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Abstract:  Artificial Intelligence methods have been employed in the search for solid-state phosphors with a 
high luminescence quantum yield. An Artificial Neural Network was used to investigate how luminescence 
efficiency can be linked to phosphor composition. The trained network was then coupled to a Genetic 
Algorithm whose role was to locate the global optimum composition in the search space. The compound 
Tb0.039Gd0.104Ce0.063Si0.401B0.393Oδ (where δ indicates the stoichiometrically-required amount of oxygen) is 
estimated to be the optimum oxide composition that generates the highest green phosphor luminescence for use 
in tricolour white LEDs, when excited by a 400 nm light source. 
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1  Introduction 
The use of computer-aided discovery is now 
common in the development of new materials and 
the formulation of composites [1]. In the laboratory, 
high-throughput (HT) experiments of value in the 
investigation of composites may generate large or 
complex data sets which are often well-suited to 
analysis by Artificial Intelligence (AI) methods. 
Recently, AI has been applied in the study of 
luminescent materials, where the search for solid-
state phosphors with a high quantum yield is an area 
of considerable interest [2,3]; we report here on 
further progress in the field. 
 White-light-emitting diodes (LEDs) are present 
in applications such as flat-panel displays and solid-
state photodetectors [4-7]. Most are phosphor-
converted LEDs (pc-LEDs), in which a blue chip 
and a yellow phosphor combine to produce white 
light. While yellow phosphors for use in pc-LEDs 
with the YAG:Ce system are widely available 
commercially, white light can also be generated by 
coupling a UV or soft UV chip with RGB phosphors 
[8, 9]. The lifetime of organic luminescent materials 
is typically too short for this sort of application, so 
the RGB phosphors in white LEDs are usually 
comprised of inorganic oxides [10-12]. 
 Photoluminescence, the emission of photons by 
excited molecules, is the result of sequential energy 
transfer between ions in the phosphor matrix (Fig. 
1); the overall quantum efficiency of this process 
determines the amount of light emitted per unit of 

energy absorbed. Efficient non-radiative energy 
transfer can occur between ions with matching 
energy bands, with some ions acting as sensitizers 
by transferring energy to activator ions, which then 
emit. 
 
 

 
Fig. 1. The processes that lead to photon emission:  
1 – absorption; 2 – energy transfer, with shedding of 

excess energy into the phosphor matrix;  
3 – emission. 

 
   
 Clusters that contain rare earth ions are 
especially effective sensitizers, and rare earth 
elements have been doped into the phosphor matrix 
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for over 60 years [13].  More than one rare earth 
element may be used in a sample to distort the local 
crystal structure and the crystal field, thereby 
affecting both the wavelength and intensity of the 
luminescence.  
 Although it is possible to develop theoretical 
models that include all energy transfer mechanisms 
in a sample to which a single dopant has been 
added, it is much harder to model the full set of 
process that occur in a matrix containing several 
active luminescent centres. The difficulties can 
largely be circumvented if luminance can be related 
computationally to composition without an explicit 
model of the underlying interactions within the 
crystal being required. It is that observation which 
guides the work described here. 
 
 
2  Formulation of high-efficiency 
emitters using a Genetic Algorithm 
Sohn and co-workers have described the 
development of oxide-based RGB phosphors for 
tricolour white LEDs using a Genetic Algorithm-
based approach [10,11]. Genetic Algorithms (GAs), 
a type of Evolutionary Algorithm, use adaptive 
computational methods to solve optimisation and 
search problems, seeking a global optimum in a 
parameter space that includes all the variables in a 
problem [14]. 
 Genetic Algorithms have been widely applied in 
science to problems such as the automated synthesis 
of combinatorial compound libraries [15],  drug 
design [16] and the study of conditions for reactions 
such as sucrose inversion [17], iron ore sintering 
[18] and vegetable oil hydrogenation [19]. Among a 
large number of further applications, a GA 
algorithm has been used to determine the free 
energy global minimum of a protein 3D structure 
from its primary structure [20] and in a search for 
the optimum structure of alloy nanoclusters [21]. 
 In their study, Sohn’s group drew upon a 154-
membered library to screen the oxide system for 
green phosphors of suitable luminescent properties. 
Although they viewed their method as 
combinatorial, it is more appropriately thought of as 
a high-throughput experiment, since in a 
combinatorial experiment the nature, rather than the 
value, of the parameters is changed. Values for the 
fitness function required by the GA were 
determined experimentally by synthesizing and 
testing each compound proposed by the GA. 
Appropriate quantities of solutions of Gd2O3 and 
Si(OC2H5)4 in nitric acid, and Tb(NO3)2, 
Mg(NO3)26H2O, Ce(NO3)2, Al(NO3)3, and H3BO3 in 

deionised water were prepared and mixed. Water 
was removed and the residue was dried, pulverised 
and transferred into a purpose-built ceramic 
container and fired at 900 °C for 2 h in a neutral N2 
gas atmosphere. 
 Emission spectroscopy of the fired samples was 
studied at 400 nm, to simulate the conditions in an 
InGaN chip (LED light source) and luminance 
calculated from the emission spectrum and the 
visual spectral efficacy curve.  
 
 

 
 
Fig. 2. The experimental method used by Sohn et al 

[10, 11]. 
 
 Little is known theoretically about how oxide 
composition determines luminescence efficiency, so 
the use of a GA by Sohn was in principle a 
reasonable way to proceed. However, the need to 
prepare a new oxide sample in the laboratory for 
every evaluation of the GA fitness function is a 
serious limitation, so for practical reasons Sohn 
restricted the number of GA cycles to ten.  
 This use of an abbreviated period of evolution is 
understandable, but it carries the danger that the GA 
might not have converged on an optimized solution 
when the procedure was halted.  In most published 
applications of GAs to scientific problems, hundreds 
or thousands of generations are required to locate 
the global optimum, so Sohn’s conclusion that the 
optimum composition was found within six 
generations must be viewed with caution.  
 
 
3  A hybrid formulation algorithm 
The requirement that every sample proposed by the 
GA be synthesized and tested imposes considerable 
experimental demands, as Sohn’s group appreciated.  
However, if luminance is already available for a 
number of samples of different composition, the GA 
can be used in a two-step procedure that requires no 
synthetic work.   
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3.1 Neural Network 
 The first step is to model the relationship 
between composition and efficiency using an 
Artificial Neural Network (ANN).  ANNs are 
widely applied in science, to problems for which not 
enough is known about the relationships that exist 
within the data to allow construction of a theoretical 
model.  
 Numerous scientific tasks are in essence pattern-
matching, a type of problem to which ANNs are 
well suited. ANNs have been used in science for 
spectral interpretation, and in drug design to locate 
molecules of desired chemical activity by 
determining Quantitative Structure-Activity 
Relationships (QSARs) or Quantitative Structure-
Property Relationships (QSPRs) from experimental 
data [21, 22]. Extensive data is generated in high-
throughput screening and combinatorial 
experiments, so ANNs are a favourite tool in their 
analysis [1]. ANNs have been successfully applied 
in process control [23], to learn relationships 
between control parameters and production 
efficiency, and by connecting electronic sensors to 
the input layer of an ANN, networks can be utilized 
to recognize complex compounds [24]. 
 Though ANNs have many advantages in pattern-
matching, their ability to extrapolate is limited, so 
one might question whether in the application 
discussed here an ANN could predict the 
composition of a compound whose luminance might 
exceed that of the best member in the training set. 
However, provided that the training samples cover 
the composition range of the dopants effectively, it 
is reasonable to expect that an ANN can learn the 
relationships between dopant concentration and 
luminance, and subsequently employ such rules, 
even if they predict a composition whose light 
output lies beyond the range of values found in the 
training set. 
 The nature and size of the data set determine the 
optimum geometry of an ANN, though determining 
that geometry is not always a trivial process [25]. 
Crucially, networks must contain fewer connections 
than the number of distinct training samples, 
otherwise the ANN may learn to recognise each 
sample individually at the expense of learning about 
the relations within the data. Sohn’s green phosphor 
composition library contained 154 samples, a 
sufficient number to train a network containing 
several dozen connections. 
 
 
3.2 Genetic Algorithm 
Once the ANN has learnt the relationships contained 
in this data set, the TANN is coupled to a GA. For 

each new sample composition created by the GA the 
TANN is interrogated to obtain a predicted 
luminance, thus avoiding the need to physically 
prepare and test a large number of samples. Hybrid 
systems that comprise a GA and an ANN have been 
reported before, for example in studies of the effect 
of adjustable GA parameters on the performance of 
a heterogeneous catalyst optimization process. 
 
3.3  Training the Neural Network 
The hybrid system was programmed in Java. 
Typical execution times on a 2 GHz PC were 10-15 
minutes for the ANN and 3-4 minutes for the GA. 
 The ANN architecture was a feed-forward 
multilayer network with logistic activation 
functions, in which an input node was available for 
each of the seven elements in the oxide sample; a 
value for the luminance was predicted through a 
single output node. The number of hidden nodes in 
the ANN was selected during network testing. Six 
samples were removed from the 154-membered 
composition library to leave a training set of 148 
samples. 
 Networks that contained between three and seven 
nodes in a single hidden layer were tested, each for 
up to 2,000,000 learning cycles, at initial learning 
rates ranging from 0.01 to 0.75. Each network 
configuration was tested several times, starting from 
random connection weights, and the predicted 
luminance used as a measure of the performance of 
the network.  
 A variety of combinations of activation and 
output luminance functions were examined; the best 
performance was achieved when coupling the output 
luminance function given in equation 1 
 

 ( ) 400 ( 0.2)lumf x x= × −  (1) 
 
in which x is the activation level of the output node, 
with the activation function, 
 

 
(0.5 )

1( )
1 oact o If I

e −=
+

             (2) 

 
in which Io is the integrated input signal to the node.  
flum distributes luminance values between 0 and 240 
across the most responsive region of the logistic 
function, while tolerating higher values.  fact is the 
logistic activation function shifted by 0.5 in the 
positive x-direction. This modification maintains 
positive connection weights, to counteract a bias 
towards negative values which may emerge, since 
the mean of the training set values is in the lower 
operating range of the output luminance function. 
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 Over a range of trials, it was found that a 
network containing five hidden nodes in a single 
layer leads to the lowest mean error (Fig. 3.). 
Networks that contain fewer than five hidden nodes 
failed to fully learn the rules in the data, while larger 
networks were susceptible to overfitting.  
 
 

  
 
Fig. 3.  The mean percentage prediction error after 
106 epochs, as a function of the number of hidden 

nodes. 
 
 
 An appropriate learning rate is essential for 
effective learning. At any stage of training, the 
current learning rate depends upon both the initial 
rate, and on the total number of learning cycles to be 
executed, so the values of these parameters should 
be optimized simultaneously. The lowest prediction 
error, of less than 5% in a network with five hidden 
nodes and trained for 1,000,000 epochs, used an 
initial learning rate of 0.25. 
 

 
 

Fig. 4. The mean percentage error as a function of 
the number of epochs for a network with five hidden 

nodes, trained at various initial learning rates. 
 
 
3.4 Optimization of Genetic Algorithm 
parameters 
Each GA string encoded the composition of a trial 
compound, defining the number of moles of each 

element in the molecular formula. The average 
luminance of the population, the highest luminance 
and the corresponding sample composition values 
were tracked as a function of generation. 
 Just as the degree to which a neural network is 
able to learn is correlated with network geometry 
and the values of the training parameters, so the 
effectiveness of the GA is influenced by the values 
of the parameters that define the evolution of the 
population. A large number of preliminary GA runs 
were performed to determine the effect of the 
population size on the speed of convergence and 
quality of solution, and to select the optimum 
parameters to be used in the hybrid system.  
 Stochastic remainder selection was used in the 
GA to select strings into the parent pool. The 
offspring generation was created through single-
point crossover. The crossover and mutation rates 
were selected through experiments with a variety of 
combinations of values during this testing. GA 
populations between 10 and 500 were tested with 
crossover rates that ranged from 0.6 to 0.9 and 
mutation rates from 0.05 to 0.2, for up to 10,000 
generations, both with and without elitism.  
 
 

 
 
  

Fig. 5. Highest luminance as a function of 
generation for different populations. 

 
 
 A population size of 40 strings was found to 
retain sufficient genetic diversity for the algorithm 
to converge reliably on solutions close to the global 
optimum (Fig. 5.); improved solutions continue to 
appear over a period of several hundred generations, 
with convergence promoted through the use of 
elitism. The algorithm was normally run for 1,000 
generations, with convergence to an unchanging 
solution typically occurring around generation 500.  
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Fig. 6. Average and highest luminance as a function 

of generation; the crossover rate, pc, was 0.6. 
 
 

 
 
Fig. 7.  Average and highest luminance as a function 

of generation; the crossover rate, pc, was 0.8. 
 
 
The rate of convergence was found to depend 
markedly on the crossover rate. An increase in the 
value of pc from 0.6 to 0.8 results in an increase of 
the speed of convergence without a reduction in the 
quality of the final solution (Figs 6, 7). 
 

 
 
Fig. 8.  Average and highest luminance as a function 

of generation; the mutation rate, pm, was 0.05. 
 

 

 
 
Fig. 9. Average and highest luminance as a function 
of generation for a GA run with a mutation rate, pm, 

of 0.2. 
 
  
Figures 8 and 9 show that variation in the mutation 
rate pm from 0.05 to 0.2 had only a modest effect 
upon the speed of convergence. The use of elitism, 
combined with stochastic remainder selection, 
allows the use of a fairly aggressive mutation rate 
and a value of 0.2 for pm was used in the final 
system. 
 
 
3.5   Hybrid system parameter optimisation 
 
Parameter Optimum value 
No. hidden nodes 5 
ANN Learning rate 0.25 
ANN No. of learning 
cycles 

1000000 

Population 40 
No. of GA cycles 1000 
GA crossover rate 0.8 
GA mutate rate 0.2 per string 
 

Table 1. Key parameters. 
 
Key parameter values are listed in Table 1.  
 Once the values of all adjustable parameters had 
been selected, the hybrid system was executed 
repeatedly to investigate the accuracy and 
reproducibility of the results. Each instance of 
network training generates a different ANN model, 
since learning starts from a unique, random set of 
connection weights; nevertheless all converged 
networks should reach a similar conclusion about 
how luminance is related to composition. 
Consequently, the GA should in turn converge on 
approximately the same composition each run, 
provided that the ANN has trained effectively.  
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 Figure 10 shows the average and highest 
luminance values during a typical run with 
optimized parameters. The best solution achieved by 
the GA during this run was 273.68. In contrast, the 
highest luminance value attained by Sohn and his 
co-workers was 198.89.  
 
 

  
Fig. 10.  The average luminance of the population 

and the highest luminance within that population as 
a function of the generation within a typical run. 

 
 
Table 2 contains the composition of the samples of 
highest luminance from five separate hybrid system 
runs. It is apparent that the model effectively 
eliminates magnesium- and aluminium- containing 
compounds in the search for the phosphor of highest 
luminance. Figure 11 shows how the elemental 
composition of the highest luminance string in the 
population varies as the calculation proceeds, 
confirming that  the amounts of Magnesium and 
Aluminium decrease to negligible levels during the 
first two hundred generations.   The composition of 
the highest luminance string is close to that of the 

optimum composition after 260 generations. While 
the hybrid approach described here and the 
combined computational-experimental method of 
Sohn are not equivalent, Figure 11 does suggest that 
were the time available for further laboratory-based 
experiments, Sohn’s approach might well have 
yielded samples of luminance greater than the value 
of 199 that they reported. 
 
 

 
Figure 11. Variation of elemental composition in the 

fittest GA string during a run. 
 
 
The average composition of samples in Table 2 is 
Tb0.039Gd0.104Ce0.063Si0.401B0.393Oδ with average 
luminance estimated to be 269.2 ± 4% (the error 
was estimated from the network training error). 
 The luminance of the proposed compound is 
comparable with that of a commercially available 
ZnS:Cu,Al green phosphor.  

 
Run Tb Gd Ce Mg Si Al B Luminance 
A 0.0432 0.1005 0.0588 3.71 x 10-9 0.4102 8.35 x 10-7 0.3873 268.951
B 0.0379 0.0973 0.0618 6.81 x 10-9 0.3975 7.22 x 10-8 0.4055 265.477
C 0.0398 0.1021 0.0601 4.23 x 10-7 0.4011 9.01 x 10-8 0.3969 273.682
D 0.0349 0.1057 0.0646 6.72 x 10-9 0.4063 5.88 x 10-8 0.3885 270.306
E 0.0393 0.1146 0.0689 5.1 x 10-14 0.3916 2.85 x 10-9 0.3856 267.714

 
Table 2. Compositions predicted by five successive runs of the hybrid system. 

 
 
Table 3 shows the compositions of all strings in the 
population in the last generation of a typical run, 
ordered by decreasing luminance. The top fifteen 
strings are similar to that of optimum composition, 

while, as one would anticipate, those near the 
bottom of the table are of poor quality, because of 
the disruption caused in the strings by the genetic 
operators.  
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Tb Gd Ce Mg Si Al B Luminance 
0.0432 0.1005 0.0588 3.71 x 10-9 0.4102 8.25 x 10-7 0.3873 268.951

0.432 0.1005 0.0588 3.71 x 10-9 0.4102 8.35 x 10-7 0.3873 268.951
0.0432 0.1005 0.0588 3.71 x 10-9 0.4102 8.35 x 10-7 0.3873 268.951
0.0496 0.1005 0.0548 6.51 x 10-9 0.4108 2.85 x 10-7 0.3843 264.372

0.403 0.0992 0.0548 6.51 x 10-9 0.4167 2.85 x 10-7 0.3890 262.947
0.0396 0.0959 0.0548 6.51 x 10-9 0.4134 2.85 x 10-7 0.3963 261.824
0.0269 0.1042 0.0618 6.90 x 10-9 0.4077 3.45 x 10-6 0.3994 261.492
0.0226 0.1009 0.0603 5.40 x 10-9 0.4189 3.25 x 10-6 0.3973 261.183
0.0579 0.0887 0.0689 6.52 x 10-9 0.4017 4.50 x 10-6 0.3828 260.827
0.0754 0.0801 0.0599 4.57 x 10-9 0.3812 3.45 x 10-6 0.3712 259.864
0.0212 0.1099 0.0522 5.47 x 10-9 0.3877 3.45 x 10-7 0.4290 257.624
0.0303 0.1127 0.0577 3.46 x 10-8 0.418 9.01 x 10-5 0.3812 256.722
0.0699 0.0812 0.0619 3.46 x 10-8 0.3791 2.84 x 10-5 0.4078 254.578
0.0880 0.0725 0.0488 9.02 x 10-8 0.3818 2.34 x 10-5 0.4089 254.373
0.0690 0.0798 0.0412 2.35 x 10-8 0.3912 2.35 x 10-5 0.4188 252.127
0.0659 0.0880 0.0571 8.32 x 10-8 0.3763 2.38 x 10-5 0.4127 251.380
0.0972 0.0712 0.0519 5.44 x 10-7 0.3984 4.84 x 10-5 0.3813 248.108
0.0721 0.0803 0.0482 9.76 x 10-6 0.3849 0.0346 0.3799 245.273
0.0985 0.0832 0.0518 5.60 x 10-6 0.3833 3.85 x 10-5 0.3832 244.297
0.0581 0.1050 0.0627 4.54 x 10-7 0.3927 9.23 x 10-5 0.3814 243.832
0.0689 0.0909 0.0623 3.82 x 10-6 0.3981 2.90 x 10-5 0.3798 241.947
0.0691 0.1393 0.0619 3.90 x 10-6 0.3841 8.23 x 10-5 0.3455 233.816
0.0682 0.1149 0.0628 2.57 x 10-6 0.3854 3.13 x 10-5 0.3687 233.182
0.0694 0.1476 0.0618 9.34 x 10-5 0.3782 2.90 x 10-5 0.3429 232.673
0.0723 0.1381 0.0628 2.56 x 10-5 0.3739 9.45 x 10-5 0.3528 231.821
0.0799 0.1299 0.0721 6.23 x 10-5 0.3704 8.23 x 10-5 0.3476 231.669
0.0823 0.1214 0.0782 1.85 x 10-5 0.3692 2.48 x 10-5 0.3489 230.497
0.0807 0.1101 0.0723 1.38 x 10-5 0.3780 2.49 x 10-5 0.3589 230.461
0.0858 0.1239 0.0729 1.48 x 10-5 0.3682 6.00 x 10-4 0.3486 230.283
0.0885 0.1210 0.0792 1.19 x 10-5 0.3590 6.20 x 10-4 0.3517 229.827
0.0734 0.1490 0.0772 4.64 x 10-8 0.3521 3.87 x 10-6 0.3483 229.575
0.0792 0.1298 0.0729 4.24 x 10-8 0.3593 8.28 x 10-7 0.3588 229.306
0.0923 0.1564 0.0693 8.45 x 10-8 0.3402 2.94 x 10-7 0.3418 204.730
0.0759 0.1384 0.0804 0.0396 0.3572 5.72 x 10-7 0.3481 169.499
0.0748 0.1461 0.0824 7.34 x 10-8 0.3472 0.0057 0.3445 147.386
0.0734 0.0149 0.0833 2.85 x 10-8 0.6818 2.83 x 10-7 0.1227 63.955
0.0823 0.1309 0.0823 4.64 x 10-9 0.1492 6.29 x 10-6 0.6482 51.846
0.0349 0.0131 0.0656 3.67 x 10-9 0.8488 9.28 x 10-6 0.1473 46.821
0.0863 0.1378 0.0834 8.32 x 10-9 0.3502 0.0328 0.3123 25.263
0.0743 0.1438 0.0834 0.5728 0.0487 2.84 x 10-6 0.0143 0.827

  
 

Table 3. A set of GA strings on completion of a typical run. 
 
 
4   Discussion 
The compound predicted by the hybrid system as 
having the highest luminance comprises the same 
elements as that proposed by Sohn, but is primarily 

boron- and silicon-based, indicating a borosilicate 
phosphor matrix. By contrast, Sohn’s compound is 
primarily silicon and is therefore essentially a 
silicate phosphor matrix. A number of studies have 
shown that a borosilicate phosphor matrix is a 
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medium for the activator ions that emit, not itself the 
origin of the emission [26].  
 Rare-earth elements are usually doped into the 
matrix to achieve higher luminescence [27]. In 
phosphors of this type the optical transitions connect 
energy levels of a given 4fn configuration. The 4f 
electron shell is well shielded by the 5s2 and 5p6 
shells, therefore, the energy levels originating from 
the 4fn configuration relate to states in which the 
chemical bonding is the same [5]. Consequently, the 
rare-earth doped phosphor matrices exhibit very 
specific and favourable luminescent properties.  
 Cerium and terbium co-doping has been widely 
reported in phosphor matrices [28], including the 

borosilicate system [29]. Since the proposed 
compound contains small amounts of both cerium 
and terbium, it is instructive to examine the energy 
levels of the two ions and the energy transfer 
process between them that leads to luminescence. 
 Moon and co-workers[29] studied energy 
transfer between Ce3+ and Tb3+, whose energy levels 
are resonant in borosilicate glasses (Fig. 12). They 
recognised that donor Ce3+ ions act as sensitizers by 
transferring absorbed energy to Tb3+ ions via a non-
radiative mechanism. Spectroscopic overlap near 
425 nm of the strong Ce3+ emission band and the 
weak band from Tb3+ emission is a necessary 
condition for Ce3+ to Tb3+ energy transfer.  

 
 

 
 

Fig. 12. The energy level system of Ce3+ and Tb3+ ions in borosilicate glass. 
 
From time-resolved spectra, Moon et al determined 
that the Ce3+ to Tb3+ energy transfer process has a 20 
ns time delay and leads to quenching of the shorter-
wavelength side of the Ce3+ emission band [29]. 
 In a study of energy transfer between Tb3+ and 
Ce3+ ions, Changhong and Fuxi [30] established that 
the emission intensity of Tb3+  (5D4 → 7F5, 542 nm) 
in (Ce3+ /  Tb3+) doubly doped glass is much higher 
than in glass singly-doped with Tb3+, suggesting 
luminescent sensitization of Tb3+ by Ce3+ . By 
measuring the energy transfer efficiency from Ce3+ 
to Tb3+ they showed that the transfer probability is 
proportional to the square of the total ion 
concentration. It follows that the transfer probability 

is inversely proportional to the sixth power of the 
average inter-ion distance, which is consistent with 
a dipole-dipole resonant non-radiative process.  
 The role of Gadolinium, which is also present in 
the proposed compound, has been studied by 
Baccaroa and co-workers [28]. They achieved a 
significant enhancement of photoluminescence for 
Ce(Tb)-doped and Gd-enriched phosphors 
compared to those that were Gd-free, due to nearly 
resonant energy migration through the Gd sub-
lattice. A high concentration of Gd3+ ions (> 20%) is 
required for this migration and this mechanism is 
not unique to Gd3+; it has also been observed in Tb3+ 
and Eu3+ compounds [31]. However, due to the 
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stability of the half-filled shell in the Gd3+ (4f7) ion, 
the excited level (6P7/2) lies at a much higher energy 
than in these ions. Thus, the Gd3+ ion emits photons 
in the UV region at around 315 nm [32]. These 
optical transitions within the 4f shell are parity and 
spin forbidden, so the oscillator strength is low and 
Gd3+ requires sensitizing by another species.  
 Blasse [32] confirmed that in a Ce-Gd-Tb 
system, Ce3+ acts as a sensitizer by absorbing energy 
from the excitation source and Tb3+ acts as an 
activator by trapping the excitation energy that 
migrates along the Gd3+ sub-lattice. The energy 
transfer process can be represented as: 
 
excitation → Ce3+ → Gd3+ → Gd3+ → Tb3+ → hν 
 
 Excitation is via the 4f → 5d transition of Ce3+ 
(4f1). The relaxed excited state of Ce3+ is in 
resonance with the Gd3+ 6P levels and energy 
transfer occurs. Sensitization of Tb3+ occurs due to 
good overlap between the Gd3+ emission and the 4f 
→ 5d absorption bands of Tb3+. The Gd3+ ions play 
an intermediate role in the energy transfer from Ce3+ 
to Tb3+ via processes of high quantum efficiency. 
 Nehru and co-workers [33] prepared a green 
phosphor system by co-doping Tb3+ (15%) with 
Ce3+ (15%) in a borosilicate matrix. Although they 
believed that high concentrations of Ce3+ and Tb3+ 
are required to achieve maximum emission, de Hair 
[34] demonstrated that energy transfer from Gd3+ to 
Tb3+ is complete at relatively low concentrations. 
Since the price of Tb3+ doped phosphors is 
dependent mainly on the terbium content [34], co-
doping of Gd3+ and Tb3+ ions is commercially 
advantageous. 
 
 
5  Discussion and Conclusions 
The potential application of a luminescent material 
depends on choice of a suitable excitation 
wavelength. Preparation and screening of a 
phosphor for a particular application is a time-
consuming procedure, a process that can be 
enhanced through the analysis of phosphor 
composition libraries as described here. Although 
the ANN/GA hybrid has been applied here to the 
optimization of composition of a specific type of 
material, the development of new materials is in 
reality largely application independent, so the 
method is very versatile.  
 This sort of study may facilitate not just the 
development of luminescent materials for a 
particular purpose, but may also promote a new 
approach for achieving multi-spectral LEDs. Given 

sufficient understanding of the dependence of 
luminous efficiency on excitation wavelength, 
emission of a spectrum of colours from a single 
LED is possible, by coating the LED with a blend of 
phosphors and varying the excitation energy from 
the chip. 
 Recently, two-phase phosphors with self-
adjusting emission wavelengths have been proposed 
as a way of overcoming the difficulty of 
manufacturing chromatically equivalent LEDs [35]. 
A two-phase phosphor combines one phosphor 
whose emission intensity decreases with increase in 
excitation wavelength radiation, with a second 
whose emission intensity increases as the excitation 
wavelength is increased [35]. Random fluctuations 
during manufacturing make it difficult to produce 
chromatically equivalent LEDs, so this innovative 
design has a significant commercial value.  
 A clear understanding of how luminous 
efficiency varies with excitation wavelength is 
essential in the design of two-phase phosphors; 
application of the hybrid system in development of 
such solid-state phosphors is likely to be productive 
through modeling of the relationship between 
luminous efficiency; phosphor composition and the 
excitation wavelength.  
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