
Adaptive Inverse Control of Excitation System 
with Actuator Uncertainty 

 

XIAOFANG YUAN, YAONAN WANG, LIANGHONG WU 
College of Electrical and Information Engineering Department 

Hunan University 
Changsha Hunan 410082 

P.R. CHINA 
yuanxiaof@21cn.com 

 
 

Abstract: - This paper addresses an inverse controller design for excitation system with changing parameters 
and nonsmooth nonlinearities in the actuator. The existence of such nonlinearities and uncertainty imposes a 
great challenge for the controller development. To address such a challenge, support vector machines (SVM) 
will be adopted to model the process and the controller is constructed using SVM. The SVM, used to approxi-
mate nonlinearities in the plant as well as the actuator, are adjusted by an adaptive law via back propagation 
(BP) algorithms. To guarantee convergence and for faster learning, adaptive learning rates and convergence 
theorems are developed. Simulations show that the proposed inverse controller has better performance in sys-
tem damping and transient improvement.  
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1 Introduction 
The excitation control of power generator is one of 
the most effective and economical techniques for 
improve dynamic voltage performance and voltage 
stability of power systems. It has been approached by 
classic control and linear modern control techniques 
with good results, but only locally valid. Due to the 
nonlinearilities of various components of power sys-
tems and the inherent characteristics of changing 
load, the operating points of power system may 
change during a daily cycle. As a result, a fixed con-
troller that is optimal under one operating condition 
may become unsuitable for another operating condi-
tion. In view of this, engineers have applied the di-
verse control laws to make controller adapt to plant 
parameter changes.  In the recent decades, various 
control techniques have been proposed for dealing 
with large parameter variations. For example, vari-
able structure controls [1], feedback linearization 
techniques[2], Nonlinear adaptive controls[3-4], Robust 
Nonlinear Coordinated Control[5], and neural net-
works controller[6-8]. 

In real control systems, actuators, sensors and, 
more in general, a wide range of physical devices 
contain “nonsmooth” nonlinearities, such as backlash, 
dead zone or hysteresis [9]. Due to physical imperfec-
tions, indeed, such nonlinearities are always present 
in real plants, particularly in mechanical systems. 
Nevertheless, control design techniques usually ap-
plied in practice do often ignore the presence of such 

nonlinearities in system components.  Although often 
neglected, these nonlinearities are particularly harm-
ful, because they usually lead to deterioration of 
system performance. As discussed in [10], “Actuator 
and sensor nonlinearities are among the key factors 
limiting both static and dynamic performance of 
feedback control systems.” They are the causes of 
oscillations, delays and inaccuracy.  

In these papers, we will focus on a nonlinear 
controller design for excitation system with changing 
parameters and nonsmooth nonlinearities in the ac-
tuator. Here an adaptive inverse technique is con-
structed to cancel the effects of nonlinearities in the 
plant as well as in the actuator. Support vector ma-
chines (SVM)[11-12], a recently introduced machine 
learning method for pattern recognition and function 
estimation problems, is discussed in the implement 
of the proposed adaptive inverse technique. Here two 
SVM networks are utilized in this adaptive inverse 
technique, one act as the model identifier to estimate 
changing parameters as well as to provide plant in-
formation as learning signal for the inverse controller, 
the other is an inverse identifier which act as a adap-
tive  inverse controller. General learning algorithms 
is employed in the offline learning of SVM networks, 
and they are adjusted by an adaptive law via back 
propagation algorithms. To guarantee convergence 
and for faster learning, an adaptive learning rates and 
convergence theorems are developed in this paper. 
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2 Problem Formulation 
We consider the third order model of a generator 
connected to an infinity-bus, called a single machine 
infinite bus (SMIB) system, which is as follows [13]: 

0δ ω ω= − ， 

' ' '
' ' ' ' '

0 0 0

cos
( ) fd s

q q d d
d d d d d

Vx V
E E x x

x T x T T
δΣ

Σ Σ

= − + − +  

' '2
00 0

0 ' '( ) sin ( )sin 2
2

q s d qs
m

d d q

E V x xVDP
H H HHx x x

ωω ω
ω ω ω δ δ

Σ Σ Σ

−
= − − − −

      (1) 
where variables are presented in detail in [13], and 
parameter '

dx is supposed to be randomly distributed 
in a certain area as changing parameter. If the power 
angle δ is as the output y and the excitation 
voltage fV as the input u , the following third order 
differential equation can be deduced from (1): 
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Therefore (2) can be denoted in the form of 

nonlinear mapping 
  ( , , , )y f y y y u=     (4) 
During the operation range of the power angle 

( 0 δ π< < ) there exists a 0y u∂ ∂ ≠ . In other words, 
the excitation control system is invertible and so the 
following inverse system exists: 

( , , , )u g y y y y=     (5) 
From (5), in the viewing of inverse system 

method, the control signal u can be determined 
by ( , , , )y y y y . By using the n -order approximation[14], 
one has ( 1) ( )Ty y k y k= + − , ( 1) ( )Tu u k u k= + − , 

2 ( 1) 2 ( ) ( 1)T y y k y k y k= + − + − , and 
3 ( 1) 3 ( )T y y k y k= + −  3 ( 1) ( 2)y k y k+ − − − with T is the 

sampling period. In this way, (4) and (5) can then be 
described in the discrete system as: 

( 1) ( ( ), ( 1), ( 2), ( ))y k F y k y k y k u k+ = − −  
( ) ( ( 1), ( ), ( 1), ( 2))du k G y k y k y k y k= + − −  (6) 

where ( )u k R∈ and ( 1)y k R+ ∈ are the control input 
and system output at time step k and 1k + , respec-
tively, : n nF R R R× → , and  F C∞∈ . 

Here ( )F ⋅ and ( )G ⋅ in (6) are regarded as two unknown 
nonlinear mapping, while both the relative de-
gree d and plant order n are known. Equation (6) is 
the so called nonlinear autoregressive moving aver-
age (NARMA) model. For a general discrete-time 
nonlinear system, the NARMA model is an exact 
representation of its input–output behavior over the 
range in which the system operates. In the viewing of 
inverse system method, ( )u k  can be determined by 
the sequence vector of ( )y k , and ( 1)y k + is replaced 
by ( 1)dy k + in (6) in the essential early or late relation. 

In this paper the following nonsmooth 
nonlinearities have been considered in the actuator:  
Dead-Zone: The analytical expression of the dead-
zone characteristic is. 
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where 0rb ≥ , 0lb ≤  and 0rm > , 0lm < are constants. 
In general, the break points r lb b≠  and the slopes 

r lm m≠ . 
Backlash: The backlash nonlinearity is described by 
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       (8) 
where 0m m≥  is the slope of the lines, with 0m  being 
a small positive constant, and 0rB > , 0lB <  are con-
stant parameters, ( )u t−  means no change occurs in 
the output control signal ( )u t . 

The idea pursued in this paper is to design adap-
tive inverse control laws that are able to achieve ro-
bust performances in the presence of above changing 
parameters and nonsmooth nonlinearities. 
Assumption 1[9]. The desired trajectory ( )dy k and its 
( 1)n − th order derivatives are known and bounded in 
a compact set dΩ . 

The control objectives are to design an adaptive 
control law such that: (1) The closed-loop system is 
stable in the sense that all the signals in the loop are 
bouned; (2) The tracking error ( ) ( ) ( )de k y k y k= −  is 
adjustable during the transient period by an explicit 
choice of design parameters and 

1lim ( ) ( )k dy k y k δ→∞ − ≤ for an arbitrary specified 
bound 1δ .  

 
 

3 Function Approximation using SVM 
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In the SVM approach, one maps the data into a 
higher dimensional input space and one constructs an 
optimal separating hyperplane in this space. Hereby 
one exploits Mercer’s theorem, which avoids an 
explicit formulation of this nonlinear mapping. 
Compared with ANN and standard SVM, least 
squares SVM(LS-SVM)[12] has the following 
advantages: no number of hidden units has to be 
determined, no centers has to be specified for the 
Gaussian kernel, and fewer parameters have to be 
prescribed, so LS-SVM is employed here for the 
identification and control of considered system. 

Let 1{ , }N
t t tx y = be the set of input/output training 

data with input tx and output ty . Consider the 
regression model ( )t t ty f x e= + where tx are 
deterministic points, f is a smooth function and 

te are uncorrelated errors. For the purpose of 
estimating the nonlinear f , the following model is 
assumed: 

( ) ( )Tf x x bω ϕ= +     (9) 
where ( )xϕ denotes a infinite dimensional feature map. 
The regularized cost function of the LS-SVM is 
given as: 

min 2
1

1 1( , )
2 2

NT
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J e eω ω ω γ
=

= + ∑  

 s.j. ( )T
t t ty x b eω ϕ= + + , 1, ,t N=   (10) 

In order to solve this constrained optimization, a 
Lagrangian is constructed: 

1
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=
= − + + −∑

      (11) 
with tα the Lagrange multipliers. The conditions for 
optimality are given by: 
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Substituting (9-11) into (12) yields the following 

set of linear equations: 
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with 1[ , , ]T
Ny y y= ,1 [1, ,1]T

N = , 1[ , , ]T
Nα α α= ,

( , )ij i jK x xΩ = ( ) ( )T
i jx xϕ ϕ= . 

The resulting LS-SVM model can be evaluated at 
a new point *x as: 

  * *1
ˆ ( ) ( , )M

t tt
f x K x x bα

=
= +∑   (14) 

where M is the number of support vectors 
(SVs), ( , )K ⋅ ⋅ is kernel function, kα , b are the solutions 
to (13). Here Gaussian kernel 

function 2 2( , ) exp( (2 ))i j i jK x x x x σ= − −  is selected.  
As the training of SVM is equivalent to a linear 
programming problem, it can realize global 
optimization effectively. Moreover, the learning 
results decide the number of SVs and this selects the 
nodes of hidden layer of  SVM networks. 

It is well known that SVM generalization per-
formance depends on a good setting of hyper-
parameters and the kernel parameters. Bayesian evi-
dence framework is an effective ways for parameters 
optimization of LS-SVM regression, and this ap-
proach is described in detail in [15]. According to the 
Bayesian evidence theory, the inference is divided 
into three distinct levels. Training of the LS-SVM 
regression can be statistically interpreted in Level 1 
inference. The optimal regularization parameter can 
be inferred in Level 2. The optimal kernel parameter 
selection can be performed in Level 3. 

 
 

4 Model Identifier and Inverse Model 
Identifier 
The excitation system with changing parameters and 
nonlinear actuator are modeled by a SVM identifier 
(SVMI) as Fig.1(a), which estimates parameters 
changing as well as provides plant information as 
learning signal for the inverse controller. SVM is 
also used in identifying the inverse model of the 
plant and actuator called SVM inverse identifier 
(SVMII) in Fig.1(b), which serves as an inverse 
controller. The inputs of SVMI are 
[ ( ), ( 1), ( 2), ( 3)]Tu k y k y k y k− − − , the output of SVMI 
is ˆ( )y k  corresponding to the desired output ( )y k .Let 

( )IY k be [ ( ), ( 1), ( 2), ( 3)]Tu k y k y k y k− − − , then 

1
ˆˆ( ) ( ( )) ( ( ), ( ))M

I t I It
y k F Y k K Y k Y t bα

=
= = +∑  

 ( )T
I IW k b= ⋅Φ +     (15) 

where 1 2[ , , , ]T
I MW α α α= are the weight vectors of 

LS-SVM networks as in (14), 
( ) [ ( ( ), (1)), , ( ( ), ( ))]T

I I I I Ik K Y k Y K Y k Y MΦ = are the 
outputs of the kernel function. The inputs of SVMII 
are [ ( ), , ( 3)]Ty k y k − , the output of SVMII is ˆ( )u k . 
Let ( )CY k be [ ( ), , ( 3)]Ty k y k − ,then 

1
ˆˆ( ) ( ( )) ( ( ), ( ))M

C t C Ct
u k G Y k K Y k Y t bα

=
= = +∑

 ( )T
C CW k b= ⋅Φ +    (16) 

where 1 2[ , , , ]T
C MW α α α= are the weight vectors of 

LS-SVM networks, ( )C kΦ =  
[ ( ( ), (1)), , ( ( ), ( ))]T

C C C CK Y k Y K Y k Y M are the outputs of 
the kernel function. 
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(b) SVM inverse identifier(SVMII) 

 
Fig1 Structure of the SVM identifiers 
 
 

5 Adaptive Inverse Controller Design 
5.1 The structure of adaptive inverse 
controller 
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Fig.2 Structure of the proposed adaptive inverse 

controller 
 

Fig. 2 shows the block diagram of the adaptive 
inverse control system which includes two SVM 
networks, that is, SVMC and SVMI. Here, SVMC is 
just SVMII in Fig.1(b), and SVMI is just the same as 
in Fig.1(a). The inputs to SVMC are the reference 
input ( )r k , the previous plant 

output [ ( 1), , ( 3)]y k y k− − , the output of SVMC is 
the control signal ( )u k . Using the back-propagation 
(BP) algorithm, the weights of SVMC are online 
adjusted such that the error ( )Ce k , 

( ) ( ) ( )C de k y k y k= − , approaches a small value. When 
SVMC is in training, the information on the process 
is needed and SVMI is used to estimate the plant 
sensitivity uy . The current control signal ( )u k  and 
previous plant output [ ( 1), ( 2), ( 3)]y k y k y k− − − are the 
inputs to SVMI, and the output of SVMI is ˆ( )y k . 
Let ( )dy k and ( )y k be the desired and actual responses 
of the plant, then an error function for SVMC can be 
defined as: 

  21 ( ( ) ( ))
2C dE y k y k= −   (17) 

The error function in (17) is also modified for 
the SVMI as:  

  21 ˆ( ( ) ( ))
2IE y k y k= −    (18)  

The gradient of error in (17) with respect to the 
weight vector CW is represented by  

( )( )C
C

C C

E y ke k
W W
∂ ∂

= −
∂ ∂

 ( )( ) ( ) ( ) ( ) ( )C u C u C
C

u ke k y k e k y k k
W

∂
= − = − Φ

∂
 

      (19) 

with ( )( )
( )u

y ky k
u k
∂

=
∂

represents the sensitivity of the 

plant with respect to its input. 
In the case of the SVMI, the gradient of error in 

(18) simply becomes  
ˆ ( )( )( ) ( ) ( ) ( )I I

I I I I
I I I

E O ky ke k e k e k k
W W W
∂ ∂∂

= − = − = − Φ
∂ ∂ ∂

      (20) 
 

5.2 Learning algorithm of adaptive inverse 
controller 

(1) Back-propagation for SVMI.  
From (20), the negative gradient of the error 

with respect to a weight vector is: 
( )

( ) ( ) ( )I I
I I I

I I

E O k
e k e k k

W W
∂ ∂

− = = Φ
∂ ∂

  (21) 

The weights can now be adjusted following a 
gradient method as 

 ( 1) ( ) ( )I
I I

I

E
W n W n

W
η

∂
+ = + −

∂
  (22) 

whereη is a learning rate.  
(2) Back-propagation for SVMC. 
 In the case of SVMC, from (19), the negative 

gradient of the error with respect to a weight vector 
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is: 
( )

( ) ( ) ( ) ( ) ( )C C
C u C u C

C C

E O k
e k y k e k y k k

W W
∂ ∂

− = = Φ
∂ ∂

      (23) 
This unknown value ( )uy k can be estimated by 

using the SVMI. When the SVMI is trained, the 
behavior of the SVMI is close to the plant, 
i.e., ˆ( ) ( )y k y k≈ . 

Once the training process is done, the sensitivity 
can be approximated as: 

ˆ( ) ( )( )
( ) ( )u

y k y ky k
u k u k
∂ ∂

= ≈
∂ ∂

   (24) 

Applying the chain rule to (21), and noting 
that ˆ( ) ( )Iy k O k= of (15). 

2

ˆ ( ) ( )( ) ( )
( ) ( )

TI I
I

O k ky k u k W
u k u k σ

∂ Φ∂
= = − ⋅

∂ ∂
  (25) 

Therefore  

2

ˆ ( )( )( ) ( )
( )

T I
u I

ky ky k u k W
u k σ

Φ∂
≈ = − ⋅ ⋅
∂

  (26) 

 
5.3 Convergence and stability based on 
Lyapunov function 
The update rule of (22) calls for a proper choice of η . 
For a small value of η , the convergence is guaranteed 
but the speed is very slow; on the other hand if η  is too 
big, the algorithm becomes unstable. This section 
develops a adaptive learning rate in selecting η  
properly. A discrete-type Lyapunov function can be 
given by: 

21( ) ( )
2

V k e k=     (27) 

Thus, the change of the Lyapunov function is 
obtained by: 

( ) ( ) ( )1V k V k V k∆ = + −

 2 21 ( )= [ ( 1) ( )] = e(k)[ ( ) ] 
2 2

e ke k e k e k ∆
+ − ∆ +

      (28) 
The error difference due to the learning can be 

represented by 
( )( 1) ( ) ( ) ( ) [ ]Te ke k e k e k e k W
W

∂
+ = + ∆ = + ∆

∂
 

      (29) 
5.3.1 Convergence of SVMI 

From the update rule of (21) and (22) 
( ) ( ) ( ) ( )I I I I I I

I
I I

e k e k e k O k
W

W W
η η∂ ∂

∆ = − =
∂ ∂

 

      (30) 
Theorem 1:  Let Iη be the learning rate for the 
weights of SVMI and ,maxIg be defined as 

,max : max ( )I k Ig g k= where ( )
( ) I

I
I

O k
g k

W
∂

=
∂

, and ⋅ is 

the usual Euclidean norm. Then the convergence is 
guaranteed if Iη  is chosen as 

2
,max

20 I
Ig

η< <     (31) 

Proof: From (28)-(30), ( )V k∆ can be represented as  
( )

( ) ( )[ ( ) ]
2
I

I I
e k

V k e k e k
∆

∆ = ∆ +

( ) ( ) ( ) ( )1[ ] ( ) { ( ) [ ] ( ) }
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T TI I I I
I I I I I

I I I I

e k O k e k O k
e k e k e k

W W W W
η η

∂ ∂ ∂ ∂
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      (32) 

For SVMI, ( ) ( )I I

I I

e k O k
W W

∂ ∂
= −

∂ ∂
, we obtain 

2 4
2 2 2 2( ) ( )1( ) ( ) ( ) ( )

2
I I

I I I I I I
I I

O k O k
V k e k e k e k

W W
η η λ

∂ ∂
∆ = − + ≡ −

∂ ∂

       (33) 

Let ( )
( ) I

I
I

O k
g k

W
∂

=
∂

, ,max : max ( )I k Ig g k= , and let 

2
1 ,maxI Igη η= . Then 

2 21 ( ) (2 ( ) )
2I I I I Ig k g kλ η η= −

 
2

2 2
1 12

,max

( )1 1( ) (2 ) ( ) (2 ) 0
2 2

I
I I I I

I

g k
g k g k

g
η η η η= − ≥ − >

      (34) 
From (34), we obtain 2( ) ( ) 0I IV k e kλ∆ = − < and 0 

< 1η < 2, and (31) follows. 
Remark 1: The convergence is guaranteed as long as 

(34) is satisfied, i.e., 1(2 ) 0Iη η− >  or 1 1
2
,max

(2 ) 0
Ig

η η−
> . 

This implies that any 1η , 0< 1η < 2, guarantees the 
convergence. However, the maximum learning rate 
which guarantees the most rapid or optimal 
convergence is corresponding to 1η = 1, 

i.e., *
2
,max

1
I

Ig
η = , which is the half of the upper limit in 

(31). This shows an interesting result that any other 
learning rate larger than *

Iη does not guarantee the 
faster convergence. 
5.3.2 Convergence of SVMC 

From the update rule of (23) 
( )

( ) C
C C C

C

e k
W e k

W
η

∂
∆ = −

∂

 ( )( )( ) ( ) ( ) ( ) C
C C u C C u

C C

O ku ke k y k e k y k
W W

η η
∂∂

= =
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      (35) 
Theorem 2: Let Cη be the learning rate for the 
weights of SVMC and ,maxCg be defined 

as ,max : max ( )C k Cg g k= ,where ( )
( ) C

C
C

O k
g k

W
∂

=
∂

,and 

max max ( )k uS y k= . Then the convergence is 
guaranteed if Cη is chosen as  

 2 2
max ,max

20 C
CS g

η< <    (36) 

Proof:  From (26), (29), (30) and (35), ( )V k∆ can be 
represented as 

1( ) ( )[ ( ) ( )]
2C C CV k e k e k e k∆ = ∆ + ∆  

 ( ) ( )
[ ] ( ) ( )TC C

C C u
C C

e k O k
e k y k

W W
η

∂ ∂
=

∂ ∂

 ( ) ( )1{ ( ) [ ] ( ) ( ) }
2

TC C
C C C u

C C

e k O k
e k e k y k

W W
η

∂ ∂
⋅ +

∂ ∂
 

      (37) 
For SVMC, ( ) ( ) ( )C C u C Ce k W y k O k W∂ ∂ = − ∂ ∂ , we 

obtain 
2

2 2 ( )
( ) ( ) ( ) C

C C u
C

O k
V k e k y k

W
η

∂
∆ = −

∂

 
4

2 2 4 2( )1 ( ) ( ) ( )
2

C
C C u C C

C

O k
e k y k e k

W
η λ

∂
+ ≡ −

∂
 (38) 

Conditions of (35) and (30) are similar 
except ( )uy k needs to be incorporated in the SVMC. 
Therefore, it remains to find the limit on ( )uy k .From 
(24) and (26): 

max max
( )uS y k= `

maxmax
2 2

max

( ) ( )( ) ( )
TT

I II I
W k u ku k W k

σ σ

Φ⋅ ⋅Φ
= − ≤

      (39) 
where maxS is the limit on sensitivity and it is 
estimated from ( )T

I IW k⋅Φ and ( )u k . Asσ is a certain 

parameter and ˆ( ) ( )T
I Iy k W k b= ⋅Φ + , we can 

determine maxS from the learning datasets in Section 4. 
Thus following the proof of Theorem 1, we obtain 

2 2
max ,max

20 C
CS g

η< <      (40) 

where ,max : max ( )C k Cg g k= , ( )
( ) C

C
C

O k
g k

W
∂

=
∂

and

max max ( )k uS y k= . 
Remark 2: In the case of SVMI, the optimal 

convergence rate is *
2 2
max ,max

1
C

CS g
η = , which is the half 

of the upper limit in (40).  

 
The main implementation procedure of the 

proposed adaptive inverse controller for excitation 
system is summarized as follows: 

Step1. Determine the input-output variables of 
SVMI and SVMII Fig.1 referring to the 
mathematical model of SMIB system as in (1)-(5); 

Step2. Generate ‘rich’ enough exciting or testing 
signals as off-line training datasets; 

Step3. Off-line modelling as well as off-line 
inverse modelling using general LS-SVM algorithms 
within Bayesian framework as in (15)-(16); 

Step4. Establish the adaptive inverse control 
system in Fig.3, SVM networks serve as feed-
forward controller as well as plant identifier; 

Step5. On-line adaptation of SVM networks 
weights using back-propagation algorithm as in (21)-
(26). 

 
 

6 Simulation 
The performances of the proposed adaptive inverse 
controller (AIC) are compared with other two 
controllers, one is the conventional AVR[6], and the 
other is the neuro-controller[7]. The actual parameters 
of the plant are given 
as: dx =2.156, qx =2.101, '

dx =0.265, 

Tx =0.1, Lx =1.46, D =5, H =8, '
0dT =10, mP =0.6. For 

the simulation of changing parameters, parameter 
'
dx is randomly distributed between 0.22 and 0.28. 

The parameters of the dead zone are:, 
0.12rb = , 0.15lb = − , 1.05rm = , 1.1lm = . The 

parameters of the backlash are: 1.05m = , 0.1rB = , 
0.1lB = − . 

For the off-line learning, we first generate 
random signals as inputs ( )u k  to the original system. 
Here we selected multi-amplitude varying-step 
square wave as testing signals. By sampling the 
inputs and outputs at high speed and after computing 
the derivatives off-line, we obtain training data 
{ ( ), ( ), , ( 3)}u k y k y k − .The training dataset consisted 
of 500 samples, and LS-SVM parameters 
are: 0.42σ = and 200γ = . The off-line and online 
learning procedure of adaptive inverse controller are 
presented detailly in section 4 and section 5. 

The simulation results of these three controller 
are displayed in Fig.3 and Fig.4, the conventional 
AVR controllers (CON1) are indicated by dashed 
lines, neuro-controller (CON2) response by solid 
lines, and the proposed adaptive inverse controller 
(AIC) response by thick solid lines. 
Example 1.  Step changes in the reference voltage of 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Xiaofang Yuan, Yaonan Wang, Lianghong Wu

ISSN: 1991-8763 424 Issue 8, Volume 2, August 2007



the exciter. The plant is operating at a steady-state 
condition ( 1.0tP = pu, 0.18tQ = pu.). At t=2 s, a 5% 
step increase in the reference voltage of the exciter is 
applied. At t=10 s, the 5% step increase is removed, 
and the system returns to its initial operating point. 
Fig. 3 show the performance of these controllers ,and 
adaptive inverse controller has better improvement in 
the transient system damping compared to other two 
controllers. 

 
(a) rotor angle 

 

 
(b) electrical power 

 
(c) speed 

 

 
(d) terminal voltage 

Fig.3 Response to step changes in the reference 
voltage of the exciter 

 
Example 2. Three phases short circuit test. A severe 
test is now carried out to evaluate the performances 
of these controllers under a large disturbance. At t=2 
s, a temporary three-phase short circuit is applied at 
the infinite bus for 100 ms from 2 s to 2.1 s for the 
plant operating at the same steady state condition as 
previous test. Fig. 4 show that the adaptive inverse 
controller damp out the low frequency oscillations 
for the rotor angle and terminal voltage more 
effectively than other two controllers. 
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 (a) rotor angle 

 
(b) electrical power 

 
(c) speed

 

 
(d) terminal voltage 

Fig.4 Response to three phases short circuit test 
 

In these two tests, SVM based adaptive inverse 
controller returns the system to stable conditions 
with a much better damping compared to other 
controllers, it can give a good result because it has 
the capility to learn from all kinds of operating states. 
Clearly, all the results verify our theoretical findings 
and demonstrate the effectiveness of the proposed 
control scheme. 

 
 

7 Conclusion 
In this paper, a novel adaptive inverse control system 
is proposed for excitation system with changing 
parameters and nonsmooth nonlinearities in the 
actuator. The SVM, used to approximate 
nonlinearities in the plant as well as the actuator, are 
adjusted by an adaptive law via back propagation 
algorithms. To guarantee convergence and for faster 
learning, adaptive learning rates and convergence 
theorems are developed. Results show that SVM 
adaptive inverse controller is very promising for 
future real-time applications. Not only does it 
improve the system damping and dynamic transient 
stability more effectively than other two controllers 
for the large disturbance, but also it has a faster 
transient response for a small disturbance. 
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