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Abstract:-In this paper the  regulator and filter  algebraic Riccati  equations,  corresponding  to the steady state 
optimal control and filtering  of  weakly coupled linear discrete stochastic systems  are solved  in terms of 
reduced-order sub problems by using the eigenvector approach.  The eigenvector method outperforms iterative 
methods (fixed point iterations, Newton method) of solutions to reduced-order sub problems in case of higher   
level of coupling between subsystems. In such cases the iterative methods could fail to produce solutions of the 
corresponding algebraic  Riccati equations.   
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1 Introduction 
The work in this paper is influenced by the work 
done in the theory of weakly coupled systems. The 
theory of weakly coupled control systems has 
attracted a lot of attention in the control literature 
[1], [2], [3], [4].  In [3], a transformation was 
introduced for decomposition of the weakly coupled 
algebraic Riccati equation, which is based on the 
closed-loop decomposition technique. The algebraic 
equations comprising the transformation have the 
form of general non symmetric nonsquare Riccati 
equations. These equations can be efficiently solved 
by iterative methods (fixed point iterations, Newton 
method) for a small value of coupling between 
subsystems [2]. For  a larger value of coupling 
between subsystems,  iterative methods might 
diverge and the desired transformation could  not be 
found. In  [5],  the  transformation  was used in 
order to decompose  corresponding  algebraic 
Riccati equations of the optimal regulator and 
Kalman filter  of  weakly coupled linear discrete-
time stochastic systems. The eigenvector approach 
to the  solution of  optimal control  of  continues-
time singularly perturbed and weakly coupled 
systems was introduced in [10], [11].  This work 
extends applicability of the eigenvector method to 
the problem of  optimal control and filtering of  
weakly coupled  linear discrete-time   stochastic 
systems.  
 
 

2 Decomposition of the linear-
quadratic control problem 
Consider a linear time-invariant discrete-time  
system 
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with the quadratic performance criterion 
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The weakly coupled structure of (1) and (2) implies 
the following partitions  
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where x1, x2 are vectors of subsystem state variables 
of appropriate dimensions (n1, n2),   u1, u2 are 
vectors of control inputs (m1, m2),  and ε is a  small 
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coupling parameter. A, B are system constant 
matrices, Q and R are constant weighting  matrices.  
In addition, it is assumed that A1 and A4 are 
nonsingular.   The well known solution to the above 
optimal control problem is given  by 
 

)()(

)(1)()1(1)(

kFxku

kAxrPTBBrPTBRkTBRku

−=

−+−=+−−= λ

   (4) 
 
where λ(k) is a vector of costate variables and Pr is 
the positive-semidefinite stabilizing solution of the 
discrete Riccati equation given by 
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The solution to this equation exists under the 
standard stabilizability-detectibility assumption 
imposed on the triple (A,B,Q). 
The Hamiltonian form of the optimal control 
problem is given by [9] 
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Hamiltonian form represents the closed-loop 
solution to the optimal control problem, where λ(k) 
= Pr x(k). 
Partitioning   the state vector x and the 
corresponding  costate  vector λ  and interchanging 
second and third rows, the Hamiltonin form can be 
written as [3] 
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with obvious meanings of  vectors U(k), V(k) and 
matrices T1r, T2r, T3r, T4r. 
The system (9) can be block diagonalized  by the 
means of the following  nonsingular similarity 
transformation [3] 
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(10) 
or 
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(11) 
and the relationship between old and new 
coordinates   is then given by 
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The transformation leads to two completely 
decoupled subsystems 
 

)()()1( 2
2

1 krLTTk rr ηεη −=+  
               (13) )()()1( 2

2
4 kTLTk rrr ξεξ +=+

where  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(,
)(
)(

)(
2

1

2

1

k
k

k
k
k

k
ξ
ξ

ξ
η
η

η            (14) 

 
and  Lr  and Hr  satisfying  
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(15) 
 
The first equation has a form of  the asymmetric 
nonsquare Riccati equation, while the second is a 
Sylvester type linear equation. The solution of the 
above equations will be discussed later in the paper. 
The rearrangement of variables in (8) is done by the 
means of  a similarity transformation E of the form 
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The relationship between original and new 
coordinates is given by 
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Since λ = Prx, where Pr satisfies the discrete 
algebraic Riccati equations (5), it follows 
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The decupled subsystems (13) also represent the 
closed-loop solution of the optimal control problem 
in the new coordinates.  Based on this fact the 
equations (13)  can be written as 
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where 
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and Pra and Prb satisfy nonsymetric Riccati 
equations of the form 
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It follows from (18) and (20)  
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This equation can be solved for Pr  giving 
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which gives the solution of the global discrete 
Riccati equation (5)  in terms of reduced order  
continues time nonsymmetric Riccati equations (21) 
and decupling transformation matrix (12). The 
matrix inversion in  (24) is guaranteed for 
sufficiently small ε  [3]. In order to realize the above 
presented decomposition procedure, it is necessary 
to solve continues-time nonsquare and 
nonsymmetric  Riccati equations (15) and (21). The 
solution of  equations (15) and (21) will be 
discussed in the section  5  of the paper. 
 
3 Decomposition of the optimal 
filtering  problem 
 
  Let the linear discrete-time invariant stochastic 
weakly coupled system be given by 
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with corresponding measurements 
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where xi are state vectors, wi and vi are independent 
zero-mean white Gaussian processes with intensities 
W  and V, and yi are system measurements.  Ai, Gi, 
Ci are constant system matrices (i = 1, 2). The well 
known  optimal Kalman filter is is given by 
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or  in the closed-loop form as 
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The Kalman gain is given by 
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where Pf is the positive-semidefinite stabilizing 
solution of the discrete-time algebraic Riccati 
equation given by 
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Using the decomposition procedure given in the 
previous section and the duality property between 
the optimal regulator and optimal filter, will result in 
the decomposition of the global filter to the 
completely decupled reduced order subsystem filters 
both driven by system measurements.  
By duality between the optimal filter and regulator, 
the filter Riccati equation (31) can be solved by 
using the same decomposition method presented in 
the previous section with 
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which leads to  the Hamiltonian state-costate filter 
closed-loop form. Partitioning   the state vector x 
and the corresponding   costate  vector λ  and 
interchanging second and third rows, the 
Hamiltonian form can be written as  
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As it was shown in the previous section , this system 
can be diagonalized by the means of the similarity 
transformation given by 
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and  Lf  and Hf  satisfying  
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The transformation leads to two decoupled sub 
systems 
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 where 
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and  Pfa and Pfb satisfy nonsymetric Riccati 
equations of the form 
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leading to 
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The overall  transformation between the  new and 
original coordinates is given by 
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Since λ = Pf x, where Pf satisfies the discrete 
algebraic Riccati equations (31), it follows 
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It follows from (43) and (39)  
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This equation can be solved for Pf  giving 
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which gives the solution of the filter global discrete 
Riccati equation (31). 
Applying the transformation Ω (43) to the Kalman 
filter equation (28) leads to 
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(46) 
or  
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which completely decomposes the global Kalman 
filter into two  reduced order subfilters, that can be 
implemented independently.  Again, as it was the 
case in the previous section, in order to realize the 
above presented decomposition procedure it is 
necessary to solve continues-time nonsquare and 
nonsymetric  Riccati equations (37) and (40). 
 
 
 

4  LQG control problem 
The well known linear quadratic Gaussian control 
problem is defined as follows. Given the linear 
discrete-time stochastic system  
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(48) 
 

with performance criterion 
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Find  the control low which minimizes the criterion. 
The optimal control law is given by [8] 
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where F is found according to  the section 2. 
 
with the optimal filter 
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which is decomposed into reduced order filters 
according  to the section  3  as 
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where 
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5 The eigenvector solution to 
nonsymmetric algebraic Riccati 
equation  
The eigenvector  method for solving the algebraic 
symmetric and square, nonsymmetric and  
nonsquare Riccati equations has received 
considerable attention in the literature [8], [9]. 
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Without loss of generality, let us consider the 
algebraic square and nonsymmetric Riccati equation 
(ARE)  given by 
 

0=+++ XDXCXBAX                (54) 
 
where matrices A, B, C, D are of appropriate 
dimensions ( n x n) and X is the sought  solution of  
dimension (n x n). 
 
Let the matrix R be associated with  the ARE 
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The matrix R can be diagonalized  by the matrix M 
consisting of  eigenvectors of  the matrix R as 
follows. Calculate all  2n eigenvalus of R, λi = ai + 
jbi and all corresponding eigenvectors  vi = xi + jyi.  
Arrange in the (2n × 2n) matrix M all real 
eigenvectors (xi)  and for each complex-conjugate 
pair use consecutively the real and imaginary parts 
of one eigenvector only (xi, yi). There are many 
ways to form matrix M. 
  
Then,  it follows  
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where M1 contains the first n columns and M2 
contains the remaining n columns of M.  Λ1 and Λ2 
are diagonal or block diagonal  matrices. 
 
The  equation (59)  may  be rewritten as  
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By partitioning M1 as 
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we get from (57) 
 

12121111112111 , Λ=−−Λ=+ MAMCMMDMBM        
(59) 

 
Rearranging the last two equations and using  the 
substitution  
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leads to 
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which proves that X is a solution to (54).  Since the 
matrix M can be formed in many ways. It follows  
that all solutions to (54)  have the form   
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Let the spectrum of R be S = {λ1,… λ2n } or S  = S1 
U S2, where  S1 = {λ1,…,λn} and S2 = {λn+1,…,λ2n}. 
If the corresponding  eigenvalues    of  eigenvectors 
used to form M1 are  S1 = {λ1,…,λn} and  to form M2 
are S2 = {λn+1,…,λ2n},  then  eigenvalues of (B+DX) 
are S1 and eigenvalues of –(A+XD) are S2  [9]. This 
is easily justified by transforming the matrix R as 
follows 
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Further, the matrix R can  be put in the block 
diagonal form by using another transformation  
matrix 
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where Y satisfies the Sylvester equation 
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6  Numerical  example 
Consider the system with problem matrices  given 
by (ε = 1) 
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The obtained solutions for LQG problem according 
to the presented methodology (note that iterative 
methods in this case do not converge)  are 
summarized as follows 
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7 Conclusion 
In this paper the algebraic Riccati equation 
decomposition and eigenvector method have been 
used in order to solve the optimal control and 
filtering of  the discrete-time linear weakly coupled 
stochastic system. This approach can be used in case 
of  higher level of coupling between the subsystems. 
Beside providing reduction and parallelism in on-
line computation of control and filtering tasks, it 
gives new insights into the optimal control and 
filtering of weakly coupled systems.  
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