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Abstract: - With the hard computation of an exact solution to non-convex optimization problem in a limited 
time, we propose a suboptimal min-max model predictive control (MPC) scheme for nonlinear discrete-time 
systems subjected to constraints and disturbances. The idea of input-to-state stability (ISS) is introduced and a 
Lyapunov-like sufficient condition for ISS is presented. Based on this, we show that the suboptimal predictive 
controller obtained here holds back the disturbance robustly in the present of constraints on states and inputs. 
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1 Introduction 
Model predictive control (MPC) or receding horizon 
control (RHC), as a class of on-line optimization 
control technique, has received much attentions in 
both academic and industrial societies due to its 
ability to handle multivariable, constrained systems 
[1]. Meanwhile, a “standard” theoretical framework 
containing a terminal cost and/or a terminal 
inequality constraint in the optimization problem 
has been developed to design stabilizing nonlinear 
model predictive controllers (NMPC) [2][3]. 
However, the stability may be lost when the 
dynamics is subject to disturbances and constraints, 
because of the failure of solving the optimization 
problem, i.e., infeasibility [4]. One way to avoid the 
failure is to redefine the optimization problem by 
such approaches as soft-constraint, minimal-time etc. 
[5]; the other way is to exploit min-max MPC 
schemes that are minimized by inputs and 
maximized by disturbances [2][6]~[9]. The present 
work concentrates on the latter method, i.e., min-
max MPC scheme that is formulated by the standard 
framework. 

It is well known that an exact global solution of 
the non-convex nonlinear programming of NMPC, 
leaded generally by the nonlinear model equality 
constraint, cannot usually be obtained or is highly 
computationally expensive[1][10]. Scokaert et al. 
[10] presented, however, a suboptimal NMPC 
algorithm with guaranteed nominal stability (closed-
loop stability when the model is perfect and with no 

disturbances) even if a globally optimal solution is 
not available. Therefore, it is meaning to study the 
suboptimal NMPC problem with robustness analysis 
when the model is subject to disturbances and a 
globally (or locally) optimal solution is not available. 
On the other hand, input-to-state stability (ISS) has 
became one of the most important notions to 
investigate the robustness of nonlinear systems and 
has been recently introduced in the study of NMPC 
resulting systems under disturbances [8][9] 
[11]~[14]. By employing nominal models (which 
usually results in hard conservativeness), references 
[12]~[14] derived the ISS stability for linear MPC, 
and [11] for NMPC. Moreover, Limon et al. [8] 
presented an input-to-state practically stable min-
max NMPC under bounded uncertainties. 
Nevertheless, this result did not directly consider 
disturbance attenuation specifications in objective 
functions, where the disturbance term should have a 
different sign from that of the state term as a game 
opposer. Magni et al. [8] added the disturbance term 
to the cost and obtained regional ISS of min-max 
MPC for nonlinear perturbed systems if the overall 
optimization problem is solved exactly and its 
feasibility under horizon length of a single step 
holds at all time. Thus, this design is very rigid and 
may be severe conservative since it is likely to have 
a very small feasible region or a poor performance. 

In order to increase the applicability of NMPC, 
the suboptimal versions based on min-max open-
loop and closed-loop NMPC formulations are 
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proposed for nonlinear discrete-time systems 
subjected to disturbances and constraints. Similar to 
the strategy in [10], we exploit the initial feasible 
solution that is updated iteratively in the process of 
the on-line optimization. The purpose of this paper 
is to obtain some tractable sufficient conditions 
under which the robust stability of the suboptimal 
NMPC is guaranteed. We obtain our main goals by 
means of an ISS-Lyapunov approach of nonlinear 
systems, which does not require that the optimized 
cost function and the NMPC resulting system are 
continuous. Therefore, the suboptimal strategy 
achieves the robust stability of NMPC in the sense 
of disturbance rejection and satisfies the constraint 
on state and input as well. 

The paper is organized as follows: Section 2 
states the problem to be studied, including the 
system description and the formulation of min-max 
NMPC. In Section 3, we derive a preliminary result 
on ISS, which is slightly different from the one 
presented in [15]. In Section 4, we present our main 
results on the robustness in suboptimal min-max 
NMPC case. Finally, we conclude the paper in 
Section 5. 

Notation: The symbol “:=” represents that the 
left-hand term is defined as the right-hand side. Z+ 
denotes the set of all nonnegative integers and R+ 
the set of all nonnegative real numbers. For any 
vector x, x′ is its transpose and |x| its Euclidean norm. 
The ln

∞-norm of a signal u is defined as 
||u||=sup{|u(t)|: u(t)∈Rn, t∈Z+}< ∞. We use α1◦α2 
to denote the composition of two mappings α1 and 
α2, α[k]=α◦α[k] and α-1 its inverse mapping. A 
continuous function α: R+→R+ is a К-function if it 
is strictly increasing and α(0)=0, α(t)>0 for all t>0; 
it is a К∞-function if it is a К-function and α(t)→∞ 
as t→∞. A continuous function β: R+×R+→R+ is a 
КL-function if β(s, t) is a К-function in s for each 
fixed t ≥0; it is strictly decreasing in t for every 
fixed s >0 and β(s, t) →0 as t→∞. 
 
 
2 Problem Formulation 
Consider nonlinear, uncertain discrete-time systems 
of the general form 

))(),(),(()1( twtutxftx =+                 (1) 
where x(t)∈Rn is the state, u(t)∈Rm is the control 
variable and w(t)∈Rq is the disturbance, for each 
time instant t∈Z+. The trajectory of system (1) with 
initial state x(0)=x0 and inputs u and w is denoted as 
x(·;x0,u,w), which is supposed to be uniquely on Z+. 
The state and control variables are subject to the 
following constraints: 

XtxUtu ∈∈ )(,)(                       (2) 

Here sets X and U are compact subsets of Rn and Rm, 
and contain the origin as an interior point, 
respectively. We assume that the state of the system 
is available for state feedback and the origin is an 
equilibrium point of the system. 

The main objective of this paper is to obtain a 
suboptimal controller for the system subjected to the 
following disturbance w(t), based on a class of 
“standard” min-max MPC scheme [2]. 

),()( uxWtw ∈                         (3) 
where W is a compact set for each pair (x, u) and 
contains the origin. The obtained controller is 
required to regulate the state of the system to a ball 
containing the origin whose radius is a function of 
the supremum norm of the disturbance while 
satisfying the constraints (2). 

In what follows, we review the “standard” min-
max MPC scheme [2]. 
Problem 1 (FHODG). Given the positive integer N 
(time horizon), the stage cost l1: X×U→R+ and l2: 
W→R+, the terminal cost E: X→R+ and the terminal 
region Ω X containing the origin, then the Finite 
Horizon Optimal Differential Game (FHODG) 
problem is defined as 

⊆

}))(())(),((
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1
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       (4) 
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                 (5) 

where, 
},,{: 1−+= Ntt uuu                          (6a) 

or 
)}(,),()),(({: 110 ⋅⋅= −Ntxu πππ            (6b) 

with control laws πi: Rn→Rm, i =0,1,…, N-1. If we 
choose the control action of (6a) as the decision 
variables of Problem 1, the scheme is called min-
max open-loop MPC scheme; or else, the scheme 
selecting control law (6b) is said to be min-max 
closed-loop (also called feedback) MPC scheme. 
For simplicity of discussion, we write in this work 
them uniformly as u={u(t), …, u(t+N-1)}. 

To solve Problem 1 at each time is to yield a 
control sequence, the first of which is employed as 
MPC law. However, the global optimality of the 
control is usually not guaranteed since the Problem 
is a non-convex nonlinear programming problem. In 
fact, the suboptimality in overall optimization 
problem is more interesting in terms of 
computational burden. In suboptimal case, the 
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control is not unique (usually defined by inequalities) 
and may be discontinuous, too [10]. Moreover, the 
nonnegative condition of the objective function in (4) 
will be lost due to the suboptimality in the 
maximization subproblem. Hence, the robustness of 
suboptimal MPC should be considered more 
carefully. In the next section, we will present the 
preliminary results that are capable to deal with the 
cases resulted from the suboptimality and to 
simplify the subsequent analysis. 
 
 
3 ISS properties 
Consider the following nonlinear systems 

))(),(()1( tutxtx χ=+                      (7) 
with χ(0,0)=0. The response of system (7) with 
initial state x(0)=x0 and input u is denoted as x(t;x0,u) 
for all t∈Z+. 

Definition 1 [15]. The system (7) is input-to-state 
stable (ISS) if there exist some functions α∈К and 
β∈КL such that, for each input u∈Rm and each 
state ξ∈Rn

||)(||)|,(||),;(| ututx αξβξ +≤             (8) 
for each t∈Z+. 

Inequality (8) guarantees that for any bounded 
input u, the state of system (7) x is bounded. 
Moreover, as time increases, the state will 
ultimately approach a ball around the origin whose 
radius is determined by a function of class К∞ of the 
upper limit of the input [16]. Therefore, ISS implies 
that the system (7) with null-input or decaying input 
is asymptotically stable to the origin. 

Lemma 1. The system (7) is ISS if there is a 
function V: Rn → R+ such that, for all u∈Rm and all 
x∈Rn

||)(|||)(|)(|)(| 121 uxxVx σαα +≤≤       (9a) 
|)(||)(|)()),(( 32 xuxVuxV ασχ −≤−     (9b) 

where αi∈К∞ , i =1,2,3 and σi∈К , i=1,2. Then 
function V(·) is called an ISS-Lyapunov function of 
system (7). 

Proof. The process of proof here is similar to the 
one in [8] for input-to-state practically stability. 

Let α4(s)=α2(s)+σ1(s) and α4(s) be a К∞-function. 
Based on property (p6) (See Appendix), we derive 
that, from the inequality (9a) 

)(|||||| 1
4 xVux −≥+ α                 (10) 

Set the К∞-function α6(s)=min(α5(0.5s)+α3(0.5s)) 
where α5(s) is a given К∞-function. Apply property 
(p7) with s=|x|+||u|| and the inequality (10) to yield 

)(||)(|||)(| 1
4653 xVux −≥+ αααα    (11) 

where α6◦α4
-1(s) is a К∞-function. Substituting (11) 

into (9b) yields 

)(||)(||)()),(( 1
463 xVuxVuxV −−≤− αασχ   (12) 

where σ3(s)=α5(s)+σ2(s). In terms of appendix, there 
exists a К∞-function α7(s) such that α7(s)≤α6◦α4

-1(s) 
for all s≥0 and both functions ψ1(s)=s-α7(s) and 
ψ2(s)=s-0.5α7(s) are К-functions. Then inequality 
(12) yields 

)(||)(||)),(( 13 xVuuxV ψσχ +≤       (13) 
Define function α8(s)=α7

-1(2s). Then, we have that 
α8(s)>2s and 

sssss −=−= )()(5.0)()( 827882 αψαααψ   (14) 
Let x(0)=ξ. Since α8(s)>2s, we obtain that, from (13) 

)(||)(||))1(( 238 ξψσα VuxV +≤  
Using induction, we assume that V(x(k))≤α8◦σ3(||u||) 
+ψ2

[k]◦V(x0). Apply properties (p8)~(p9) and (14) to 
obtain 

)(||)(||

)(||)(||||)(||
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Substituting (15) into (9a) and using property (p5) 
yield 

|)(|2||)(||

||)(||2|)(|2||)(||

||))(|||)(|(||)(||
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:

 

where σ4(s)=α8◦σ3(s)+2σ1(s). Furthermore, we obtain 
the size of the system state 

)|,(|||)(||
|)(|4||)(||2

|))(|2||)(||(|)(|
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With the properties of the К-functions, it is apparent 
that α(·) is a К-function and β(·,·) is a КL-function. 
Hence, the system (7) is input-to-state stable. ■ 

Remark 1. From (9a), we know that the ISS-
Lyapunov function may not be bounded by a К∞-
function of the state. In addition, the function may 
not be continuous and the result obtained here is 
independent of the continuity of system (7). 
Therefore, the result is suitable for discontinuous 
systems such as the system (1) controlled by 
discontinuous feedback control laws resulted from 
suboptimal MPC controllers. 
 
 
4 ISS of suboptimal MPC 
Let π: Ω→U, with π(0)=0, is a local control of 
system (1). For a given feasible (not necessarily 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL De-Feng He, Hai-Bo Ji, Tao Zheng 

ISSN: 1991-8763 430 Issue 8, Volume 2, August 2007



optimal) pair of solution (û, ŵ), the value function 
of FHODG is defined as 

}))(ˆ())(ˆ),((

))((),(
1

21∑ −+

=
−

++=
Nt

tk
kwlkukxl

NtxENxJ
   (16) 

Now we present a suboptimal, fixed-horizon version 
corresponding to Problem 1. 

Problem 2 (suboptimal FHODG): 
(1) Fix a suitable time horizon N and pick μ∈(0,1]. 
(2) At time t=0, initial state x0, find a pair of 

solution, û0={û(0|0),..., û(N-1|0)} and ŵ0= 
{ŵ(0|0),..., ŵ(N-1|0)}, satisfying (5); Set u(0)= 
û(0|0). 

(3) At time t+1, initial state xt+1, calculate the value 
Ĵ(xt+1, N) with ut+1={û(t+1|t),..., û(t+N-1|t), 
π(x(t+N; xt, ût, ŵt))} and ŵt+1={ŵ(t+1|t),..., 
ŵ(t+N-1|t), w(t+N)} with any given w(t+N)∈W. 

(4) For disturbance ŵt+1 in (3), pick a control 
ût+1={û(t+1|t+1),..., û(t+N|t+1)} satisfying (5) 
and (20); Set u(t+1)= û(t+1|t+1). 

                 (17) ),(ˆ),( 11 NxJNxJ tt ++ ≤ μ
(5) Set t: =t+1 and go back to (3). 

If a suboptimal control û (i.e. satisfying (5) and 
(17)) is found, according to the receding horizon 
mechanism, the first element of û is chosen as the 
MPC law, i.e. 

)|(ˆ)( ttutuMPC =                      (18) 
and the resulting system is formulated as 

))(),(),(()1( twtutxftx MPC=+        (19) 
for all t∈Z+. 

Remark 2. Similar to the strategy presented in 
[10], Problem 2 does not need to solve the overall 
optimization (including both minimization and 
maximization parts) problem exactly and the 
solution of control obtained at previous time serves 
as an initial guess for the current nonlinear 
programming, which considerably reduce the online 
computational burden. However, the nonnegative 
condition of value function (16) in overall 
optimality case, which is ensured by using the 
properties of differential game theory [9], may be 
lost due to the suboptimality of the maximization 
subproblem. Thus, the value function is not suitable 
for a candidate Lyapunov function. Notice, that 
Larger μ values make the problem easier to achieve, 
which, however, generally results in more 
conservativeness and worse performance. 
  Let Θ(N) denote the set of initial states x(0)∈X in 
which there exists a feasible solution of the FHODG. 
In order to guarantee the robust stability of the 
suboptimal controllers with set Θ(N), some 
definitions and assumptions are introduced below: 

Definition 2 [17]. Set S is robustly invariant for 
the system (1)-(3) if there exists an input u∈U such 
that f(x,u,w)∈S for all x∈S and all w∈W. 

Assumption 1. There are some functions θ1∈К∞ 
and θ2∈К such that l1(x, u) ≥ θ1(|x|) and l2(w) ≤ 
θ2(|w|) for all u∈U, x∈X and w∈W. 

Assumption 2. Set Ω is a feasible robust 
invariant set and the local control π: Ω→U satisfies 
the following: 

0)())(,()())),(,(( 21 ≤−+− wlxxlxEwxxfE ππ  
(20) 

for all x∈Ω and w∈W. 
Assumption 3. There exist some К∞-functions θ3 

and θ4 such that, for all x∈Ω and w∈W 
|)(|)(|)(| 43 xxEx θθ ≤≤               (21) 

Assumption 4. The set of initial state, Θ(N) is a 
robust invariant set of resulting system (19). 

Note that the above assumptions on the design 
parameters (l1, l2, E, Ω, π) in are typical and not 
trivial at all. For instance, references [18]~[20] gave 
some approaches to compute these parameters for a 
class of nonlinear systems and quadratic cost 
functions, based on H∞ control theory. However, 
Assumption 4 does not a-priori holds to the case of 
suboptimal controller (18). One method to guarantee 
it is to restrict properly the state constraints and the 
terminal region in Problem 2. For details, one can 
see reference [11]. 

Before the statement of our main results, an 
important lemma similar to [2] is given below: 

Lemma 2 [2]. Under Assumptions 1~3 and for a 
given initial state x, the value function (16) has the 
following monotonic property on the horizon length 
T 

min),,()1,( TTTxJTxJ ≥∀≤+       (22) 
where Tmin is the shortest time horizon that ensures 
the existence of a feasible solution of FHOFG at 
start time. ■ 

Remark 3. In general, the length of Tmin is 
dependent on the initial state of FHODG at initial 
time t=0. Longer length of Tmin results in a larger set 
of initial states, Θ(T) and raises the feasibility of the 
optimization problem. Obviously, for initial state 
x∈Ω this monotonic property is available even if 
Tmin =1. 

Now we present the result on robust stability for 
this suboptimal MPC controller. 

Theorem 1. Consider system (1)-(3) and suppose 
Assumption 1~4 hold. Then, the suboptimal 
resulting system (19) is ISS with the set Θ(N) 
provided that the feasibility of FHODG is satisfied 
at initial time t=0. 
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Proof. Because of the feasibility of FHODG at 
initial time and the robustness of Θ(N), the 
controller is well defined at all future times [2]. 
Given an initial state x(t)=x∈Θ(N). By Remark 2, 
we make V(x)=J(x, N)+Nl2(||w||) as a candidate ISS-
Lyapunov function of system (19). Then, we have 
that 

|)(|),()( 11 xuxlxV θ≥≥                 (23) 
Define Bc={x∈X : |x| ≤ c} such that Bc⊆ Ω. Note 
that the origin in Ω implies the existence of BBc. We 
now consider two cases of initial states in order to 
obtain an upper bound of V(x). 

(i) x Ω∈  : By Lemma 2 with Tmin =0 and, from 
Remark 3, we obtain that 

)()0,()1,(),( xExJNxJNxJ =≤≤−≤  
which yields 

|)(|),( 4 xNxJ θ≤                       (24) 
(ii) x∉Ω : In this case, x∉Bc and hence, x<|c|. 

With the feasibility of FHODG with a finite horizon 
length N, all states x∈Θ(N) can be steered into Ω in 
N steps by some feasible controls. Combining the 
properties of disturbances, we have that the value 
function J(x, N) exists a sufficiently larger number 
Π< ∞ such that J(x, N) ≤Π for all x∈Θ(N). Let 
λ=max(1, Π/θ4(c)) and defined a К∞-function 
θ5(s)=λθ4(s). It is apparent that θ5(s)≥θ4(s) for all 
s∈R+. Then 

|)(|)(|)(|),( 544 xdxΠNxJ θθθ =≤     (25) 
Thus, integrating (24) and (25) to obtain 

||)(|||)(|||)(|||)(|)( 2525 wNxwNlxxV θθθ +≤+≤  
(26) 

Let ût={û(t),…, û(t+T-1)} be a suboptimal control 
at time t. Solving Problem 2, we find a suboptimal 
control ût+1 at time t+1. Applying this control to 
system (1) at time t+1, we have that 

))(())(ˆ,(
))(()))((),((

))(())1((
),(),(ˆ),(),(

21

21

twltuxl
TtwlTtxTtxl

TtxETtxE
NxJNxJNxJNxJ

+
−+−++

++−++≤
−≤− ++

π
   (27) 

where x+=f(x, û(t), w(t)) denotes the successor of the 
current state x. Substituting (20) into (27), we derive 
that 

))(())(ˆ,(),(),( 21 twltuxlNxJNxJ +−≤−+   (28) 
Moreover, apply Assumption 1 to obtain 

|)(||)(|),(),( 12 xwNxJNxJ θθ −≤−+  
which is equivalent to 

)(|),(||)(|)()( 12 NxxwxVxV Θ∈∀−≤−+ θθ   (29) 
By (23), (26) and (29), it is showed that function V(x) 
is an ISS-Lyapunov function of system (19). 
Therefore, the MPC resulting system is ISS with 

robust invariant set Θ(N). This completes the proof 
of Theorem 1. ■ 

Remark 4. From a practical point of views, the 
results obtained in this paper may be more 
applicable than that guaranteed by the overall 
optimality of the FHODG problem (e.g. [8][9]). In 
addition, these results are well established by min-
max MPC scheme based either on open-loop or on 
closed-loop optimization. However, the controller 
obtained by the open-loop optimization is generally 
more conservative than that based on the closed-
loop optimization though the computation of an 
open-loop optimization is more trivial. 
 
 
5 Conclusion 
In this paper, we proposed a suboptimal min-max 
MPC scheme for nonlinear discrete-time systems 
subjected to disturbances and constraints on states 
and inputs, and obtained the robustness of the 
controller. The concept of ISS has played an 
important role to derive the sufficient conditions on 
the robustness analysis. The assumption that the 
system to be controlled and the controller are 
continuous is not necessary. Based on these results, 
we showed that the suboptimal controller obtained 
in this paper is robustly against the disturbance if 
the FHODG problem is feasible initially. Therefore, 
the computational requirements for application of 
this class of MPC controllers will be more 
reasonable. 
 
 
Appendix. Properties of comparison 
functions 
In the sequence, a collection of some well-known 
properties of comparison functions used in this 
paper is presented (see [8], [15] and [21]). 

Properties. Let ε1:[0,a1]→R+ and ε2:[0,a2]→R+ 
be both К-functions; ε3(·) and ε4(·) be К∞-functions 
and let β(·,·) be a КL-function. Then 
(p1) ε1

-1(·) is a К-function defined in [0, ε1(a1)]; 
(p2) ε1◦ε2(·) is a К-function defined in [0, b] with 
b=min(a2, ε2

-1 (a1)); 
(p3) ε1◦β(·,·) is a КL-function; 
(p4) max(ε1(s), ε2(s)) and min(ε1(s), ε2(s)) are both 
К-functions defined in [0, b] with b=min(a2, a1); 
(p5) ε1(s1+s2) ≤ ε1(2s1)+ε1(2s2) for all s1, s2∈[0, 
0.5a1]; 
(p6) ε1(s1)+ε2(s2) ≤ ε1(s1+s2)+ε2(s1+s2) for all s1+s2 ≤ 
min(a2, a1); 
(p7) ε1(s1)+ε2(s2) ≥ min(ε1(0.5(s1+s2)), ε2(0.5(s1+s2))) 
for all s1∈[0,a1] and s2∈[0,a2] satisfying s1+s2≤ 
2min(a2, a1); 
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(p8) There exists a К∞-function ε5(s) such that ε5(s) 
≤ ε3(s) for all s ≥0 and ε6(s)=s- ε5(s) is a К-function; 
(p9) Let К-function ε7(s)=s-0.5ε5(s), then ε6(s1+s2) ≤ 
ε7(s1)+ ε7(s2); 
(p10) Let ε8(s) be a К-function such that ε8(s) < s for 
all s ≥0, then the function β1(s, k)=ε8

[k](s) is a КL-
function. 
 
References: 
[1] Qin S. J., Badgwell T. A., A survey of industrial 

model predictive control technology, Control 
Engineering Practice, Vol.11, No.7, 2003, pp. 
733-763. 

[2] Mayne D. Q., Rawlings J. B., Rao C. V., 
Scokaert P. O. M., Constrained model 
predictive control: Stability and optimality, 
Automatica, Vol.36, No.6, 2000, pp. 789-814. 

[3] Fontes F. A. C. C., A general framework to 
design stabilizing nonlinear model predictive 
controllers, System & Control Letters, Vol.42, 
No.2, 2001, pp. 127-143. 

[4] Chisci L., Rossiter J. A., Zappa G., Systems 
with persistent disturbances: predictive control 
with restricted constraints, Automatica, Vol.37, 
No.7, 2001, pp. 1019-1028. 

[5] Scokaert P. O. M., Rawlings J. B., Feasibility 
issues in linear model predictive control, AIChE 
Journal, Vol.45, No.8, 1999, pp. 1649-1659. 

[6] Scokaert P. O. M., Mayne D. Q., Min-max 
feedback model predictive control for 
constrained linear systems, IEEE Transaction 
on Automatic & Control, Vol.43, No.8, 1998, pp. 
1136-1142. 

[7] Bemporad A., Borrelli F., Morari M., Min-max 
control of constrained uncertain discrete-time 
linear systems, IEEE Transaction on Automatic 
& Control, Vol.48, No.9, 2003, pp. 1600-1606. 

[8] Limon D., Alamo T., Salas F., Camacho E. F., 
Input to state stability of min-max MPC 
controllers for nonlinear systems with bounded 
uncertainties, Automatica, Vol.42, No.5, 2006, 
pp. 797-869. 

[9] Magni L., Raimondo D. M., Scattolini R., 
Regional input-to-state stability for nonlinear 
model predictive control, IEEE Transaction on 
Automatic & Control, Vol.51, No.9, 2006, pp. 
1548-1553. 

[10] Scokaert P. O. M., Mayne D. Q., Rawlings 
J.B., Suboptimal model predictive control 
(Feasibility implies stability), IEEE Transaction 
on Automatic & Control, Vol.44, No.3, 1999, pp. 
648-654. 

[11] Limon D., Alamo T., Camacho E. F., Input-
to-state stable MPC controllers for constrained 
discrete-time nonlinear systems with bounded 

additional uncertainties, In Proceeding of the 
CDC 2002. 

[12] Jung S. K., Tae W. Y., Jadbabaie A., De 
Persis C., Input-to-state stable finite horizon 
MPC for neutrally stable linear discrete-time 
systems with input constraints, System & 
Control Letters, Vol.55, No.4, 2006, pp. 293-
303. 

[13] Jadbabaie A., Morse A.S., On the ISS 
property for receding horizon control of 
constrained linear systems, in: Proceedings of 
the 2002 IFAC Congress. 

[14] Kerrigan E. C., Maciejowski J. M., On 
robust optimization and the optimal control of 
constrained linear systems with bounded state 
disturbances, in: Proceedings of the ECC2003. 

[15] Jiang Z. P., Wang Y., Input-to-state stability 
for discrete-time nonlinear systems, Automatica, 
Vol.37, No.6, 2001, pp. 856-869. 

[16] Sontag E. D., Wang Y., New 
Characterizations of Input-to-State stability, 
IEEE Transaction on Automatic & Control, 
Vol.41, No.9, 1996, pp. 1283-1294. 

[17] Blanchini F., Set invariance in control, 
Automatica, Vol.35, No.11, 1999, pp. 1747-
1767. 

[18] Lin W., Byrnes C. I., H∞-Control of 
discrete-time nonlinear systems, IEEE 
Transaction on Automatic & Control, Vol.41, 
No.4, 1996, pp. 494-510. 

[19] Chen H., Scherer C. W., Allgöwer F., A 
game theoretical approach to nonlinear robust 
receding horizon control of constrained systems, 
Proceedings of the American Control 
Conference ’97, Albuquerque, NM. 

[20] Magni L., De Nicolao G., Scattolini R., 
Allgöwer F., Robust model predictive control 
for nonlinear discrete-time systems, 
International Journal of Robust Nonlinear 
Control, Vol.33, No.3-4, 2003, pp. 229-246. 

[21] Khalil H. K. Nonlinear systems (3-th ed.), 
Prentice Hall, Englewood Cliffs, 2002. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL De-Feng He, Hai-Bo Ji, Tao Zheng 

ISSN: 1991-8763 433 Issue 8, Volume 2, August 2007


	 

