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Abstract: -Adaptive linearization controllers have been shown to have nice control performance. However, two 
functions in the controllers are derived from the considered system. Thus, those controllers can only work for 
known systems. In this paper, we proposed a fuzzy modeling approach to model those two functions. The 
proposed approach is called the adaptive model reference fuzzy control. In this approach, the considered 
dynamic nonlinear model can be unknown. Different from previous adaptive fuzzy controllers, our approach 
does not need any auxiliary operations on input trajectories and on system states. The proposed controller and 
the weight update laws only need system states and the current desired output without using any their 
derivatives. The Lyapunov stability theorem is used to derive controller parameters update laws, which ensure 
that the system states be bounded and the plant output asymptotically tracks an arbitrary piecewise reference 
trajectory. The proposed method is successfully applied to an unstable nonlinear system and a chaotic system. 
The learning and control performance of our approach is nice and also superior to that of previous approaches. 
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1. Introduction 

Adaptive control schemes for nonlinear 
systems via feedback linearization concept have been 
employed for decades. The idea of feedback 
linearization approaches is to transform a nonlinear 
dynamic system into a linear system through state 
feedback mechanisms. With such transformations, 
those well-explored linear control skills can then be 
applied to meet desired control specifications. 
Several nice results have been reported in [1-3]. The 
major deficiency of those approaches is that their 
good performance is largely relied on exact 
cancellation of nonlinear teams. If uncertainties exist 
in those nonlinear terms, the performance may be 
awful due to non-exact cancellation. Although 
several parameter adaptive control schemes have 
been proven to be asymptotically exact cancellation, 
they are valid only when the variations are on the 
coefficients of nonlinear terms [4]. In this study, we 
intended to apply fuzzy modeling techniques to cope 
with unknowns in systems while employing adaptive 

linearization control schemes. 
Since Zadeh introduced the fuzzy set theorem 

in 1965 [5], it has received much attention from 
various fields and has also demonstrated nice 
performance in various applications. One of those 
successful fuzzy applications is to model unknown 
systems by a set of fuzzy rules. One important 
property of fuzzy modeling approaches is that they 
are universal approximators [6]. In other words, 
fuzzy systems can be used to model virtually any 
systems within a required accuracy provided that 
enough rules are given. It should be noticed that this 
universal approximation property only states the 
existence of such nice fuzzy systems and does not 
provide any mechanisms to obtain them. Various 
approaches have been proposed in the literature 
[7-10,21-24,26-27] to obtain fuzzy systems that can 
actually achieve nice modeling accuracy. In this 
paper, we reported our study in employing fuzzy 
systems to estimate functions that are required in 
constructing an adaptive linearization controller. In 
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this approach, based on the Lyapunov stability 
theorem, a learning mechanism is proposed to 
guarantee asymptotical convergence of the 
estimation of those functions by fuzzy systems. 

In fact, various fuzzy adaptive control schemes, 
which incorporate fuzzy systems into adaptive 
control schemes, have already been proposed in the 
literature [11-14]. Those approaches are based on the 
idea proposed by Wang [11]. The idea of this kind of 
adaptive control is to directly cancel nonlinear 
functions in dynamic systems and to form a response 
behavior model. However, due to the requirement of 
using up to the (n-1)th order derivatives of the output 
and the nth order derivatives of the input trajectory, 
the approaches can only control unknown systems to 
track pre-defined continuous trajectories. As a matter 
of fact, those derivatives are generally not available 
while tracking trajectories that are not continuous or 
not previously defined. Another problem is that 
derivatives of real-world signals are very easily 
affected by noise. Thus, we proposed a novel 
adaptive fuzzy controller based on the linearization 
control ideas proposed in [4]. The proposed 
controller can avoid using those derivatives by 
including a reference model in the update law 
derivation. Since the proposed approach does not 
need any auxiliary operations on the system output 
and on the trajectory, it can be employed in various 
applications, especially used to trace piecewise 
continuous trajectories or input that is not previously 
defined.  

A relative approach has also been reported in 
[18]. In that approach, the same form of controller is 
used and a radial basis function network is 
implemented to approximate two functions in the 
controller. A similar adaptive controller to our 
approach is obtained for systems with relative degree 
one. However, for higher relative degree systems, the 
update laws of that approach adopted the normalized 
gradient update law stated in [1]. In our opinion, 
there exist problems in such an approach. In our 
study, we have also implemented that update law in 
our simulation and the control performance is not 
acceptable as we expected. In fact, in [18], no higher 
degree systems are used for simulation. In this paper, 
an SPR-Lyapunov design method is employed to 
provide better controller parameter update laws for 
higher relative degree systems. It can be seen that our 
approach can have faster convergent behavior and 
better control performance when compared to the 
traditional adaptive fuzzy controllers or the approach 
proposed in [18]. 

The paper is organized as follows. Section 2 
introduces the concept of feedback linearization 
controllers. Then, the proposed adaptive model 

reference fuzzy controller is shown in section 3. The 
updating algorithms and stability analysis for the 
proposed controller are derived in section 4. In 
section 5, simulation results are presented to confirm 
the feasibility and superiority of the proposed 
method. Finally, conclusion remarks are given in 
section 6. 

 

 
2. Feedback Linearization Controllers 

Consider a continuous time dynamic system of 
the form 

( ) ( )
( )xhz

uxgxfx
=

+=�
 (1) 

where ],,,[ 21 nxxxx "=  is an n-dimensional 
vector for the state variables, which are assumed 
measurable, f(x), g(x), and h(x) are nonlinear smooth 
functions, u is the scalar manipulated input variable, 
and z is the output variable. The state feedback 
nonlinear control law [1] suggests that the control 
input be 

u=α+βv, (2) 
where 
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degree of the system. A system is said to have a 
strong relative degree γ  [1] if 
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 are chosen such that  is 
a Hurwitz polynomial [2]. 
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 and , Eq. (2) can be rewritten 

as  
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( )
( )xd

zaxnu sp
∗

∗ +−
≡ 1 . (3) 

It should be noted that the computation of  

and  requires the knowledge of the system 
defined in Eq. (1). From [20], the above controller 
can yield the closed-loop dynamic response for Eq. 
(1) as: 

)(* xn
)(* xd

( ) ( 1) ( 2)
1 1 1 spz a z a z a z a zγ γ γ

γ γ
− −

−+ + + + =… .  
The system can be made stable with a proper choice 
of those constants, , …, . Note that additional 
assumptions are required to ensure the internal 
stability of the closed-loop system due to the 
presence of an (n-γ)-dimensional nonlinear system 
called the “zero dynamics” [3]. A sufficient condition 
for bounded tracking is that the zero dynamics are 
exponentially stable and Lipschitz continuous [19]. 
Such a feedback linearization controller can have 
nice control performance as shown in [20]. 

1a γa

In above,  and  are obtained 
from the system dynamics (Eq. (1)). However, when 
the system to be controlled is unknown, the above 
input-output linearization controller cannot work. 
This paper is to use a fuzzy system to approximate 

 and  based on the Lyapuonv theorem. 
With such a fuzzy system, the above controller can 
work well for unknown systems. 

)(* xn )(* xd

)(* xn )(* xd

 
 

3. Adaptive Model Reference Fuzzy 
Controllers 

In this study, we employed fuzzy systems to 
on-line estimate  and  from the 
measured state variables. Different from previous 
adaptive fuzzy controllers, the proposed approach 
does not need to use any auxiliary operations on 
input trajectories or on system outputs. This 
controller is called the adaptive model reference 
fuzzy controller. The idea is to include a reference 
model into the controller such that each step the 
controller only needs the current input and current 
output without using their derivatives.  

)(* xn )(* xd

The used fuzzy system is to perform a 
mapping from the current states to the estimated 

 and . The mapping consists of a set of 
fuzzy IF-THEN rules in which the l-th rule is of the 
form 

)(* xn )(* xd
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where , …,  are the state variables defined in 

Eq. (1), , …,  are the corresponding fuzzy 
labels, p is the output variable for the fuzzy system, 
and  is the corresponding output value for the 
l-th rule.  
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By using the product operations for the 
conjunction relations in the premise parts of fuzzy 
rules, the output of a fuzzy system consisting of N 
rules is obtained as:  
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µ  is the membership degree of  

belonging to the fuzzy label , 

, and 

 and is referred to as the 
regressive vector. Here the supscript T for a vector is 
the transpose of the vector, and 

ix
)(l

iF
TN ],,,[ )()2()1( θθθθ "=
TN ],,,[ )()2()1( ξξξξ "=

∑ ∏

∏

= =

== N

l

n

i
iF

n

i
iF

l

x

x

l
i

l
i

1 1

1)(

))((

)(

)(

)(

µ

µ
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function [6]. 
The fuzzy system is used to estimate both 
 and  in the controller (Eq. (3)). Thus, 

the fuzzy system has two output variables for  

and , respectively.  and  then 
can be approximated as 
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By using the above estimations of  and 

, Eq. (3) can be rewritten as 

)(* xn
)(* xd

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Song-Shyong Chen, Yuan-Chang Chang, Chen Chia Chuang,
Chau-Chung Song  and Shun-Feng Su

ISSN: 1991-8763 559 Issue 12, Volume 2, December 2007



 

)(
)( 1

x
zax

u T
d

sp
T
n

ξθ
ξθ +−

≅ . (8) 

It should be noted that in Eq. (8),  and  are 
parameters to be determined from the identification 
process and those fuzzy labels are pre-defined and 
fixed in our implementation. In the next section, we 
shall present the algorithms for obtaining  and 

 such that the stability of the system is 
guaranteed. 

nθ dθ

nθ

dθ

 
 
4. The Update Algorithms and Stability 
Analysis 

The update algorithm is to recursively update 
the controller parameters (i.e.,  and ) such 
that the plant output asymptotically tracks the output 
of a reference model. Two assumptions are made to 
facilitate the Lyapunov design of the parameter 
update laws. The first one is , which 
ensures that the nonlinear control law Eq. (8) 
remains well defined. The second assumption is the 
existence of “true” controller parameters  and 

 such that it is possible to achieve 

nθ dθ
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Now, suppose that the considered system is of 
relative degree γ; i.e., 

 and 

. Then, an appropriate reference 
model is  
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where  are chosen such that 
the reference model is stable. The derivative of the 
output with respect to time along the system 
trajectories can be written from Eq. (1) as  

1,  ,   and ,  a a aγ γ − … 1

( ) ( )  uxhLxhLz gf +=� . (12) 
Since the system is of relative degree γ, then 

 and 

. The control input vanishes in Eq. 
(12); i.e., 

02 ==== − hLLhLLhL fgfgg
γ"

01 ≠− hLL fg
γ

( )xhLz f=� . (13) 
Again, take derivative of the above equation with 
respect to time along trajectories and yield: 

 ( ) (  uxhLLxhLLz fgff )+=�� . (14) 
The control input still vanishes. By repeating the 
above process, we finally have 

( ) ( ) (  1 uxhLLxhLz fgf
−+= γγγ ) . (15) 

Since ( ) 01 ≠− xhLL fg
γ , the control input appears in 

the output of the system. 
Substituting Eqs. (9) and (10) into Eq. (15), we 

have 
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Now, by employing Eq. (8) as the control input, we 
have 
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Using Eqs. (11) and (17), the dynamics of the 
tracking error becomes 
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shown in the literature [1] that when an error 
dynamic system has the property of strictly positive 
real (SPR), the parameter update law for adaptive 
controllers can easily be obtained. Here a dynamic 
system is said to be SPR if it is strictly 
minimum-phase and its transfer function has relative 
degree 0 or 1 [3]. But, when γ > 1, by properly 
selecting , M(s) can be a stable 
transfer function but not strictly positive real [1]. In 
order to use the SPR-Lyapunov design method [25], 
Eq. (19) is further rewritten as  
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M(s)N(s) is a proper SPR transfer function. Then the 
dynamic equation for Eq. (20) becomes: 
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equations, we then can directly define the parameter 
update laws as: 
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where 1λ  and 2λ  are two constants used to define 

the importance of the errors in  and , 
respectively. 
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Theorem 1: Consider a minimum-phase nonlinear 
unknown system as Eq. (1). Suppose that it satisfies 
the above two mentioned assumptions and the used 
control input is Eq. (8). Then if the adaptive laws are 
Eqs. (22) and (23), e(t) converges to zero as ∞→t  
and all signals in the closed system are also bounded. 
Proof: Define a Lyapunov function as 
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derivative of Eq. (24) with respect to time, we have  
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Substituting Eq. (21) into Eq. (25) and with some 
manipulations, we have 
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Since M(s)N(s) is SPR, there exists  [1] 
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where . By using Eqs. (27) and (21), 

Eq. (26) becomes 
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Then, it is easy to see that when the update laws are 

Eqs. (22) and (23), 0
2
1

≤−= s
T
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0 and , it can easily be found that e, , 0 ≤V� e� θ n , 
and dθ  are all bounded from Eq. (24). It follows 
from Barbalat’s lemma [19] that ( ) 0lim =

∞→
te

t
. 

Moreover, since the chosen reference model is stable, 
then z and zm are also bounded. The exponentially 
stable and Lipschitz continuous assumptions 
imposed on the zero dynamics ensure that x be 
bounded. □ 

Note that when the relative degree is 1, N(s) 
can be selected to be 1. Then the update laws become 

)(1 xenn ξλφθ == ��  (28) 

uxedd )(2 ξλφθ == �� , (29) 
In fact, it can be found that the obtained update law 
for relative degree one systems is exactly the same as 
that derived in [18]. 
 
 
5. Simulation Results 

In this paper, two examples are used to verify 
the performance of the proposed controller. One is an 
unstable nonlinear system and the other is a Duffing 
forced oscillation system. Both examples are used in 
[11].  
Example 1: The used system is defined as 

( )
( )

( ) ( ) xztu
e
etx tx

tx
=+

+
−

=
−

−

   ,  
1
1� , (30) 

where x is the system state, and u and z are the 
system input and output variables, respectively. The 
used reference model is  

spmm zzz 1010 +−=� , (31) 

where  and  are the reference model output 
and the set-point, respectively. 

mz spz

In the implementation, six fuzzy sets are 
defined over the interval [-3,3], with labels N3, N2, 
N1, P1, P2, and P3, and their membership functions 
are (x)=1/(1+exp(5(x+2))), 

(x)=exp(-(x+1.5)
3Nu

2Nu 2), (x)=exp(-(x+0.5)1Nu 2), 

(x)=exp(-(x-0.5)1Pu 2), (x)=exp(-(x-1.5)2Pu 2), and 
(x)=1/(1+exp(-5(x-2))). Those membership 

functions are also shown in Figure 1. The initial 
values of 

3Pu

)0(nθ  and )0(dθ  are randomly chosen 
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from interval [-2, 2]. In this example, 3001 =λ , 
252 =λ , 101 =α , N(s)=1 (because γ=1), the 

simulation time period is 20 seconds, and the initial 
state x(0) is zero. 

The simulation is conducted in a Matlab 
environment with a step size 0.01. Several input 
functions are used in our simulation. Square wave 
functions with the amplitudes 5.0±  
and and the periods 6.25 seconds and 8.5 
seconds, respectively, are considered as examples of 
non-differentiable signals. A sinusoidal function and 
a constant function are used as examples for 
differentiable signals. Figure 2 and 3 shows the 
tracking performance of our proposed scheme when 
the reference signal is a square wave with different 
amplitudes and different periods. Figure 4 shows the 
tracking performance when the reference input is a 
sinusoidal wave. Figure 5 shows the tracking 
performance when the reference input is a constant 
signal. All examples demonstrated good tracking 
capability after a couple cycles of learning. It is 
evident that our controllers can indeed have nice 
adaptive capability. 

75.0 ±

In order to show the superiority of our 
approach, we also implemented the adaptive fuzzy 
controller proposed in [11]. Figure 6 shows the 
capability of regulation by considering zero input 
with initial state x(0) being 1. From the simulation, it 
can be found that our proposed approach has the 
better control performance. Figure 7 shows the 
tracking performances for a sinusoidal function. 
Table 1 shows the sums of the absolute errors in the 
first three cycles. Again, our proposed approach can 
have the better control performance. Note that since 
the approach in [11] needs the derivative of the 
trajectory, square waves cannot be directly used as 
the reference trajectory for [11]. By considering the 
reference model as the desired output, the approach 
of [11] still can be applied. However, the simulation 
revealed that the tracking performance of the 
approach in [11] is inadequate as shown in Figure 8. 
Table 2 shows the sums of the absolute errors in the 
first three cycles. 
Example 2: The used system is 

21 xx =�  (32) 

)()cos(121.0 3
122 tutxxx ++−−=�  (33) 

1xz =  (34) 
This is a Duffing forced oscillation system. Note that 
when u(t)=0, the system is chaotic. The reference 
model is defined as 

spmmm zzzz 252510 =++ ���  (35) 
In this example, the system has relative degree 

two and the function LgLfh(x)=1 is known. Only n*(x) 
in Eq. (3) needs to be estimated. The six fuzzy labels 
shown in Figure 1 are also used for both  and 

. The following parameters are used in our 
implementation; λ 1 =100, 

1x

2x

nθ (0)=1, the simulation 

time period=50 sec, N(s)=s+2, =10, =25 and 
[x1(0) ]=[2 0]. The simulation is conducted 
with a step size 0.02. Figure 9 shows the tracking 
results when sin(t) is the input function. Figure 10 
show the tracking results in the phase plane. Another 
reference input, a triangular wave, is also used and 
the results are shown in Figure 11. For comparison, 
Figure 12 shows the tracking results for a sinusoidal 
function for our approach and for the approach in 
[11]. Table 3 shows the sums of the absolute errors in 
the first seven cycles in Figure 12 for those two 
approaches. Figure 13 shows the tracking results for 
a triangular wave in [11]. Table 4 shows the sums of 
the absolute errors in the first seven cycles in Figures 
11 and 13, respectively, for those two approaches. 
Finally, the normalized gradient update law proposed 
in [18] is used in this example. It can be found that 
that approach leads to failure in tracking control as 
shown in Figure 14. In fact, we have tried various 
parameters, and the results are all similar. In other 
words, the update law proposed in [18] cannot 
converge for this example. 

2a 1a
)0(2x

 
 

6. Conclusions 
In this paper, a novel adaptive fuzzy controller 

is proposed. It is called the adaptive model reference 
fuzzy controller in our research. The control law of 
our approach is based on a traditional adaptive 
linearization controller, which has been shown to 
have nice control performance in the literature. Since 
the considered dynamic nonlinear model is unknown 
in our problem, two functions required in the 
adaptive linearization controller are on-line tuned 
under a fuzzy rule structure. Based on the Lyapunov 
stability theorem, the corresponding adaptive update 
laws are also derived. With the use these update laws, 
the stability of the closed systems is guaranteed. 
Different from previous adaptive fuzzy controllers, 
our approach does not need any auxiliary operations 
on input trajectories and on system states. With this 
property, our approach can be used to track any 
trajectory, even a trajectory not previously known. 
This method has been applied to control an unstable 
nonlinear system to track a piecewise reference 
trajectory and to control a chaotic system to track a 
sinusoidal reference trajectory and a triangular 
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reference trajectory. The computer simulation results 
showed that the proposed scheme could perform a 
successful control. When compared to previous 
approaches, our approach can have better learning 
and control performance in those examples for all 
used trajectories. 
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Fig. 1 The used fuzzy membership functions. 

 

Fig. 2 The tracking results when the input is a square 
wave with the amplitude ±0.5 and the time period 

6.25 seconds. 

 
Fig.3 The tracking results when the input is a square 
wave with the amplitude ±0.75 and the time period 

8.5 seconds. 

 

System output 

Reference input 

Model output 

Fig. 4 The tracking results when the input is a 
sinusoid function. 

 

 

Fig. 5 The tracking results when the input is a 
constant signal. 

 

System output 

Reference input 

Fig. 6. Simulation results for the proposed method 
and the approach in [11]. 

 

Model output 

System output 

System output 

Reference input The approach in [11] 

Model output 

Our approach 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Song-Shyong Chen, Yuan-Chang Chang, Chen Chia Chuang,
Chau-Chung Song  and Shun-Feng Su

ISSN: 1991-8763 564 Issue 12, Volume 2, December 2007



 

 
Fig.7. Simulation results for the proposed method 

and the approach in [11]. 

 
Fig. 8 The tracking results when the input is a square 

wave for the approach in [11]. 

 
Fig. 9. The output trajectory using the proposed 

 controller for a sinusoid function. 

 

The approach in [11] 

x2

Initial state 
(2,0) 

Our approach 

Fig. 10. The closed-loop system trajectory 
( 1x (t), 2x (t)) using the proposed controller for a 

sinusoid function. 

x1

 

System output 

Reference input 

System output 

Model output 

Fig. 11. The output trajectory using the proposed 
controller for a triangular wave input. 

  

System output 

The approach in [11] 

Reference input 
Our approach 

Model output 

Fig. 12. Simulation results for the proposed method 
and the approach in [11]. 
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Fig. 13. The output trajectory using the approach in 

[11] for a triangular wave input 
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Fig. 14. Simulation results for the adaptive fuzzy 
control with the normalized gradient update law [18] 

 
Cycle # 

Approach 
The total 

errors in the 
first cycle 

The total 
errors in the 
second cycle 

The total 
errors in the 
third cycle

Our 
approach 54.3185 17.0945 9.3585 

The 
approach in 

[11] 
210.0848 135.5928 168.4118 

Table 1. The comparison of the sums of the absolute 
errors by cycles for Example 1 with the input as a 

sinusoid function. 

Cycle # 
Approach 

The total 
errors in the 
first cycle 

The total 
errors in the 
second cycle 

The total 
errors in the 
third cycle

Our 
approach 44.0042 9.3253 1.3316 

The 
approach in 

[11] 
113.7631 147.2520 187.0868 

Table 2. The comparison of the sums of the absolute 
errors by cycles for Example 1 with the 

input as a square wave. 

 

Cycle # 
Approach 

The 1st cycle The 2nd 
cycle 

The 3rd 
cycle 

Our approach 404.7307 208.0629 98.6355 
The approach 

in [11] 311.6347 264.1880 217.7920

The 4th cycle The 5th 
cycle 

The 6th 
cycle 

The 7th 
cycle 

32.0753 13.5955 8.4675 7.2423 

158.6114 83.9198 55.3928 39.8578 

Table 3. The comparison of the sums of the absolute 
errors by cycles for Example 2 with the input as a 

sinusoid. 
 

Cycle # 
Approach 

The 1st 
cycle 

The 2nd 
cycle 

The 3rd 
cycle 

Our approach
4.6887 2.9081 2.9129 

The approach 
in [11] 10.6872 9.9598 10.0013 

The 4th cycle The 5th 
cycle 

The 6th 
cycle 

The 7th 
cycle 

3.8077 2.9315 2.7694 3.7884 

11.4130 10.2748 6.6289 9.7996 

Table 4. The comparison of the sums of the absolute 
errors by cycles for Example 2 with the 

input as a triangular wave. 

 

Reference input 

System output 
Model output 
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