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Abstract: Many physical attack types (Timing attacks, Power consumption attacks, Fault attacks, etc.) have been
developed against cryptosystems in the recent years. Indeed there is a real necessity to eliminate the vulnerabilities
of the cryptosystems, like CRT-RSA or the Elliptic Curve Cryptosystem, that make them susceptible to those
attacks. In 2006 Boreale described a new type of physical attack which is based in the Jacobi symbol concept.
In this paper a countermeasure against the Jacobi symbol attack is presented and implemented in two modular
exponentiation algorithms to make them immune to such attack.
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1 Introduction

Kocher [16] was the first to point out the existence of
physical attacks called side channel attacks (SCA);
he observed that when a cryptographic algorithm is
implemented in an embedded device, an attacker can
get the binary chain by just observing the power traces
or the timing consumption in an electronic device
such as an oscilloscope, the SCA’s are, first of all,
used to attack the modular exponentiation(Add and
double is the analogous function in the Elliptic Curve
Cryptosystems, ECC) which is the core operation in
cryptosystems like RSA.

SCA’s opened a door to a new type of physical
attacks, one of those was the Fault Attack (FA)
proposed by Bonhe, DeMillo and Lipton [1], the
FA’s were more aggressive than SCA’s because FA’s
disturb physically the execution of the device which
is running up the cryptographic algorithm.

In order to prevent SCA’s and FA’s many modular
exponentiation algorithms have been created, Coron
[6] gave the first algorithm specifically designed to
defeat the SCA’s to the world with the Square-and-
Multiply Always algorithm, but this algorithm was
attacked by the denominated Safe Error Attack(SEA)
[21].

The Montgomery powering ladder [12] was
a new idea proposed by Joye and Yen to protect
cryptosystems against SCA’s and FA’s, the algorithm
works in a regular form, this is, it doesn’t matter
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what is the value of the bit being processed (0 or 1),
the algorithm always will calculate a multiplication
followed by a squaring. Montgomery ladder had a
good acceptation and attracted the attention of many
researchers. Giraud [9] modified the Mongomery
ladder in order to protect it against FA’s , he proposed
a Coherence Test based on a characteristic of the
algorithm: the registers in all the iterations have the
form R[0] = m®, R[1] = m®"! as a result, if the
coherence test R[0] - m = R[1] is true then return
R]0], if not, return “error”.

Montgomery ladder was attacked by the Relative
Doubling Attack (RDA) [22], a modification of the
Doubling Attack (DA) [7], but Fumaroli and Vigilant
(FV) [8] added a random value to the Montgomery
ladder to blind the exponentiation of the algorithm.
The algorithm proposed by FV was secure against
SCA, DA, RDA, and in a partial form against FA, but
Kim and Quisquater [15] pointed out that FV scheme
has a vulnerability when a FA is induced during the
squaring computation of the inverse of the random
number 7.

A new type of attack was presented by Boreale
in 2006 [2], his attack uses a combination between
FA and SCA, and it is possible to get the binary
chain of the secret key d using the Jacobi symbol
(JS). He used his model in the Right-to-Left modular
exponentiation algorithm and he proved that the
attack is effective even in the presence of message
blinding. Schmidt and Medwed [19] used the Ja-
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cobi symbol to create an attack which breaks the
security of the Montgomery ladder in its blinded form.

There are more modular exponentiation algo-
rithms ([18], [17], [15], [4], [10], [3]) trying to defeat
all the SCA’s ( [23], [14], [5], [21], [20]) that threaten
the security of the cryptosystems, but here we only
focuses our attention on the Montgomery ladder algo-
rithm and the Square-and-Multiply Right-to-Left al-
gorithm.

2 Preliminaries

The first thing that it is necessary to know is the
concept of quadratic residue: for a given prime
p, a is a quadratic residue if ged(a,p) = 1 and
a = y% mod p for some y. If ged(a,p) = 1 but a is
not a quadratic residue mod p, a is called quadratic
non-residue mod p.

a

(5) is called the Legendre symbol of a mod p,
and we can see that

1 If a is a quadratic residue module p
a\ J —1 If aisaquadratic non-residue
(p> N module p
0 If there is a common factor.

Now we have that (£) = (i) e (i) is the

P1 Pk
Jacobi symbol, where n = p; - - - p;, and p’s are prime
factors. The Jacobi symbol is a generalization of the

Legendre symbol.

On the other hand, many modular exponentiation
algorithms have been developed, but Joye proposed a
new kind of algorithm which calculates the modular
exponentiation called Montgomery powering ladder
[12]; his model was based on a different idea to those
algorithms designed before it. The principal concept
was that

t—1
Lj=>Y di27and H; = Lj + 1

i=j
Montgomery ladder was improved by Fumaroli
and Vigilant (FV scheme) who added a random
element to protect the Montgomery ladder; they
used one more register than the Montgomery ladder
simple, the added register was necessary to save the
inverse value of the random element r (Algorithm 1).

In 2006 Boreale gave a new kind of attack against
the modular exponentiation in the binary Square and
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Algorithm 1 FV scheme.
I: Inputm € G, d = (dy—1,...
Output s = m? € G
R[0] « 7
R[1] < rm
R[2] — r—1
forn —1to0do

3 d0)2

R[d;] < R[d;] - R[d;] mod N
R[2] — R[2] - R[2]

end for

11: Return R[0]R|2]

R A A

—_
e

Multiply Right-to-Left algorithm (Algorithm 2) [2].
He put a fault z in R[1] when an squaring is executed
in the iteration ¢ — 1 then, depending of the value of

(%), where S is the attacked output value, can be
known what value of the bit d; was attacked. This

scheme works assuming that (%) = 1, where m
is the input value, and its behavior is similar to the
Safe error: if the bit in the ¢-th iteration is equal to
0, the fault does not affect the calculus of the JS of
(R[0];/N) = 1, and z is squaring what results in the
JS of (22/N) = 1, but if d; = 1, z affects the register
R[0]; and it can be a value (R[0];/N) = —1. The
value z can be or cannot be a quadratic residue, if z is
a quadratic residue the final result will be (S/N) = 1,
but if it is a quadratic non-residue the result will be
(S/N) = —1, for this reason the Boreale’s attack is a
probabilistic model.

Algorithm 2 Square and Multiply Right-to-Left.

1: Input m € G, d = (dp—1,...,dp)2
2: Output s = m? € G

3: R[0] < 1; R[1] «—m

4: forOton —1do

5. ifd; = 1 then

6: R[0] < RI[0] - R[1] mod N

7. endif

8  R[1] « R[1]?> mod N

9: end for

10: Return R[0]

In table 1 it is shown the behavior of the algo-
rithm 2 under the attack described by Boreale, in the
example it was assumed that (%) = 1, (%) = —1,
and d = 25 = 11001.

In 2010 Schmidt [19] proposed an attack consist-
ing in giving a message m with (m/N) = —1 to the
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Algorithm 2 performed with a JS attack, FAin¢ — 1 and d; = 1.

i d; Intermediate products Jacobi symbol
0 1 R[0] =m (R[O]/N)=(1) = 1
R[l] = (m)* =m (R[1]/N) = (1) = 1
1 0 R[0] =m (R[0]/N) = (1) = 1
R[l] = (m*)? = m* (R[1]/N) = (1) = 1
2 0 R[0] =m (R[O]/N)=(1) = 1
R[1] = (m*)? =m® = 2 (R[1]/N) = (-1 —1
3 1 R[0]=m -z (R[0]/N) = (1)(— 1) =-1
R[l] = (2)? = 22 (R[1]/N) = (1) = 1
4 1 R[0] = m - 2° (R[O]/N) = (1)(=1) = —1
R[l] = (%) = 21 (R[L/N) = (1) = 1

Table 1: Algorithm 2 performed with a JS attack.

FV scheme and skipping the operation R[d;] = R[d;]*
then, observing the resulting value it can be learned
what the value of d; and d;4; was, if (S/N) = —
then d; = d;11, the scheme of this attack is given as
algorithm 3.

Algorithm 3 Attack proposed in [19].
1: Ensure Exponentd = (d,,_1, - - -, dp) that is used

by the device.
2: Setd,—1 =1
3: forn —2to0do
4:  Choose m € Zy with (%) = —1
5:  Calculate S with the ith squaring operation
skipped
6 if () =—1then
di = dit1
else
di =1®di
9: endif
10: end for
11: Return d

An example of the attack described in the algo-
rithm 3 over the FV scheme can be seen in table 2,
in this example it was supposed that (%) = —1 and
d =19 = 10011.

In table 2 it can be noted that it is necessary
a modular multiplication in 7 — 1 performed by
two elements with odd exponent to obtain a result
with even exponent and so obtain (S/N) = 1.
This is observed when the modular multiplication
R[l)i=2 = R[0];=4 - R[1];=3 is calculated after
skipping the squaring operation R[0];—3
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The two attacks mentioned above are easy to

implement and they are powerful because they only
need to know about the Jacobi symbol in the returned
value by the attacked algorithm.

3 Proposed countermeasure

3.1 Right-to-Left algorithm modified

It is already known that the binary Right-to-Left
algorithm is broken by many attacks like SPA and
DPA, but here it will only be taken into account the JS
attack and it will be given a countermeasure against it.

Algorithm 2 has been modified to obtain a secure
algorithm against JS attack and then the algorithm 4
has been obtained .

Algorithm 4 Square and Multiply Right-to-Left mod-
ified to counteract JS attack.
Input m € G, d= (dy—1, . ..
Output s = m? € G
R[0] < m; R[1] < m
for 1ton —1do

if d; = 1 then

R[0] < R[0] - R[1]? mod N

end if

R[1] < R[1]?> mod N
end for
Return R[0]

,do)2

A A U i

_
@

It has been learned that when a =z with
(2/N) = —1 is introduced in the iteration i — 1
and d; = 1, z will affect R[0] in a way that
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Algorithm 1 executed with FA, where d;1+1 # d;.
i d; Intermediate products Jacobi symbol.
4 1 R0} =m-r? (R0]/N) = (-1)(1) = -1
R[1] = m?-r? (BA]/N)=1)1) = 1
3 0 R[0)=(m-r®)2=m?.-r*=FA | (R0]/N)=(1)(1)= 1
R[1] =m® - r (B[1]/N) = (=1)() = —1
2 0 R[0] = (m-r*)? =m?-r* (RO]/N)=(1)(1)= 1
R[] =m3-r*-m-r2=m*. o6 (R[1]/N)=(1)(1)= 1
1 1 R[0] = mb - 10 (RO]/N)=1)(1)= 1
R[1] = (m*-r%)? = m® - r'? (BA]/N) =11 = 1
0 1 R[0] =m!.r?2 (RO]/N)=(1)(1)= 1
R[l] = (m®-r1?)? = m!® - r* (RAJ/N) =)= 1
Table 2: Algorithm 1 executed with FA, where d;11 # d;.
(R[0];/N) = —1, this is because z is a quadratic it is assumed that the exponent d is an RSA exponent

non-residue, however, if we can convert the quadratic
non-residue into quadratic residue the attack proposed
in [2] will not affect the execution of the algorithm
because all the calculations involved trough the algo-
rithm 4 would have an JS=1. This is the idea behind
the algorithm 4, make any quadratic non-residue into
a quadratic residue for what the output value in each
execution of the algorithm, regardless of whether
there existed or not a Fault', will be 1.

The operation R[0] «— R[0] - R[1]? mod N in the
algorithm 4 will guarantee that all attacks over R[1] in
iteration ¢ — 1 will not affect the JS of R[0]; because
in iteration 4, if d; = 1, the operation R[1];—1 = z
is squared belonging in a quadratic residue. For that
reason the output always will be 1 if (§;) = 1 and
-1 if (%) = —1. The behavior of the algorithm 4 is
observed in the table 3, table 3 has the same input
values as table 1.

Algorithm 2 is started with R[0] = 1 and
R[1] m, and then the values R|0] m and
R[1] = m? are always obtained if d; = 1 in the first
iteration, but in the algorithm 4 it can be noted that the
input values are R[0] = R[1] = m, and apparently the
first iteration has been eliminated, however it can be
observed that only the first squaring was eliminated,
this means that the first operation R[1];—p = R[1]?
was skipped. Now it can be observed that the first
squaring operation skipped R[1]o is in the operation
R[0]; « R[0] - R[1]2_; mod N in the iteration i = 1.

The input values in algorithm 4 are used because

—1 the
—1.

Tt is considered that m is (%) =1,ifmis (%) =
countermeasure will guarantee the output value (S/N) =
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where dy = d,,—1 = 1 in its binary representation.

3.2 FV scheme modified

In the threat proposed by Schmidt to attack the FV
scheme, the idea is not to put a random value z in the
execution but to skip a complete squaring operation in
the iteration ¢ when the algorithm is being executed,
depending of what is the value of (S/N), it can be
determined whether d; 1 = d; or not.

The proposed countermeasure against this attack
consists in start R[0] = 1 and R[1] = m - m = mZ.
This countermeasure is presented as algorithm 5.

Algorithm 5 FV scheme modified.
I: Input m € G, d= (dy—1,. ..

Output s = m? € G

R[0] < r

R[1] & m?-r

R[2] « r~1

forn —1to1ldo
R[d;] «— R[d;] - R[d
R[d;] < R[d;] - R[d
R[2] — R[2] - R[2]

end for

: R[0] = R[0] - m

: Return R[0] - R[2]

,do)2

i mod N
;] mod N

e RN R RN

_
=4

—
—

—_
[\

In the algorithm 5, it can be seen that it is not
executed the loop from n — 1 to 0 but it is executed
from n — 1 to 1, this is because of the behavior of the
algorithm; such behavior will be explained in section
3.4. Tt can be noted that only the value in R[1] was
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Algorithm 4 performed with a JS attack, FAin¢ — 1 and d; = 1.

1 d; Intermediate products Jacobi symbol.
0 1 R[0] =m (R[0O]/N)=(1) = 1
R[] =m (R[L/N) = (1) = 1
1 0 R[0] =m (R[O]/N)=(1) = 1
R[1] = m? (R[L/N) = (1) = 1
2 0 R[0] =m (R[0O]/N)=(1) = 1
R[] = (m*)* =m" = 2 (R)/N)=(-1) = —1
3 1 R0 =m-(2)? =m - 2? (R[0]/N) = (1)(-1)? =1
R[1] = ()2 = 2 (RN =1)= 1
4 1 R0]=m 2% - (22)? =m - 2" (R[O]/N)=(1)(1)= 1
R[1] = (:22 = 24 (RIU/N) =)= 1

Table 3: Algorithm 4 performed with a JS attack.

altered, but in R[0] it was not placed any extra value.

Algorithm 5 guarantees that when an attacker
skips one squaring operation in any iteration in
the loop, he will not be able to obtain any relevant
information about the bits of the chain of d, because
to obtain any information it is necessary to have in the
output value (S/N) = 1 or (S/N) = —1 depending
of the value of the bits d; 1 and d;, however the output
value of the algorithm 5 will always be (S/N) = 1
this is because all elements in the algorithm have
an even exponent and obviously all of them are a
quadratic residues. As it has been seen in table 2,
elements with even exponents (quadratic residues)
and with odd exponents (quadratic non-residue)
are needed to deduce the binary chain of d, for
what the proposed countermeasure is a protection
against Jacobi symbol attack. This protection is

observed in table 4, in this example was supposed
that d = 39 = 100111 and (m/N) = —1.

3.3 Behavior of Right-to-Left algorithm
modified

In this section it will be given the explanation of the
algorithm 4 and how it is calculating the correct value
of the exponentiation modular.

Algorithm 4 begins the loop from d; to d,,—; and
the initial values are R[0] = m and R[1] = m, this
means that the first square exponentiation has been
skipped, in other words, the operation R[1]g = R[1]?
has been skipped.

It will be analyzed what “skip the first squaring”
means. The explanation begins with the algorithm 2.
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It is known that R[1] is executed in an independent
manner both in the algorithm 2 and in the algorithm 4,
it doesn’t matter if d; = O orif d; = 1, R[1]; is always
squared. The final value of R[1] in the algorithm 2 is

R[l}last = m2”

and each value of R[1] in each one of the itera-
tions 7 of the loop has the form

R[1); = m¥.

It has been seen that the value of R[0] is modified
only when d; = 1, in both algorithms 2 y 4. The
modular multiplication performed in ¢ has the form
R[0]; = R[0] - R[1];—1 in the algorithm 2, then it can
be substituted by

R[0]; = R[0] - m?®™" (1)

and at the end of the loop the equation 2 is given

-1

R[0];ast = R[0] - m*" 2)

if the algorithm 2 is applied.
What happens with the algorithm 4?: As told be-
fore, in the modified algorithm the first squaring was

eliminated, for what at the end of the loop (Executed
from d; a dy,—1) the value of R[1] will be

n—1

R[l]last = m2

and the value in each iteration ¢ is given by

R[], =m?"

How it is known, in the modified algorithm the
first squaring is not performed, the loop begins from
d1, R[0] has the form R[0]; = R[0] - (R[1];—1)?
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Algorithm 5 executed with JS attack, where d; 1 = d;.
l d; Intermediate results Jacobi symbol.
5 1 R[0] = m? -7 (R[0O]/N) = (1)(1) =1
R[1] = (m2-r)? = m - 1? (R[L)/N) = (1)(1) = 1
4 0 R[0] = (m? - r%)?2 = m* . * (R[O]/N)=(1)(1) =1
R[] =mS.-r* (R[1]/N) =(1)(1) =1
3 0 R[0] = (m* - rH2 =m® .18 =FA (R[0]/N) = (1)(1) =1
R[] =m!.+* (R[1]/N)=(1)(1) =1
2 1 R[0] =m*-r*-m!0. 8 =m!t .12 | (R[O]/N) = (1)(1) =1
R[] = (m'® - 1%)? = m?° . 10 (R[1]/N) = (1)) =1
1 1 R[0] = m?* . r® (R[0]/N) = (1)(1) =1
R[] = (m* - r10)? = m* . p% (R[1]/N)=(1)(1) =1
Table 4: Algorithm 5 executed with JS attack, where d;11 = d;.

through the iterations i, and R[1]; = m?' " for what,
when d; = 1, R[0]; is defined by

ROl = R[0] (R[1];1)* = R[] (m® )7
= R[0]-m? "2 =R[0]-m>" 3)
The equation 3 performs the same operation as

equation 1. It was demonstrated that in each iteration,
the same value in R[0]; is obtained in both algorithms
2 and 4. RJ[0] in the last iteration of the algorithm 4
has the form

R[0] - (m*" )2
@

R[O]last R[O] ' (}%[1]1(151‘/71)2

R[0]-m?" "% = R[0] - m

which is equal to equation 2.

3.4 Behavior of FV scheme modified

The difference of the algorithm 5 with respect to
algorithm 1 is that at the beginning of the algorithm
5, R[1] = m? instead of R[1] = m. First of all some
definitions will be given. When the algorithm 1 is
executed, a loop running from n — 1 to 0 is performed
and the loop is called loop (0), in each iteration i
the values of R[0] and R[1] are named R[0](,), and
R[1](), respectively>. Now when the algorithm 5 is
executed, the registers are R[0] and R[1], but in this
case, they will be named R[0],,), and R[1],),, and
they will be running up in a loop called loop (m).

The behavior of the algorithm 5, started with
R[1] = m?, is defined by

2R[Q} is an independent register, for this reason we do not pay
attention to it.
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. R[O] (m); — R[O](O)Fl

If d(m)z‘fl =0, then { R[l](m)z = R[]‘](O)i—l nm ©
_ R[O](m)i = R[O](O)Fl cm~!

If d(yn),_, =1, then { R[1(m), = R[l(0),_, ©

It can be seen in the equation 6 that when
d(myi=0 = 1 the value of R[0]:y),_, is equal to
R[0](0);_, -m ™', and it is known that R[0],),_, = m?
because all the modular exponentiation has been done
in the loop (o), for what in the algorithm 5 the last it-
eration must be eliminated, and it can be seen too that
in the last iteration, i = 1 in the loop (m), the value of
R[0]is R[0](sn),_, = m®-m™ = m?~! and is for that
reason that the line R[0] = R[0] - m must be added to
the algorithm 5 to obtain:

R[O] (m)i=1

m? (7)

The input values in algorithm 5 are given because
odd exponents are considered.

3.5 Expansion of the algorithms

Up to here, it has been talking about algorithms which
are effective when the exponent values are odd values,
but it is possible to use the algorithms 4 and 5 for
all type of exponent values, for what it is necessary
to add some lines to the modified algorithms, the
resulting algorithms are given as algorithm 6 and
algorithm 7 respectively.
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Algorithm 6 Square and Multiply Right-to-Left mod-
ified to counteract JS attack and to work with any ex-
ponent.

1: Input m € G, d = (dp—1,...,dp)2
2: Output s = m? € G

3: if dy = 1 then

4. R[0] — m; R[1] «—m

5: else

6:  R[0] — 1; R[1] <« m

7: end if

8: for 1ton —1do

9: ifd; = 1 then

10: R[0] < R[0] - R[1]?> mod N
11:  end if

122 R[1] « R[1]?> mod N

13: end for

14: Return R[0]

Algorithm 7 FV scheme modified to counteract JS
attack and to work with any exponent.

I: Inputm € G, d = (dp—1,...,do)2

: Output s =m? e G

: R[0] < r

C R[] «—m? -7

R[2] — 1

forn —1to1do
R[d;] + R[d;] - R[d
R[d;] < R[d;] - R[d

R[2] < R[2] - R[2]

: end for

. if dy = 1 then

R[0] = R[0] - m

: end if

: Return R[0] - R[2]

i] mod N
;] mod N

R e A

e e e e
W NN = O
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The algorithm 6 and the algorithm 7 can be used
not only with odd exponent values but also with even
exponent values. Those algorithms use some lines
more than the algorithms 4 and 5, for this reason the
recommendation is that when the exponents are al-
ways odd numbers, algorithms 4 and 5 can be used,
and when the exponents are odd or even numbers, al-
gorithms 6 and 7 can be used.

3.6 Physical behavior

In this section it will be observed the physical
behavior of the algorithms presented in this paper. In
the figure 1 it is possible to see that the behavior of
the algorithms 1 and 5 are almost the same, in the
practice they can be considered equal. On the other
hand, the algorithms 2 and 4 are a little different
in their behavior, it can be seen in the figure 1 that
the algorithm Square and multiply modified uses
more time in its execution than the algorithm 2. The
extra time of the algorithm 4 is caused by the extra
operations used when the algorithm executes binary
values, of the binary chain of the exponent, equal to
1.

Algorithm 4 executes u squarings more than
algorithm 2, where u is the number of 1’s in the
binary chain of the exponent, for this reason the
behavior of the algorithm 4 is given in terms of the
number of 1’s of the binary chain. This behavior is
observed in the figure 2.

It can be seen in the figure 2 the behavior of the
algorithm 4 compared with the algorithm 2 where
the values of the exponents are 2048-bit numbers. It
has been used three cases in the figure 2: the best
case (1 QVQ 1, only the first and the last bit of the

2046
exponent’s binary chain are equal to 1), the middle

case (2048/2 bits with value equal to 1), and the
worst case (2048 bits with value equal to 1).

In figure 2 it is possible to see that the difference
between the two algorithms is about 1.5 milliseconds
in the worst case when 2048 bit numbers are used in
the exponent. It can be seen that the algorithm 4 sacri-
fices a relatively small runtime difference in compar-
ison with the algorithm 2, but the algorithm 4 will be
secure against the JS attack, for what the algorithm 4
is a good option to provide security in embedded de-
vices.
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—e— Square-and-Multiply Right-to-Left

—&— Square-and-Multiply Right-to-Left Modified
—&— FV scheme

—#*— FV scheme Modified _—

—— 7T 1~ 1~ -1 T -1 -7 T -1 T 11T 1T 1 1 1T
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 450

Number of bits of the exponent

Figure 1: Physical behavior of the algorithms 1 to 4, where the x-axis represents the number of bits of the exponent,
and the y-axis represents the runtime of the algorithms given in milliseconds.

Time (ms)

—e— Square-and-Multiply Right-to-Left
—4A— Sqguare-and-Multiply Right-to-Left Modified

T T T
1000 1500 2000

Number of bits equal to 1.

Figure 2: Runtime of the algorithms 2 and 4 in the worst, middle and the best case, executing exponents with 2048

bits.
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4 Future work

The proposed countermeasure against the Jacobi sym-
bol attack pointed out in this paper has been imple-
mented under two algorithms which have arithmetic
operations that can be evaluated independently, here
we have illustrated the basic idea to protect the expo-
nentiation modular in cryptosystems against JS attack,
but each exponentiation modular algorithm in the lit-
erature has different characteristics for what we will
search the form to implement our idea over other al-
gorithms which can be attacked by the JS attack and
have different characteristics like the algorithms Add
only and Add always presented by Marc Joye in [11]
and attacked in 2010 by Kim [13].

5 Conclusion

We have proposed a countermeasure to protect two
modular exponentiation algorithms against the Jacobi
symbol attack, the coutermeasure can be implemented
without difficult steps. The attacks mentioned are im-
plemented in a different form and are designed under
different models, then we are designed the methods
to defeat the attacks specifically to work according to
the fault model used in each case, but there is an idea
that is essential in both modified algorithms: You
need to change a quadratic non-residue value into a
quadratic residue value.

We have obtained the physical behavior of the
proposed algorithms and we have compared them
against the original versions, in the case of the algo-
rithms 1 and 4 there is no difference between their be-
haviors, but in the case of the algorithms 2 and 4 there
is only a little difference in runtime, this increase in
runtime of the algorithm 4 is balanced with the secu-
rity obtained.
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