a set of ba-
sis functions [13] and W is adjusted online using an
adaptive law to be illustrated in the next subsection.
Therefore we have an identification problem based on
model (15) which includes the selection of N1 model
terms V =

[
ν1 · · · νN1

]
from a full model set

of M > N1 terms U =
[
µ1 · · · µM

]
(typically

hundreds or even thousands of terms) while µi is de-
fined earlier as a tapped delay line of possible values
of the input/output and the estimate of z.

We construct the regression matrix ΦL corre-
sponding to the set of the input vectors UL a subset
of the starting set of centers U .

ΦL =

 ϕ11 · · · ϕ1L
...

. . .
...

ϕL1 · · · ϕLL

 . (44)

Notice that this matrix is symmetric and all the diago-
nal elements are ones.

It has been shown that the orthogonal algorithm
can be employed in selecting the optimal model struc-
ture V and to estimate the parameters simultane-
ously [4]. The orthogonal term selection is formu-
lated using the error reduction ratio vector ERRL =[
erri · · · errL

]
defined by:

ERRL =
WTΦ2

LW

ΨTΨ
(45)

To find N1 optimal model terms V a stepwise ap-
proach is applied to the full model set U . At each
step, the model term with the maximum errj value
from all of the model terms excluding the previously
selected terms is chosen. The selection is terminated
at the N1th step where a desired tolerated error tol is
reached.

1−
N1∑
k=1

errk < tol (46)

6 Simulations and Results
In this section we will investigate the performance of
the proposed control strategy to an induction motor.
The physical and electrical parameters of the machine
under investigation are summarized in table 1.

Table 1: Induction Machine Simulation Parameters
Parameter Value
Lr 0.094 mH
Ls 105 mH
Rs 1.47 Ω
Rr 0.79 Ω
p 2
J 0.0077 Kgm2

f 0.0029 Kgm2/s

The tracking performance of speed and flux is
shown in the following figures: 1- The ideal case (ex-
act model fig.1), 2- Figures (2, 4) show the poor per-
formance in the presence of uncertainty (+/ − 50%)
of parameter variation without neural network aug-
mentation. Figures (3,5) show the tracking perfor-
mance after neural network augmentation, It is clear
that the neural network has compensated for the un-
known terms.

Simulations show that this method is robust for
parameter variation.

7 Conclusion
A new robust adaptive nonlinear controller is pro-
posed in this paper to address the tracking problem
for a two phase induction machine based on a mod-
ified version of FOC. In this scheme, the stability is
ensured for the closed loop system and all the errors
(tracking and neural network weights) tend asymptot-
ically to zero. The RBF center selection is done using
orthogonal least squares structure selection method to
minimize the number of parameters of the resulting
controller. Finally simulations are presented to high-
light the achieved performance although we have as-
sumed a partly known model of the system to be con-
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Figure 2: Simulation without uncertainty but un-
known load.
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Figure 3: simulation with +50 % uncertainty but with-
out ANN.

trolled. As a future research we will propose to add
other neural network structures for sensorless control
and we encourage researchers to try other artificial
intelligence techniques as function approxmators and
genetic algorithms (GA) to optimize the function ap-
proximators structure.
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