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Abstract:-In this paper the regulator and filter algebraic Riccati equations, corresponding to the steady state
optimal control and filtering of weakly coupled linear discrete stochastic systems are solved in terms of
reduced-order sub problems by using the eigenvector approach. The eigenvector method outperforms iterative
methods (fixed point iterations, Newton method) of solutions to reduced-order sub problems in case of higher
level of coupling between subsystems. In such cases the iterative methods could fail to produce solutions of the
corresponding algebraic Riccati equations.
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1 Introduction 2 Decomposition of the linear-
The work in this paper is influenced by the work quadratic control problem

done in the theory of weakly coupled systems. The Consider a linear time-invariant discrete-time
theory of weakly coupled control systems has system

attracted a lot of attention in the control literature

[1], [2], [3], [4]. In [3], a transformation was x(k +1) = Ax(k) + Bu(k) (1)

introduced for decomposition of the weakly coupled
algebraic Riccati equation, which is based on the | »
closed-loop decomposition technique. The algebraic J ==Y (k)" Ox(k) +u(k)TRu(k)] 2)
equations comprising the transformation have the 2 k=0
form of general non symmetric nonsquare Riccati
equations. These equations can be efficiently solved
by iterative methods (fixed point iterations, Newton
method) for a small value of coupling between
subsystems [2]. For a larger value of coupling x(k) = { Xy (k) } u(k) :|:ul(k):|
between subsystems, iterative methods might X, (k) u, (k)
diverge and the desired transformation could not be

with the quadratic performance criterion

The weakly coupled structure of (1) and (2) implies
the following partitions

found. In [5], the transformation was used in A edy B, B,

order to decompose corresponding  algebraic ={ el A } :LB B 3)

Riccati equations of the optimal regulator and 304 3074

Kalman filter of weakly coupled linear discrete-

time stochastic systems. The eigenvector approach _{ 0O 6Q2:| R _{Rl 0]

to the solution of optimal control of continues- 0= 0 o, " |0 R,

time singularly perturbed and weakly coupled -

systems was introduced in [10], [11]. This work P

extends applicability of the eigenvector method to S=BR'BT :{ ‘T 2}

the problem of optimal control and filtering of &y S

weakly coupled linear discrete-time  stochastic

systems. where x;, x, are vectors of subsystem state variables
of appropriate dimensions (n;, ny), u;, U, are

vectors of control inputs (m,, m,), and € is a small
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coupling parameter. 4, B are system constant
matrices, O and R are constant weighting matrices.
In addition, it is assumed that A4; and A, are
nonsingular. The well known solution to the above
optimal control problem is given by

utky=-R7BT 2k +1)=~(R+BTP_B)"1BT P_ax(h)
u(k)=—-Fx(k)
4)

where A(k) is a vector of costate variables and P, is
the positive-semidefinite stabilizing solution of the
discrete Riccati equation given by

P=0+A4"PA-A"PB(R+B"PB)'B"P.4
©)

The solution to this equation exists under the
standard  stabilizability-detectibility — assumption
imposed on the triple (4,B,0).

The Hamiltonian form of the optimal control
problem is given by [9]

[x(k + 1)} _ H{x(k)} ©)
Ak +1) A(k)
where
A+BR'BTATTQ —-BR'BTAT
H=
-470 AT
(7

Hamiltonian form represents the closed-loop
solution to the optimal control problem, where A(k)
= P.x(k).

Partitioning the state vector x and the
corresponding costate vector 4 and interchanging
second and third rows, the Hamiltonin form can be
written as [3]

xi(k+D)] | 4, S, e, &S, [x k)

Ay (k+1) _ O, Ay, &0y ey, | Ak)

x,(k+1)| | edy, &Sy, Ay S | X2(K)

Ak+D] |e0;, el 0y AD, | A2(K)
(®)

or
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U(k+l) _ Tlr gTZr U(k)
Vik+1) | |ely, Ty, || V(k)

with obvious meanings of vectors U(k), V(k) and
matrices Ty, Ta, T3, Ty

The system (9) can be block diagonalized by the
means of the following nonsingular similarity

transformation [3]
L1 Of1 &nh
T, |-4 110 1 |&hk

(10)

)

mk+| [1 -1 O[T,
Gk |0 1 |a 1|,
or

kD) I-£HL, -, [T, ] 1 EZAr(s)
&h+) d, I |& Tw|-d, I-£LH |&k

(1)
and the relationship between old and new
coordinates is then given by

[U (k)} _|1-&*H,L, —en, {n(k)} 7 {n(k)J (12)
V(k) el I &Ry et
The transformation leads to two completely
decoupled subsystems

n(k+1) = (T, - &°T, L, )n(k)

Sk +1)=(Ty, + £°L, 5, )& (k) (13)

where

n, (k) & (k)
k)= s k)= 14
(k) [772 (k)} $) sz(k)} (14

and L, and H, satisfying

LrTlr 7T4rLr +T3r _gerTZrLr =0
Hr(T4r +‘92LrT2r)_(Tlr 782T21'L1‘)Hr _TZr =0
(15)

The first equation has a form of the asymmetric
nonsquare Riccati equation, while the second is a
Sylvester type linear equation. The solution of the
above equations will be discussed later in the paper.
The rearrangement of variables in (8) is done by the
means of a similarity transformation £ of the form
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x| Ly 000 fx (k) x1 (k)
AR 00 Ly 0 k)| ek
HE |10 Ly 00 A® | T Ak
A, (k) 0 0 0 [,]|A4®%) A, (k)
(16)
The relationship between original and new
coordinates is given by
) x (k) x (k) x (k)
= —ET x,(k) _ x,(k) :{le Hz;} x,(k)
n TlAGY | T AK) | T, T, | A
& (k) A (k) A (k)
A7)
Since 4 = P,x, where P, satisfies the discrete

algebraic Riccati equations (5), it follows

¢ (k)

{772 (k)
¢, (k)

{771 (k)
x, (k)

i| = (le +H2)‘PI" )|:x1 (k):|

:|:(H3V+H4rpr)|:XI(k):| (18)
x, (k)

The decupled subsystems (13) also represent the
closed-loop solution of the optimal control problem
in the new coordinates. Based on this fact the
equations (13) can be written as

|:771(k+1)i|:|:a1r ‘12r“771(k)_
my(k+1)] |as, ay, |7,k
kaﬂ)}:{blr bar [ &1(R) ] (19)
So(k+1) | [b3, by, || & (K)]
where
(k) =P,n,(k), &, (k)=P,& (k)
or
{rn(k)HPm 0}[771(@} 20)
& (k) 0 P, &(k)
and P, and P, satisfy nonsymetric Riccati

equations of the form

Praalr _a4rPra

_a3r+Praa2rPra =0 (21)
Poyby, =by Py =bs, + Pyby Py =0

leading to
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mk+1)=(a,, +a,, P, )n (k)

S (k+1) = (b, +b,,P,)& (k) (22)

It follows from (18) and (20)
P 0
{ " }=(H3+H4Pr)<nl +M,R)"  (23)
0 B,

This equation can be solved for P, giving

P = Fra OH Hill_[ Fra OH
o p, |2 " 370 P,

24

which gives the solution of the global discrete
Riccati equation (5) in terms of reduced order
continues time nonsymmetric Riccati equations (21)
and decupling transformation matrix (12). The
matrix inversion in (24) is guaranteed for
sufficiently small € [3]. In order to realize the above
presented decomposition procedure, it is necessary
to  solve continues-time  nonsquare  and
nonsymmetric Riccati equations (15) and (21). The
solution of equations (15) and (21) will be
discussed in the section 5 of the paper.

3 Decomposition of the

filtering problem

optimal

Let the linear discrete-time invariant stochastic
weakly coupled system be given by
&G, | wy
G, | w,y

xi(k+1) | | 4 &l || x(k) N G,
xy(k+1)| |edy Ay | x,(k)| | 4Gy
(25)
with corresponding measurements

{yl(k)}{cl ecz}{xmk)Hvl(k)} 26)
yak)] [6C3 Cy Jxy (k)] [va(k)

where x; are state vectors, w; and v; are independent
zero-mean white Gaussian processes with intensities
W and V, and y; are system measurements. A;, G,

C; are constant system matrices (i = /, 2). The well
known optimal Kalman filter is is given by

x(k+1) = Ax(k)+ K(y(k) - Cx(k))
or in the closed-loop form as

27)
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Fk+1) = (4- KO)x(k) + Ky(k) (28)
where
ey A, C; C, K, K,
(29)
The Kalman gain is given by
Vi 0
K=4apP,CTw+cp.cTY?, v=|"!
¢ T+ CPCT) { 0 7,
(30)

where Py is the positive-semidefinite stabilizing
solution of the discrete-time algebraic Riccati
equation given by

P, =AP A" —AP,CT (v +CP,CT)'CP A" +GWGT
GD

ng} {Wl 0 }
, W=

G, 0w,

Using the decomposition procedure given in the
previous section and the duality property between
the optimal regulator and optimal filter, will result in
the decomposition of the global filter to the
completely decupled reduced order subsystem filters
both driven by system measurements.

By duality between the optimal filter and regulator,
the filter Riccati equation (31) can be solved by

using the same decomposition method presented in
the previous section with

with

G :{ G (32)

&Gy

1,T

a4l 056wel Bl sr7 BT Sclvlc

(33)

which leads to the Hamiltonian state-costate filter
closed-loop form. Partitioning the state vector x

and the corresponding  costate vector A and
interchanging second and third rows, the
Hamiltonian form can be written as
kD] | Ay Sy edy o &Shp [x (k)
A (k+1) _ Q_lf A_lTlf '592_/‘ &EZTlf 4 (k)
x(k+1)| | ey, &8y, Ay Su | xK)
Ar(k+D)] |0y, edy Qyp  Aypy | Aa(h)
(34)
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Uk+n] [Ty
Vk+1) | | €Ty,

As it was shown in the previous section , this system
can be diagonalized by the means of the similarity

transformation given by
[U(k)}: [-6’H,L, —-¢H, {n(k)}:r{n(k)}
v (k) el , | e e
(36)

and L, and H; satisfying

el

U (k)
T4f{ } )

V(k)

2 _
H (T +6°LyTyp)=(Typ 67T Lp)H =Ty =0
37)

The transformation leads to two decoupled sub
systems

_|mG+D | _|ay ay  mk)
”(k”){nﬂkﬂ)}mf hrky ){agf a4f}[’72(k)}

|Gk | 2 _ by by | &i(k)
§(k+1)_{§2(k+l)}_(nf+g Lf-TZj»)_|:b3f b4f}{§2(k)}
(38)

where

12 (k) = Ppiy (k), &5 (k) = P&y (k)

{m(k)}{f’ﬁz O}W)}
o] [0 Py gk
and P, and P, satisfy nonsymetric Riccati
equations of the form

or

(39)

Prayy —a4 Py —asp + Pray Py =0

(40)
Pppbip =bayPp =bsy +Ppbys P =0
leading to
M) =@y +as Pom (&)
Silk+1) = (b +by s Pp)S, (k) (41)

The overall transformation between the new and
original coordinates is given by
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7 (k) (k) (k)
51 _prrg 2®| g | 2® {Huv Hz‘f} x (k)
up) A (k) A (k) H3f H4f A (k)
& Ao (k) 2o (k) 2o (k)

(42)

Since 4 = P, x, where P; satisfies the discrete
algebraic Riccati equations (31), it follows

m] ] [x®
Ln (k)} =y + T Fy )[xz <k)} - QLZ (k)}

k
}: (15, Py +H4f){xl( )}

{'72 (k)
x, (k)

43
g, (k) 43)

It follows from (43) and (39)
P 0

This equation can be solved for P, giving

P 0 ) P 0
=11 o P, Moy =Ty | s = P, Iy

(45)

} = ([, + 11, P, )(IL, +H2fPf)_1 (44)

which gives the solution of the filter global discrete
Riccati equation (31).

Applying the transformation Q (43) to the Kalman
filter equation (28) leads to

{’Zl (ke 1)} 0T (4-KCO)Q! {'71 (k)} + QT Ky(k)
& (k+1) & (k)
(46)
or
ﬁl(k+1):(a1f +a2fPfa)Tﬁ1(k)+K1y(k) 7

E(k+1)= (b, +ay, Py)" 1 (k) + K, y(k)

which completely decomposes the global Kalman
filter into two reduced order subfilters, that can be
implemented independently. Again, as it was the
case in the previous section, in order to realize the
above presented decomposition procedure it is
necessary to solve continues-time nonsquare and
nonsymetric Riccati equations (37) and (40).

ISSN: 1991-8763

439

Naser Prljaca, Zoran Gaijic

4 LQG control problem

The well known linear quadratic Gaussian control
problem is defined as follows. Given the linear
discrete-time stochastic system

i+ :[4 sﬂ{xxk)Ha «sﬂ[uxk)Hq s@}m
k)] o4 4 Jlo®] |8 B Jlu®] |eG G |
'yl(kq:'q sq}{a«k)Hvl(k)}
] [¢G G | %®)] @

with performance criterion

(48)

J= %E{i x(k)" Ox(k) +u(k)TRu(k)} (49)

k=0

Find the control low which minimizes the criterion.
The optimal control law is given by [8]

u(k) = —F3(k) (50)
where F is found according to the section 2.
with the optimal filter
2k +1) = (A= KC)5(k) + Ky(k)+ Bu(k) ~ (51)

which is decomposed into reduced order filters
according to the section 3 as

Ak +1) = (ay +ay, Pr)" 3y (k) + Ky y(k) + D yu(k)

421 (k+1)=(b, +a2_/»P/b)Tﬁ1 (k) + K, y(k) + D@ u(k)

(52)

where

%, (k 7, (k ()

oe{te) e o

X, (k) 1 (k) @,
S The eigenvector solution to
nonsymmetric algebraic Riccati
equation
The eigenvector method for solving the algebraic
symmetric and square, nonsymmetric and
nonsquare  Riccati  equations has received

considerable attention in the literature [8], [9].
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Without loss of generality, let us consider the
algebraic square and nonsymmetric Riccati equation
(ARE) given by

AX + XB+C+XDX =0 (54)
where matrices 4, B, C, D are of appropriate

dimensions ( # x n) and X is the sought solution of
dimension (n x n).

Let the matrix R be associated with the ARE

ke

The matrix R can be diagonalized by the matrix M
consisting of eigenvectors of the matrix R as
follows. Calculate all 2n eigenvalus of R, A; = a; +
jb; and all corresponding eigenvectors v; = x; + jy;.
Arrange in the (2n x 2n) matrix M all real
eigenvectors (x;) and for each complex-conjugate
pair use consecutively the real and imaginary parts
of one eigenvector only (x;, »;). There are many
ways to form matrix M.

(35)

Then, it follows
B A, O
M™RM =A, RM =MA=[M, M,
0 A,
(56)
where M, contains the first n columns and M,
contains the remaining n columns of M. A, and A,
are diagonal or block diagonal matrices.

The equation (59) may be rewritten as

By partitioning M, as
M
M, =[ “} (58)
M,
we get from (57)
BM | +DMy =M Ay, —CMy =AMy =My Ay
(59)

Rearranging the last two equations and using the
substitution

X=M,M;] (60)

leads to

AX + XB+C+XDX =0 (61)
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which proves that X is a solution to (54). Since the
matrix M can be formed in many ways. It follows
that all solutions to (54) have the form

Xy =Mk21Mk_212 (62)
Let the spectrum of R be S = {A,... Aoy } Or § =8
USz, where S1 = {ll,...,}bn} and Sz = {knﬂ,...,}\,zn}.
If the corresponding eigenvalues of eigenvectors
used to form M; are S; = {A,...,Ay} and to form M,
are Sy - {Au+1,...,A0n}, then eigenvalues of (B+DX)
are S) and eigenvalues of —(4+XD) are S, [9]. This

is easily justified by transforming the matrix R as
follows

{—]X ?}[—Bc —DA}LI( g}{B;DX —(A?XD)}
(63)

Further, the matrix R can be put in the block
diagonal form by using another transformation

matrix
-Y[B+Dx D I Y| [B+DX 0
0 I| 0 —U+xp|o I|| 0 —A+XD
(64)

where Y satisfies the Sylvester equation

(B+DX)Y+Y(A+XD)+D=0 (65)

6 Numerical example
Consider the system with problem matrices given

by (e=1)

[ 08674 —03024 0.4092  0.2066
Y —-0.9509 —0.2256 0.3904  0.0966
0.9218  0.5582 —0.3639 —0.3696
|-0.3360 —0.1248 0.1511  0.3564
[0.0190 0.0030
B 0.1800  0.0578
0.0152  0.0190
| —0.1641 0.1810
C:'1 10 0}
0 0 1 1
Q0=0.11,, R=1I,, W=1I,, V=I,
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MM={

7 Conclusion

In this paper the algebraic Riccati equation
decomposition and eigenvector method have been
used in order to solve the optimal control and
filtering of the discrete-time linear weakly coupled
stochastic system. This approach can be used in case
of higher level of coupling between the subsystems.
Beside providing reduction and parallelism in on-
line computation of control and filtering tasks, it
gives new insights into the optimal control and
filtering of weakly coupled systems.
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