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Abstract: - In this paper, stable direct and indirect decentralized adaptive fuzzy controls are proposed for a
class of large-scale nonlinear systems with the strong interconnected. The feedback and adaptive
mechanisms for each subsystem depend only upon local measurements to provide asymptotic tracking of a
reference trajectory. In both approaches, the proposed controllers are used to approximate the unknown
subsystems. In addition, each subsystem is able to adaptively compensate for interconnections without
known bounds. Simulation results are given to illustrate the tracking performance of the proposed methods.
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1 Introduction

Decentralized adaptive control systems often arise
from various complex situations where there exist
physical limitations on information exchange among
several systems for which there is insufficient
capability to have a single control controller, and
due to the physical configuration and high
dimensionality of interconnected systems a
centralized control is neither economically feasible
nor even necessary. Therefore, the decentralized
scheme is preferred in control design of large-scale
interconnected system [1], [2], [9]. To control a
large-scale system, one essential problem is how to
handle the interactions among different systems.
Intensive research has been devoted to the observer
design for large-scale systems. Uncertainties in a
large-scale system require the adaptive decentralized
technique, for which many decentralized adaptive
schemes have been developed, including the model
reference adaptive control [1],[4], and nonlinear
control with a special class of interconnections [7].
These approaches focus on stabilisation, where the
dynamics of subsystems are assumed to be known or
to be linear with a set of unknown parameters.
However, in practice, large-scale systems may
contain significant uncertainties, and/or with
unknown parameters in nonlinear forms and
unknown structures.

Fuzzy logic control as one of the most useful
approaches for utilizing expert knowledge, has been
an active field of research the past decade [8],[11].
Fuzzy logic control is generally applicable to plants
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that are mathematically poorly modelled and where
experienced operators are available for providing
qualitative guidance. The most important advantage
of fuzzy-logic-control schemes lies in the fact that the
developed controllers can deal with increasingly
complex systems and controllers without precise
knowledge of the model structure of the underlying
system dynamic. Recently there have been significant
research efforts on these issues in fuzzy control
system [8],[11],[12] but these approaches work only
for large-scale systems with a known or linear
dynamics with a set of unknown parameters and
bounds interconnections. In practice, however, not all
states are usually available.

This paper presents two approaches which can
easily tackle the output tracking control problem of a
class of large-scale nonlinear system with unknown
interconnections bounds. A direct adaptive approach
approximates unknown control laws required to
stabilize each subsystem, while an indirect adaptive is
provided which identifies the isolated subsystem
dynamics to produce a stabilizing controller. Both
approaches ensure asymptotic tracking using only
local measurement.

The organization of this paper is as follows:
section 2 describes the problem under investigation;
section 3, the direct adaptive decentralized control;
while in section 4, we introduce the indirect
approach. Experimental results are then used to
demonstrate the effectiveness of the proposed
approaches is presented in section 5, with a
conclusion given in section 6.
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2 Problem Formulation
Consider a class of nonlinear interconnected SISO
subsystems S; (i =1,2,..., N) described as follows:

X1 =X

=) g A )

Vi =X

where gz[xlT,sz,...,xﬁ]T S X eR™, is the global

state vector, u;(¢) € R is the control signal input and

y; € R is the output of the plant for the subsystem
S;. The functions f;(.)and g;(.) are unknown and
nonlinear, and A;(x)e®, are interconnection
among subsystemsunknown (i =1,2,...,N ).

The tracking error for §; is defined by
ejo = yir —y; - Our objective is to design an adaptive
control for each subsystem which will cause the
output y, to track a desired output trajectory y,,.
(i,e.,e;p > 0)in the presence of the
interconnections using only local measurements.

strong

Assumption 1: Let the scalars ¢;; quantify the

strength of the interconnections and the output

i" subsystem be defined by

. d;-1).T
€; =[€i0, €;0> ...,61(01 )]

interconnections satisfy:

vector for the

; it is assumed that the

N

A, @] <X e, )
j=1

where ||||2 is the Euclidean vector norm. This

assumption on the interconnections can be satisfied
by a variety of decentralized nonlinear systems. For
instance, in [10] it is shown to be satisfied for an
intervehicle spacing regulation problem in a platoon
of an automated highway system.

Subsystem (1) can be expressed as:

¢, = Aps, +b 11 (x,) + g (x ), + A, (x)] (3)
where

0 0
0
0 O 0 .
AiO = bi = 0 (4)
0 O )
0o 0 O 0
and

T .
Si =l6i1:6i25id, 1" s Git =Vis Si2=Vis -oos

(d;-1)
Si,d; =i '
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Assume that the given reference y;,. is bounded and
have up to d; —1 bounded derivatives. The reference

vector is denoted asYj. =[Vi,Vir> Vipsees yi(rd" _1)]T.
Define the tracking error of the i”subsystem as

Then the error vector of the i”

o . d;=1).T
subsystem is given by e; =[e;g, ¢;0, ...,efo )] .

€0 =Vir —JVi-

It is desired that the output error of the i” subsystem

follow elgd") +kid, —lel%ii Dy kioeio =0, here

the coefficients are picked so that each:
L= gidi +ki,d,-71gidi71 +"'+ki,0 (5)

has its roots in the open left-half complex plane (in
Hurwitz).
If the subsystem S; is well known (g;(x;)# 0)and

free of external disturbances; (A;(xy,x5,...x5)=0),
then the primary control should be designed to have
the following idealized control law:

_ T (dj)
( fi(ﬁf)_"Ki ei+yir (6)

.
g:(x,)

In spite of the primary control (6) which
mathematically cancels the given system and then
places it in a stabilizing part, so as to guarantee

lim ¢; =0, it is clear that, in practice, an exact
t—>00

cancellation of the given system nonlinearity is
theoretically unrealizable and physically impossible.
Thus, in this study, the direct adaptive approach
implements an adaptive fuzzy system to approximate
the idealized control action, and with the indirect
approach we approximate the unknown dynamics for

each subsystem ( f;(x;) and g;(x;) ).

3 Direct adaptive fuzzy decentralized

control

In this section, a direct adaptive output-feedback
fuzzy decentralized controller is designed, with
guaranteed stability of the integrated closed loop
system.

Assume that in subsystem (1) g;(x;) # 0. The direct

adaptive controller is designed as:

u,=u,(x,,0,)+g; (x,)a,(O)e/ pb, +u,)  (7)
where u;(x;,0,)=01 0;(x;), 0, =10},67,..,0" 1" are
parameter vectors and ; () =[@;1,9; 2 Pim, 7isa
regressive vector with regressor (pl-l (1<l<m,,
where m; is the number of rules), which is defined as

a fuzzy basis function [5]. The term q; (t)eiT pib; 1s
used to compensate unknown effects from the
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e ®%¥i is a positive definite

interconnections ( p;
matrix defined by a Lyapunov matrix equation and
b; e®? is a vector), and u;, s auxiliary control
compensation.

Substituting (7) to (1), and adding g;(x;)u ,* and then

subtracting gl-(gl.)u;-k on the right-hand side of (1),
we obtain,
yt(di) =g, (x)(u,(x,,0,)— uz*) + a[.(t)e,.Tp,.b,.
+u, +K'e, +y! + A (x)

®)

The error dynamics for the i” subsystem may be
expressed as:

ei(di) = y;(rdi) +g; (L)(”j —U; (EiaQ;))
—a, (t)eiTpibi —Uy — KiTei (9)
=y, =4, ()
Define the optimal parameter vectors and fuzzy
approximation error as:

(10)

Qi = argmln{supx_smn,- U, —u, (Ei’Qi)|}
1

0,€Q;
where Q; = {Qi /Ql-TQl- SM,-} is the convex compact
set which contains feasible parameter sets for Q? .

Define the parameter error as ®; = QT -0;.

In the analysis to follow, we will use the fact that
uj =i (x;,0,) = OF 0 x;) = w; where
@; =[d~),-’1,&),-’2,...,c51-,m[ ]Tare parameter vectors,

0i(x;) =10 1,025 Pi,m, 1" are defined above
which is defined as a fuzzy basis function [5].

The dynamics equations of the i” subsystem can be
written as:

é, =Ae +b[g,(x)P]p,(x,)+ B, (x)w,
—a; (t)efrpibi —u, — A (X)]

and w; represent the fuzzy approximation error of

(an

the i” subsystem.

Assumption 2: We assume that, there exists a
function Ty, (x;) >0 such that:

|B,(xw,|< T, (x,) VISi<N (12)

The direct adaptive fuzzy decentralized control that
we have proposed in (7) can be classified as:

0; =n; Proj[.] (13)
where Proj[.]is the projection operator [5]

uip =Ty, (x;)sign(e] pib;) (14)
d; =g, (€] piby)? (15)

where 7; >0, and Mg, >0 are fixed adaptive gains.
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Theorem 1:
Consider the nonlinear subsystem (1), suppose that
assumptions 1-2 are satisfied. If there exists a matrix

satisfying the

where Q; = Q,-T >0.

The adaptive fuzzy decentralized controller law is
chosen as (7) with parameter adaptation law (13)-
(15). Then the proposed fuzzy decentralized control
scheme can guarantee that (i) all the variables of the
closed-loop system are bounded and (ii) performance
tracking is achieved.

i = p,-T >0 Lyapunov

equation: A?p,- +piN; +0; =0

Proof: consider the following Lyapunov function for
the i” subsystem:

T l o7 1
Vi =¢€; Pi¢ +7(Dl- q)i +277
1 a;

oo, (16)

*

*
where (D,-zQ;—Ql-, @y, =aj-7; , T; well be

defined shortly , and each p; e *J{?iXdi is a positive

definite and symmetric matrix.
Taking the time derivative of v;, yields
) . . 2 : 1 .
vi =& prej +e] pie)+—@] b, +_®§,Cba[ (17)
771 77(11' !
Substituting (11) into (17), applying (12)-(14) and
choosing ¢;(¢) = e,-T p;b; yields
"}i = _eiTQiei - Ti*[(eiTpibi)z

+2e p.b. —A"(%) + (—A"(})

i i
i i

)’ (18)

. A,
z_eiTQiei -7 (eiTpibi + z(}))z

i

)2
A, (x)

i

—(

(A, )

T

so that if each r? >0, we simply obtain

iy < el O+ (410 (19)
Now consider lthe composite system Lyapunov
candidate V = %Eivi where each g; > 0, yields

i=1 o

N
V<> el-e Qe +T—*(Zqij e;)|,)’] (20)
i=1 i J=l
N
Since 2.4 ej“z vy, where
j=1
v =ller].[e2]y-en],17 and
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Xi =[qi1,qi2,...,q,~N]T, let A; the real part of the

eigenvalue of Q;, (20) may be written as
V< Z gl

Define K

l// 2.2 vl (21)

%k
:[rl ,12,...,1']\/]. Let z',- =7 i=12,..,N
for some 0 <z . Define
D= diag{glﬂl,gzﬂvz,...,é‘NﬂvN }and
N

M= ZSiZiZiT so that V<-ylAy, where
i=1
A=D —L*M . Then for some sufficiently large
T

7" >0the matrix A is positive definite. The
diagonal dominance property may be established
using Gershgorin’s Theorem [3]. Now define

K’k = [T*,T*,...,T*]T € ‘.RN as
1
K
K’ =arg min T (22)
K enN » .
0<c* positive definite
There exists sufficiently large 7 such that 4 ,

defined by (22), is positive definite, which implies
that ¥ e ¢, , and thus ||1,z/||2 el .Also
o0 o0

IWTA wdt < —Jth + const (23)
0 0

so that ||, e ¢, . Since all of the signals are well

defined, we also have é efi" so that

d / di|e;
Barbalat’s
limt_)w"!//"z =0,

asymptotically stable tracking for each of the
subsystems.

= eiTél- /||el- ||2 < ||el- ||2 el Using
Lemma, we thus establish that
thus we are guaranteed

4 Indirect adaptive fuzzy decentralized

control
In this section, it is assumed that the function f;(x;)

and g;(x;) are unknown. Take a universal fuzzy
system fA,-(gl-/ @) with x; eU, for some compact

set Uy, to approximate the uncertain term

fi(x;)where 6; contains the tunable parameters.
Here the linearly parameterized fuzzy model [8] is
employed in the approximation procedure. Then we
replace  fj(x;) andg;(x;)by the fuzzy system
filx; 1) and  &;(x;/0;)
singleton fuzzifier, center average defuzzifier, and

respectively, with
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product inference. The fuzzy system fi(gi /6,1) and
gi(x;/8;,) can be expressed as:
Ji(x;10;1) =010, (x;) and
8i(x;10;,)=0Lpi(x;) for i=12,.,N (24)
where 0 =[0),.0% ....00 e R

(k=12)

is a parameter

vector and

1 2 i i M
0i(x) =[0; (X)) 07 (X)or]  (x)]€R™ i a
regressive vector with the regressor (oll (x;) defined

as,

(25)

where u gl Q) is the membership functions for
LJ

1<1<m; (m;isthe number of rules ) and 1< j <n;

in this paper, we present the decentralized adaptive
fuzzy controller deﬁned as

g, (x, /le)( f(

Kle +y' va.(t)e pb./2+u,)

u, =u, + 10+

(26)

where u 4 is the fuzzy controller, introduced to

perform the main control action, which is given by
synthesizing fuzzy control rules from human experts
and/or by trial and error designing tools.

The decentralized fuzzy controller u;.is constructed

d.
from the following H n,; rules:
k=1
Lly, ) . .
R . ifeis A\ and e, ,is A and ...

27)
and e, , is Al”’a‘, then Ll

where n;; define the number of fuzzy sets Al.lkk in

Ui (1<l <nj and 1<k <d;) such that for any

. l;
e; k €U, , there exists a fuzzy set A.J. so that the

memberships function H (e k) #0. The centres of
iJ

these fuzzy sets are adapted by the proposed low
which will be defined below.

According to the universal approximation theorem
[6], there exist optimal approximation parameters
49;1 and 49;2 such that J}i(éi/ 49;1) and g;(x;/ 6’1-*2)can,
respectively, approximate f;(x;) and g;(x;)as best
as possible. Define the optimal parameter vectors and
fuzzy approximation errors
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|

gi(x;)—&i(x; /9i2)|}

fi(x;) = fi(x; 1611)

* .
0; =arg mln{sup xR
On e

(28)

* .
0;y =arg mln{supx_ R
O €Qn l

where Q;; and €);, are the convex compact sets,

which contain feasible parameter sets for 6, and
* .

0;, respectively, and

Q= {‘91'1 10,0} SMA}

(29)
Qp = {91'2 1r(0,,055) < M }
define
N (x) = fi(x) — fi(x, 167y)
and
Agi(x;) = g;(x;)— &:(x;107) (30)

which denote the minimum approximation errors.
Throughout this section we need the following
assumption:

Assumption 3: there exists a positive function
0<M,, (x;)such that
A () + Ay (x| < My, (x;) Y I<i<N - (31)

Substituting (26.) to (1), the tracking error dynamic
equation can be written as

e, =AN\e, +b,‘[f[()_c)_fi()_ci 16,)

+(gi (E,-)—éi(&-aeiz))ui (32)
- ai(t)eiTpibi /2 Uy - Ai()_c)]
where
1 0
0 1 0
Aj=| S - . (33)
0 0o 0 - 1
-Kijo Kj Kid, :
from (24) and (30), (31) can be written as
¢ =Ne + bi[q)iT1¢i (x,)+
(DiTz(pi (x;)u, + A (x) + Ag, (x,) (34)

- ai(t)eiTpibi [2—uy — A (x)]
where the parameter error vectors are defined as
k k
;1 =01 =01, @iz =02 —0pp
The following update laws are now defined for the
decentralized indirect adaptive controller:

0 = flileiTPibi%(L-) (35)
b2 = ninel pibio; (x; )u; (36)
up =—M,, (x;)sign(e] pb;) 37
aj =g, (ef pibi)? (38)
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(39)

where 77;1,17;5and 77, are fixed adaptive gains. The

T
uyp = ol @i(x;)

parameters update low for the isolated system
identifier (35)-(36) are used to estimate the dynamics
of the subsystem under control. The update law (37)
is designed to compensate for the effects of the
representation error, where (38) is used to stabilize
the subsystem by estimating the effects of the
interconnections. The vector
i

Ly, .
“ =g,

i,j

I,. .
) is the centre average

L
dj
[In;;

I} i
! T < ) as

of C.

1

el
% We define I; :(1"1,1"12,...

iveda,

the collection S for

ll :1’2""’Mi,1;"';ldi :1,2,...,ni’di. The centre

of the 1™ set c! (I=(;,1,...,14,)) is given by the
proposed equation

..., ldi . _
L ifmax _, :quj (e;)=0
i

d;
..... 1.
r[, di _ jz:]:el-j (/uA;j/(eij))

max _, . (1, (e;))

otherwise

(40)
O is positive constant.

Theorem 2:
Consider the nonlinear subsystem (1), with the
assumptions 1 and 3 are satisfied. If there exists a

matrix p; = piT > 0 satisfying the Lyapunov equation:
AIT-pi +piN; +0; =0 where Q; :Q,-T >0. Then the

proposed control(26) with adaptation laws (35-38)
will ensure that, for i =12,..,N. (i) all the variables

of the closed-loop system are bounded and (ii)
performance tracking is achieved.

Proof: take the error dynamic equation (34), and
consider the Lyapunov function candidate

1
o7 T
v, =e pe + DD,
il

(41)
I or I o7
+—D,D,, +_(Da[q)a,»
771‘2 770‘-
* % %
where ®;) =0 -0, Q2 =0ip —0;p, Py, =a;-7; ,
T;k well be defined shortly , and each P, e 9&’?”“’1" isa

positive definite and symmetric matrix.
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The time derivative of v; along the error trajectory
(41)

2 .

. .T T . T

v, =e¢ pe te pe + DD,
il

2 1 (42)
+— LD, +—DT D,
77[2 na[ l ’
Substituting (34) into (42) and choosing
= eiTpibi we obtain:
v, = eiT (Afpi +piA)e;
+ Zeirpibi [(D;(Di (x;)+ (DiTz(pi (x,)u,
+Af,(x) + Ag, (x)u;, —a, (t)eiTpibi (43)

2 .
—Uy _Ai(zi)]—i__q)iqu)il
il

2 . 1 .
+—O,P, +—D, D,
771‘2 770,
Applying parameters adaptation laws (35)-(38),
yields

Vi :_%eiTQiei _2eiTpibiAi(L)

=7, (e piby)’ (44)
1 1
< __eiTQjei +— (Ai()_cj))z
2 T,
now consider the composite system Lyapunov
N

candidate ¥ =) &;v; ,where each ¢; >0. Taking
i=l
the derivate of V' gives

. N
V< el +cv 2zl v (45)
i=1 7

where 1; is the real part of the eigenvalue of Q;.
Define K Z[T{k,‘l’;,...,f}k\]] enrV.

Let D = diag{e| A1 (Q)),..e y An1(OQn )} and
N

M= ZgililiTs so that
i=1

1
A=D——M.

Ti

V<-yl Ay, where

Then for some sufficiently

large 7 >0, the matrix Ais positive define. The
remainder of the theorem (2) follows as for the
direct adaptive case.

5 Simulation results

a double-inverted pendulum connected by a spring
can be considered as the simplified example of the
large-scale system. Each pendulum may be

positioned by a torque input u;applied by a
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servomotor at its base. It is assumed that both ¢; and
¢i (angular position and rate) are available to the

i" controller for i =1,2 .Fig.1.

ﬁbl.u-]x%/\/\/\/\ ‘
|

‘%b%ﬁ

==

_—

Fig.1. Two inverted pendulums connected by a
spring.

Consider a double-inverted pendulum model [10].
The equations which describe the motion of the
pendulums are defined by

X =X
) mgr kr’ . kr
x, =( 1. ———)sin(x,))+—(-b)
Ji 4j, 2,
i (46)
ko
+—+——sin(x,,)
5 4
X = X9
. mgr kr’ . . kr
Xy = (1.—_4_.)Sln(x21)+2_.(l_b)
J2 J2 J2 (47)
u, kr* .
+—=+——sin(x,,)
J» 4,
where xj1=¢; and xp;=¢p are the angular

displacements of the pendulums from vertical. The
parameters mj =2kg and  mp =2.5kg are the
pendulum end masses, j; =0.5kg and j, =0.625kg
are the moments of inertia, the constant of connecting
spring is k=100N/m, the pendulum height is
r=0.5m, the natural length of the spring is / =0.5m

and the gravitational acceleration is g =9.81m/ s2.

The distance between the pendulum hinges is defined
as b=0.4m(with b <[ in this example, so that the
pendulum links repels each other when both are in the
upright position (Fig 1).

In (45) and (47)
rt
fiee) = (R sin(xy 1) g1(x1) = 1 i
J1 47
mor kr® .
fo(x) = L2 sinx,,) , g2(00) = 1/ o
J2 4]2
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2
A =210+ 2 in(y),
271 45

2
M) = (1= by + B inxpa),
2o 4jo

the motion equations fit the format of system (1).
Here we will attempt to drive the angular positions

to zero, so that e; =—¢; (i.e., ¥y, =y, =0) for
i=12

To construct the fuzzy approximators u;(x;,60;)in
) anddy(gi/ﬁil),ﬁy(gi/ﬁiQ) in (24), we define

three fuzzy sets for component of each

X =(x11,X12) and X5 =(x21,%22) with labels A)lc“ ,
ij
42 4
X

o 4% and 4° characterized by:
i . . A

i Xij Xij
2
Hyl (xj7) = exp(—(x;; +0.8)7)

)

12 () = exp(—(x;; +0.4)%)
xjj

p g (i) = exp((x)?)

Xij

1o () = exp(—(x;; —04)%)
xjj
1 s (x) = exp(—(xj; —0.8)%)
xjj
with nl-’j =5, j=1,2 and i=12.

1.5 1 1 L L 1 1 1 1 L

4 5
tirme (5ec)

0 1 2 3 4 5 6 7 B ] 10
time (5ec)

Fig. 2, Control of the pendulums using the
proposed direct adaptive decentralized technique.

Conclusion

In the course of this paper, we have presented an
adaptive output-feedback fuzzy decentralized
control for a class of large-scale nonlinear
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Defining 25 fuzzy rules, in the following linguistic
description:

RV if x, is A;r’;‘l and X,, is AX’Z2 then y' is C!

25 2
Denoting D, = X,
gD, ggﬂAi,-k(’k)’
0i(x) =[9i1 (x))/Di, 0, 2 (x1)/Dj ».... 91,25 (x; /D 1"
we can construct the fuzzy system (7) and (24)
respectively, as follows: we choose
7 =0.01, 75, =0.001 and

71 =0.001, 7;5 =0.001, 7, =0.0001, o =0.15,
each A;

; so that

0, = diag(10,10), and

AN
L(¢)=c? +4c+4 hasroots at (=2, —2).

Choose the initial conditions to be the same for both
direct and indirect approaches in the simulations:

T T
(x11,X12,%21,%22)" =(LLLD" ),  6;1 =0, =075, and
I; =[-1-0.75-0.5 -0.25 0 0.25 0.5 0.75 1]. For the direct

approach, the simulation results are shown in Fig 2.
The simulation results are given in Fig.3

Both direct and indirect fuzzy decentralized
controllers achieve good performance, as can be seen
from the simulation results.

time (sec)

5 L L L L L L L L L
0 1 2 3 435 B 7 ] ] 10
time (sec)

Fig. 3, Control of the pendulums using the proposed
indirect adaptive decentralized technique.

systems. In both, direct and indirect adaptive
proposed design methods, fuzzy logic systems are
used to estimate the part the decentralized adaptive
fuzzy controller and unknown nonlinear dynamics
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without knowing bounds of interconnections. control systems,” IEEE Trans. Fuzzy Syst., Vol.§,
Furthermore, the stability of nonlinear pp-523-534, 2000.

interconnected systems is also guaranteed and

ensures asymptotic tracking using only local

measurement. The proposed approaches are

simple without complex algorithms. Simulations

have shown that the proposed controls

methodology is effective, with guaranteed

stability and satisfying performance.
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