
Design and Evaluation of Parallel , Scalable ,Curve Based Processor

over Binary Field

RAHILA BILAL
1
, Dr.M.RAJARAM

2

1
Department of ECE,

2
 Department of EEE

1
Anna University,

2
Anna University of Technology

1
Chennai ,

2
Tirunelveli

1
INDIA,

2
INDIA

1
bilalrahila@yahoo.co.in,

2
 rajaramgct@rediffmail.com

Abstract: - Implementing Public-Key cryptography systems is a challenge for most application platforms when

several factors have to be considered in selecting the implementation platform. Elliptic Curve Cryptography is

considered much more suitable than other public-key algorithms. It uses lower power consumption, has higher

performance and can be implemented on small areas that can be achieved by using ECC. In this work, scalable

and parallel framework of FPGA based ,Dual Field (Prime and Binary Field) ECC processor is

explored.Using Altera –Quartus software tool, a 160 bit ECC processor core with four 32 bit Arithmetic Units

is evaluated on EP3SE50F780C3 .Scalar multiplication is performed in 445 µsecs and occupies 9763 LUT’s .

Key-Words: - Public-Key cryptography ,ECC, Prime Field , Binary Field, FPGA, Scalar Multiplication.

1 Introduction
 The incredible improvements in ubiquitous

computing, and its indispensable implications gives

rise to its being an effective domain of interest. As

the notion of ubiquitous computing is becoming

more and more part of life, various applications

consisting of this new technology can be

encountered.

 PKC is indispensable for secure digital

communications in security systems including high

performance applications (e.g. ATMs) and low

power applications (e.g. smart cards and RFID tags).

In order to satisfy the performance requirements of

different public-key cryptosystems, the hardware

has to support modular operations over GF(p) or

GF(2
m
) with different operation sizes .

Moreover, it is preferable to have scalability in

performance, that is, when allocating more hardware

resources, a higher performance should be obtained.

In this work, a flexible and scalable datapath for

ECC processor is proposed. Having flexibility in

the controller block is also necessary for public-key

crypto systems to support different computational

sequences in RSA and curve-based cryptography.

ECC depends on hard number theoretic

problem: Elliptic Curve Discrete Logarithms

(ECDL). At the base of ECC operations is finite

field (Galois Field) algebra which focuses on prime

Galois Fields (GF(p)) and binary extension Galois

Fields (GF(2
m
)). It is Standardized by NIST, ANSI

and IEEE: NIST, NSA Suite B, ANSI X9.62, IEEE

P 1363, etc.

 An Arithmetic unit is called scalable, if it

can be reused or replicated in order to generate long

precision results independently of the data path

precision for which the unit was originally designed.

To speed up the multiplication operation, various

dedicated multiplier modules were developed. These

designs operate over a fixed finite field. For

example, the multiplier designed for 155 bits cannot

be used for any other field of higher degree. When a

need for a multiplication of larger precision arises a

new multiplier must be designed. Another way to

avoid redesigning the module is to use software

implementations and fixed precision multipliers.

However, software implementations are inefficient

in utilizing inherent concurrency of the

multiplication because of the inconvenient pipeline

structure of the microprocessors being used.

Furthermore, software implementations on fixed

digit multipliers are more complex and require

excessive amount of effort in coding. Therefore, a

scalable hardware module specifically tailored to

take advantage of the concurrency of the

Montgomery multiplication algorithm becomes

extremely attractive.

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 353 Issue 10, Volume 10, October 2011

Even though prime and binary extension fields,

GF(p) and GF(2
m
),have dissimilar properties, the

elements of either field are represented using almost

the same data structures inside the computer. Also,

the algorithms for basic arithmetic operations in

both fields have structural similarities allowing a

unified module design methodology. For example,

the steps of the Montgomery multiplication

algorithm for binary extension field GF(2
m
) given in

[9] only slightly differs from those of the integer

Montgomery multiplication algorithm . Therefore, a

scalable arithmetic module, which can be adjusted

to operate in both types of fields, is feasible,

provided that this extra functionality does not lead

to an excessive increase in area or a dramatic

decrease in speed.

 Performance, security, size and versatility of

ECC systems are a function of : finite field

selection, elliptic curve type ,point representation

type ,algorithms used ,protocol ,key size, hardware

only, software only or mixed hardware-software

implementations ,memory available (table lookups)

and area.

 The Experimental results show that the

processor over Binary Field has high throughput ,

high speed and is compact in area.

 Main contributions in this paper are

summarized below,

• Simplified Hardware Architecture for

Arithmetic Unit is introduced.

• A New Scheduling Unit is developed.

• Montgomery Multiplication Unit is

modified.

• An Efficient DATA PATH for the

processor is presented.

• .We Analyse the Design considerations

such as the effect of Time , Area ,Power ,

Number of Arithmetic Units in Parallel etc.,

by supplying implementation results

obtained by Altera Quartus Synthesis Tools.

2 Literature Survey
 PUBLIC-KEY cryptosystems provide

robust data security for vital applications such as

private communications and services. Among them,

elliptic curve cryptography (ECC) [4],[6],[9] has

been regarded mature, having higher security

strength, compared with other conventional public-

key cryptosystems (e.g., RSA), when considering

the same key length. However, ECC involves

complicated finite-field arithmetic, i.e., a sequence

of modular multiplications and additions with large

numbers. ECC is based on point operations on

elliptic curves (ECs) over a finite field, either prime

field GF(p) or binary field GF(2
m
). Many ECC

designs have been published over specified finite

fields [2],[3],[7],[10],[11],[12], either GF(p) or

GF(2
m
), especially because ECC over a specific

GF(2
m
) is fast and compact due to its carry-

propagation-free nature. Recently, there have been

more and more dual-field ECC designs addressing

flexibility and scalability for widespread

applications [7] [11], [12]. In addition, parallel ECC

architectures with multiple arithmetic units

[7],[10],[11] have been proposed to effectively

reduce operation time, compared with serial ones. In

this brief, the previous work on the two-phase

scheduling methodology and a parallel ECC

architecture [7] is extended, addressing the hardware

architecture for realistic chip implementation,

measurement, and characterization, and

performance analysis when integrated with a

practical system platform. In addition, to full fill

efficient system applications, such as the elliptic

curve digital signature algorithm (ECDSA) [1] and

data encryption/ decryption schemes were done.

Point double and point addition of López’s

projective coordinate [8] over GF(2
m
) were done in

previous work. For hardware efficiency, the word-

based Montgomery multiplication [5] is adopted for

fast modular multiplication.

3 EC Arithmetic Operations
 ECC manipulates points on the given EC to

add or double them. Our processor focuses on the

ECs over GF(2
m
) specified in the IEEE 1363

Standard Specifications for Public-Key

Cryptography . The standardized EC over GF(2
m
) is

 y
2
 + xy = x

3
 + αx

2
 + β,

where x, y € GF(2
m
) and β ≠ 0.

 The most common point operation of ECC

is the point scalar multiplication, i.e.,

 kP = P + P + ・ ・ ・ + P,

 k times

where k is a scalar and P is a point on EC. We adopt

the addition-and-subtraction method for the point

scalar multiplication, which consists of iteratively

point double and/or point double with point

addition/ subtraction. Lopez projective coordinate

(x,y,z)⟵(x/z, y/z
2
) is used for GF(2

m
).

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 354 Issue 10, Volume 10, October 2011

 Equations (1) and (2),summarize the

computation of point double and point addition

using López’s projective coordinate over GF(2
m
).

 (1)

 (2)

3.1 Montgomery Multiplier
 Our work is focussed in the binary field.

In the case of GF(2
m
), we use polynomials of degree

at most m−1 with coefficients from the binary field

GF(2) to represent the field elements. Given two

polynomials

 A(x)= am−1x
m−1

 + a m−2 x
m−2

 + · · · + a1x + a 0 (3)

B(x)= b m−1 x
m−1

 + b m−2 x
m−2

 + · · · + b1x + b 0 (4)

 and the irreducible polynomial of degree m

p(x) = x
m
 + p m−1 x

m−1
 + .. + · · + p1x + p 0 (5)

generating the field GF(2
m
),the Montgomery

multiplication of A(x) and B(x) is defined as the field

element C(x) which is given as

C(x) = A(x) · B(x) · R(x)
–m

 (mod p(x)) (6)

 The Montgomery image of a polynomial

A(x) is given as A*(x) = A(x) · x
m
 (mod p(x)).

Similarly, before performing Montgomery

multiplication, the operands must be transformed

into the Montgomery domain and the result must be

transformed back. These transformations are

accomplished using the pre-computed variable

R
2
(x) = x

2m
 (mod p(x)) as follows:

A*(x) = MonMul(A,R
2
)

 = A(x) · R
2
(x) · R

−1
(x)

 = A(x) · R(x) (mod p(x)) (7)

B*(x) = MonMul(B,R
2
)

 = B(x) · R
2
(x) · R

−1
(x)

 = B(x) · R(x) (mod p(x)) (8)

C(x) = MonMul(C*, 1)

 = C(x) · R(x) · R
−1

(x)

 = C(x) (mod p(x)) . (9)

4 Elliptic Curve Processor
4.1 Overall Architecture

Fig 1 ECC PROCESSOR

 The ECC instructions and data are fed into

the input buffer through the standard advanced

microcontroller bus architecture advanced high-

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 355 Issue 10, Volume 10, October 2011

performance bus (AHB) interface. The main

controller decodes the instructions that support

comprehensive cryptographic functions, including

the point coordinate conversion, point double, point

addition, point scalar multiplication, Montgomery

pre-/post processing, modular exponentiation,

common finite-field arithmetic operations, and RSA

basic operations. Then, the microinstructions are

generated for the EC Controller to manipulate the

data path, i.e., dual-field multipliers and adders. In

addition, the Montgomery controller is used for

efficient Montgomery multiplication. The dual-field

multipliers and dual-field adders are capable of

performing arithmetic over both the prime and

binary fields by a unified hardware. Each

intermediate variable during the EC operations

stored in the register file. Finally, the output buffer

stores the results, which can be accessed via the bus.

Fig 2 Data path of ECC Processor

The parallel architecture utilizes four 32-bit

word-based multipliers and four 64-bit word-based

adders. By applying the two-phase scheduling

methodology the ECC throughput can be improved

2.5 times over GF(p) and 3.2 times over GF(2
m
).

Using the word-based approach, a scalable key size

can be supported by simply extending the buffer

size in the register file and the Montgomery data

selector. Extending the key size requires the

processor to complete the operation in more cycles.

The area increases by about 28 K gates for the larger

buffers. On the other hand, a larger word width can

be used for the word-based arithmetic units. Let m

be the data width of the field size and r be the data

width of the multiplier; the number of cycles for the

Montgomery multiplication is proportional to (m/r)
2
.

In addition, the number of cycles for EC operations

(e.g., the EC point scalar multiplication and EC

point addition) is proportional to that for the

Montgomery multiplication. Therefore, the larger

arithmetic unit can speed up the operation for the

price of area overhead.

 Fig 2 shows the proposed dual-field data

path, which consists of the word-based dual-field

adders, EC data selector, Montgomery data selector,

and register file. The inputs include curve

parameters α and β, the prime or irreducible

polynomial p, and base point (x0, y0, z0). The EC

point scalar multiplication can be done by iteratively

point double and/or point double with point

addition. To accomplish point addition and doubling

over the prime field and the same over the binary

field, the EC controller decomposes the equations

into a sequence of atomic operations with a single

multiplication/addition. It manages the operation

scheduling by control signal stage. For the addition

phase, the EC data selector directly accesses the

dual-field adders by control signal mul/add. The

word-oriented partial results are then stored in the

register file by mul/add as well. For the

multiplication phase, the 160-bit operands are

manipulated by the Montgomery data selector to

perform the Montgomery multiplication, which

consists of word-based multiplication and addition,

via word index signal (w-index) from the

Montgomery controller. At most seven 160-bit

intermediate results are stored in the register file.

The two levels of EC data selection and

Montgomery data selection make the architecture

highly scalable for different field sizes and word

widths, and flexible for arbitrary EC parameters.

4.2 Algorithm
 The basic EC arithmetic, e.g., the point

double, addition, or subtraction, consists of a

heterogeneous variety of primitive finite field

operations, such as addition, subtraction,

multiplication, and inversion. The EC arithmetic

with traditional affine coordinate involves finite

field inversion which is much more expensive than

multiplication and addition. Our design adopts

Jacobian’s projective coordinate (x,y,z)->(x/z
2
,y/z

3
)

over GF(P) to effectively replace the field inversion

with several field multiplications. Furthermore,

López’s projective coordinate is used over GF(2
m
)

because there are fewer field operations in López’s

projective coordinate (x,y,z)-> (x/z,y/z
2
) than those

in Jacobian’s over GF(2
m
). Despite the inversion,

the finite field multiplication is critical among

primitive field operations. Montgomery algorithm is

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 356 Issue 10, Volume 10, October 2011

a well-known fast modular multiplication algorithm.

Our design adopts finely integrated operand

scanning (FIOS) Montgomery algorithm , as shown

in Algorithm . It is a word-based algorithm for both

GF(P) and GF(2
m
) . Let m be the number of bits of

the prime or the irreducible polynomial, and r be the

word width of the multiplier, then w=(m/r) ,which is

the number of words in an operand. In our design

5=160/32. Different field size can be supported by

changing w accordingly. When adopting projective

coordinate representation and Montgomery

multiplication, the pre/post-processing is needed.

The post-processing requires a Montgomery

multiplication with the unity value 1. The

conversion of the EC point between affine and

projective coordinates are also required. Converting

a EC point from affine coordinate to projective

coordinate can be easily done, i.e.,

.

However, field inversions and multiplications are

needed to to convert the point in the projective

coordinate to affine coordinate,i.e.,

 over GF(P),and

 over GF(2
m
).

Word Based Montgomery Multiplication

Algorithm

Input: a,b,p,q

Output: c=a×b×2
 –m

 (mod p)

Steps:

C=0;

For i=0 to w-1 by +1 do

 z=0;

 {z, c 0 }= c 0 +a I × b 0 ;

 t= c 0 ×q (mod 2
r
);

 {z, c 0 }= {z, c 0 }+t×p0 ;

 for j to w-1 by +1 do

 {z,c j }=cj + ai ×bj +z;

 {z,c j-1 }= {z,c j }+t × p j ;

 end for;

 c w-1 =z;

end for;

4.3 Proposed Montgomery Multiplier Unit
 Fig 3 shows the data path for the modified

Montgomery Multiplier Unit. Four 160 bit inputs

are a,b,p,q .The control signals are fieldsel, clk, en.

Splitter is used to divide 160 bit number into five

32 bit numbers to perform word –based

multiplication algorithm. It involves series of

preprocess, Dual Multiplication Unit (Dual mult

unit), Field Multiplexer (Field Mux), Dual Field

Adder(DFA) and Dual Field Multiplxer (DFA

Mux). After completion of Five iterations, the result

cout is obtained.

Fig 3 Modified Multiplier Unit

4.4 Proposed Arithmetic Unit

 In this unit arithmetic operations are

performed by either choosing Mont Multiplier or

dfa_au unit. The inputs a,b,p,q are fed for both units.

By using correct control signals sel, fieldsel, as_sel

either Mulout or Addout is obtained.

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 357 Issue 10, Volume 10, October 2011

Fig 4 Proposed Arithmetic Unit

Fig 5 Proposed Scheduling Unit

 In this scheduling unit,base point

x0,y0,z0,x1,y1,curve parameters are fed to perform

scalar multiplication.c_count and stage are

incremented as operations are carried out in

different Arithmetic Units (AU’s) by their

respective control signals.Final values obtained are

listed in this Fig.5

5 Design Scheduling
 The computation of ECC is decomposed

into atomic finite field operations and optimized

under the proposed parallel architecture. Based on

the parallel architecture, scalable ECC processor

with multiple AUs is presented.Once we have the

specific hardware architecture, the design

exploration can be done effectively with various

design parameters, e.g., area, throughput, etc. Point

scalar multiplication, the most crucial operation in

our ECC processor, consists of repeated point

double (PDBL) and point addition/subtraction

(PADDSUB) that requires primitive finite field

operations. Traditional serial ECC architectures

utilized single finite field AU and addressed on its

faster design. Recently, several parallel architectures

tried to shorten the computation time with multiple

AUs in a straightforward manner. A two-phase

approach to schedule the primitive operations based

on our parallel ECC architecture, which consists of

the coarse-grained scheduling and fine-grained

scheduling. With multiple AUs and the proposed

methodology, successive iterations (i.e., PDBL-

PDBL, PDBL-PADDSUB, or PADDSUB-PDBL)

can be further folded up to reduce the operation time

in the point scalar multiplication.

5.1. Coarse-Grained Scheduling
 The coarse-grained (or global) scheduling is

based on the data path scheduler using the integer

linear programming (ILP, also known as LIP)

technique, which can guarantee the optimal result

under the given constraints. An example is used here

for the illustration of coarse-grained scheduling

approach. Suppose part of the EC point arithmetic

over GF(p) is listed as follows:

 (10)

 Where p0=(x0,y0,z0), p1=(x1,y1,z1) and

p2=(x2,y2,z2)= p0+ p1 . For the simplification only

x2 and z2 are considered in the example, and we

assume the intermediate value p in equation (10) is

pre calculated and known in advance. The first step

of the scheduling is to further decompose the EC

arithmetic into atomic (or primitive) finite field

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 358 Issue 10, Volume 10, October 2011

operations (e.g., the single multiplication, square,

addition or subtraction). For this example, 11 atomic

operations are obtained as shown in Table 1 .

Suppose there are atomic field additions,

subtractions, and multiplications in an EC arithmetic

operation. Each can be labeled as Oi , where

 1≤ i ≤ n . Data precedence relation can be defined

as oi → oj if output of Oi is one of the inputs

of Oj , i.e., Oi is the immediate predecessor of Oj.

The start time (si) and require time (ri) of ith atomic

operation can be found by the data precedence

relation. With each atomic operation taking one

stage, several parameters are also defined:

 1) Ns represents the number of stages.

 2) Nau denotes the number of AUs in our ECC

processor core.

3) xi,j is a zero-one variable. If Oi is scheduled in

Stage j , xi,j =1, otherwise

 xi,j =0.

Therefore, our scheduling becomes an ILP

optimization subject to the following constraints:

 (11)

 (12)

 (13)

Equation (11) defines the mobility that Oi

must be executed between the Sith Stage and ri th

Stage. Equation (12) ensures that the precedence

relations are preserved, where K is the number of

stages required for executing Oi. We assume that

each operation takes one stage and the K is

assigned to be 1. Equation (13) constrains the

maximum number of operations in each stage as the

given number of AUs (i.e., Nau). Finally, our

objective is to minimize Ns for the smallest number

of stages (i.e.,T) with the given constraint of Nau

(i.e.,A)—in other words, to obtain the highest

throughput under the given parallel architecture. Our

observation shows that when performing area or

throughput optimization, the finite field addition and

subtraction play a minor role as compared with the

multiplication. Therefore our coarse grained

scheduling focuses on the multiplications. Table 2

shows the data precedence relation of atomic

operations in Table 1.

 Table 1 Atomic operations of Equation 10

Table 2 Data precedence relation of Table 1

Table 3 Scheduling for GF(2

m
) with 3 AU’s

S
 AU1 AU2 AU3

1

2

3

4

5

6

7

8

9

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 359 Issue 10, Volume 10, October 2011

similarly the scheduling was performed with 2,3,and

4 arithmetic Units .Simulation and synthesis for all

has be done and the snap shots are shown. To study

the Performance Comparison of Binary with the

Prime field , the Scheduling for the prime filed is

also performed.

Table 4 Scheduling for GF(2
m
) with 2 AU’s

 Table 5 shows the scheduling result for

data flow diagram given in Fig 6. It has been

realized using two AU’s and four stages. The

coarse-grained scheduling is applied to optimize the

PDBL and mix-coordinate PADDSUB

simultaneously. The scheduling results of the PDBL

with PADDSUB over GF(2
m
) and for GF(p) is also

performed.

Fig 6 Data Flow Diagram

 Table 5 Scheduling result for DFD.

 Scheduling with more than four AUs cannot

obtain further improvement. For a single stage, each

AU (with one multiplier and one adder) performs

one modular multiplication with at most two

S AU1 AU2

1

2

3

4

5

6

7

8

9

10

11

12

S AU1 AU2

1

2

3

4

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 360 Issue 10, Volume 10, October 2011

modular additions and subtractions. We allow

multiple additions and subtractions in a single stage

because of their little cycle overhead as compared

with the cycles of multiplication. The asterisk marks

in the figures identify those operations belonging to

the PDBL to produce (xq,yq,zq). whereas the

complete set of operations are to calculate the

PDBL-PADDSUB, i.e.,(x2,y2,z2) . The result has

been summarized in Table 6

Table 6 comparison - coarse grained scheduling

FIELD SHEDULING NAU

1 2 3 4

GF(P) COARSE-

GRAINED

22 11 8 7

GF(2m) COARSE-

GRAINED

24 12 9 7

.

5.2. Fine-grained scheduling:

After the coarse-grained scheduling, several fine-

grained (or detailed) scheduling techniques can be

further applied, i.e.,Operand rescheduling, Atomic

rescheduling and Loop folding.It is obvious that the

computation of the PDBL is much simple than that

of the PDBL-PADDSUB. For the illustration we

redraw one iteration for the PDBL with four AUs

(that perform atomic operations with asterisk

marks), as shown in Table 7. The AUs are not fully

utilized in this scheduling. For example,AU3 and

AU4 are both idle at Stages 1, 3, 4, and 5 for the

PDBL over GF(2
m
) .

 Therefore, the p8 and yq by AU1 at the

Stage 5 can be moved to Stage 4 and executed by

while keeping the correct data precedence as shown

in Table 8 .Therefore, the simple atomic

rescheduling can reduce the stage number of the

PDBL over from 5 to 4. As previously mentioned,

the EC scalar multiplication consists of iteratively

PDBL and PDBL-PADDSUB operations. We

present here a loop folding technique to further

improve the scheduling with four AUs. As shown in

Table 7 after the atomic rescheduling, AU3 and AU4

are still idle at Stages 1, 3, and 4. If AU3 and AU4 at

Stage 1 are used for the computation of P0 and p1 ,

as shown in Table 8, AU3 and AU4 at Stage 4 can

also be used to compute the P0 and p1 of the next

iteration no matter the successive iteration is the

PDBL or PDBL-PADDSUB [i.e.,(PDBL)-(PDBL)

or (PDBL)-(PDBL-PADDSUB)], because both of

them also require only two AUs at Stage 1.

Similarly, AU3 and AU4 at the last Stage of the

PDBL-PADDSUB can be used to compute the P0

and p1 of the successive PDBL or PDBL-

PADDSUB iteration [i.e., (PDBL-PADDSUB)-

(PDBL) or (PDBL-PADDSUB)-(PDBL-

PADDSUB)] over GF(2
m
). Loop folding technique

can be applied to the PDBL-PDBL and PADDSUB-

PDBL over GF(p) with four AUs as well . The two

consecutive iterations can be overlapped for one

stage. This kind of loop folding technique, which is

similar to the software pipelining, can efficiently

improve the hardware utilization and throughput as

long as no precedence violation occurs. For the

scheduling with four AUs one stage can be

effectively removed for each iteration. As a result,

the minimal number of stages are obtained.

Table 7 Coarse grained scheduling for PDBL with 4

 AU’s over GF(2
m
)

S AU1 AU2 AU3 AU4

1

2

3

4

5

Table 8 Fine grained scheduling for PDBL with 4

 AU’s over GF(2
m
)

Darkened cells shows the beginning of next

iteration. Thus in total, only 3 stages are required for

point doubling operation with four AU’s over

GF(2
m
).

S AU1 AU2 AU3 AU4

1
2

3

4

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 361 Issue 10, Volume 10, October 2011

6 Simulation Results

Fig 7 Montgomery Multiplier Unit(160 bit):

Fig 8 Scheduling with 2 AU-binary(160 bit):

Fig 9 Scheduling with 4 AU-binary(160 bit):

Fig 10 Scheduling with 4 AU(pd)-binary-fine

 grained(160 bit):

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 362 Issue 10, Volume 10, October 2011

Table 9 Comparision of Various Designs -

 Scalar Multiplication

Fig 11 Au Binary-Fine Grain-Synthesis .

Fig 12 4 AU binary-power summary

 Fig 13 Scalar multiplication Space Complexity

 analysis

O
U

R
S

A
.S

A
T

O
H

A
N

D

K
.T

A
K

A
N

O

K
.S

A
K

I

Y
A

M
A

J
Y

U
-Y

U
A

N

L
A

I

P
L

A
T

F
O

R

A
L

T
E

R
A

-

Q
U

A
R

T
U

S

1
0
.1

0
.1

3
-µ

m

C
M

O
S

X
IL

IN
X

V
IR

T
E

X

 I
I

P
R

O

X
IL

IN
X

V
IR

T
E

X

II

F
IE

L
D

1
6
0

-

B
IT

G
F

(2
1

6
0
)

1
6
0

-

B
IT

G
F

(2
1

6
0
)

1
6
0

-b
it

G
F

(2
1

6
3
)

1
6
0
B

IT

G
F

(2
1

6
0
)

C
Y

C
L

E
S

2
7

,2
5
7

3
0

,0
2
8

2
8

2
,0

0
0

1
7

7
,0

0
0

1
0

3
,5

9
4

8
3

,9
0
1

7
4

,0
2
1

5
4

,3
1
9

F
M

A
X

4
1

.5
5

6
7

.4
8

1
7

9

5
9

2

1
0

0

1
0

0

9
4

.7

9
4

.7

 6
5

6

µ
se

c

4
4

5

µ
se

c

1
.7

1

m
s

3
4

0

µ
se

c

1
.0

4

m
se

5
7

4

µ
se

c

7
8

2

µ
se

c

5
7

4

µ
se

c

P
A

R
A

L
L

E
L

4
,

3
2

B

IT

A
U

 1
,

3
2

-b
it

M
u

l

3
,

1
6

0
*
4

-b
it

M
A

L
U

’S

4
,

 3
2

b
it

A
U

 A

R
E

A

1
4
,0

7
5

L
U

T
’s

9
7
6

3

L
U

T
’s

5
2
,0

3
5

G
a

te
s

 5
2

,0
3
5

 G
a

te
s

 6

B
R

A
M

’S
,

 8
9

5
4

S
L

IC
E

S

3
9
,5

3
1

 s
li

ce
s

 3
9

,5
3
1

 s
li

c
e
s

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 363 Issue 10, Volume 10, October 2011

Fig 14. Clk to output time vs AU’s

Fig 15 . CPU TIME vs AU’S

7 Conclusion
 This paper presents a high-throughput

Binary field elliptic-curve based crypto (ECC)

processor that features all ECC functions with the

programmable field and curve parameters over both

prime and binary fields. The proposed ECC

processor outperforms other ECC hardware designs

in terms of functionality, scalability, performance,

cost effectiveness, and power consumption.

 The scalable ECC architecture and unified

data path for both the prime and binary fields has

been presented. In addition, to the basic EC

arithmetic operations, i.e., point coordinate

conversion, point double, point addition, and point

scalar multiplication, this processor has been

extended to form parallel architecture with 2, 3, 4

AU’s. Scheduling is performed with coarse grained

and fine grained scheduling.

 All functional block units have been

realized using VHDL language and simulated using

Altera Modelsim 6.0 and synthesized on Quartus

software tools. Simulated output waveform

windows are shown. Synthesis summary

window, Comparison Results obtained is

plotted and shown .

 Results show that, throughput of 4 AU

system is increased when compared to processor

with two or three number of AU’s by reduction in

cycle count. Various parameters were taken to

compare Binary vs Prime field system. It shows that

binary system is more area efficient and time

efficient when compared to prime field system.

Maximum throughput is further achieved by

introducing fine grain scheduling to coarse grain

scheduling. Cycle count decreases to 11,643 from
16,743 (@115.47MHz) in Fine grain scheduling to

achieve high throughput.

 As number of AU’s increases ,CPU time

decreases with some area overhead. On analysis of

parameters like ALUT’s, logic registers, clock to

output time, CPU time, cycle count, power for

different number of AU’s , 4 AU system achieves

Optimum result. Our design is compared with

various designs given in Literature survey. This

design in Altera-quartus platform (Target device-

EP3SE50F780C3) Outperforms the other designs .

This design can further be extended to CMOS

platform.

References:

[1] ANSI X9.62-1998: Public Key Cryptography

 for The Financial Services Industry: The

 Elliptic Curve Digital Signature Algorithm

 (ECDSA),Sep. 1998, Washington, DC: Amer.

 Nat. Standards Inst. (ANSI).

[2] G. Chen, G. Bai, and H. Chen, “A high-

 performance elliptic curve cryptographic

 processor for general curves over GF(p) based

 on a systolic arithmetic unit,” IEEE Trans.

 Circuits Syst. II, Exp. Briefs, vol. 54, no. 5, pp.

 412–416, May 2007.

[3] J. Goodman and A. P. Chandrakasan, “An

 energy- efficient reconfigurable public-key

 cryptography processor,” IEEE J. Solid-State

 Circuits, vol. 36,no. 11, pp. 1808–1820, Nov.

 2001.

[4] IEEE, IEEE 1363 Standard Specifications for

 Public- Key Cryptography, Jan. 2000,

 Piscataway, NJ: IEEE Standards Dept.

[5] Ç. K. Koç and B. S. Kaliski, Jr., “Analyzing and

 comparing Montgomery multiplication

 algorithms,” IEEE Micro, vol. 16, no. 3, pp. 26–

 33,Jun. 1996.

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 364 Issue 10, Volume 10, October 2011

[6] N. Koblitz, “Elliptic curve cryptosystems,”

 Math. Comput., vol. 48pp. 203–209, 1987.

[7] J.-Y. Lai and C.-T. Huang, “Elixir: High-

 throughput cost-effective dualfield processors

 and the design framework for elliptic curve

 cryptography,” IEEE Trans. Very Large Scale

 Integr. (VLSI) Syst., vol. 16, no. 11, pp. 1567–

 1580, Nov. 2008.

[8] J. López and R. Dahab, “Improved algorithms

 for elliptic curve arithmetic in GF(2m),” in 5th

 Annu. Int. Workshop SAC. New York: Springer-

 Verlag, Aug. 1998, vol. 1556, pp. 201–212.

[9] V. S. Miller, “Use of elliptic curve in

 cryptography,” in Proc. Crypto,

 1986, pp. 417–426.

[10] K. Sakiyama, L. Batina, B. Preneel, and I.

 Verbauwhede, “Multicore curve- based

 cryptoprocessor withreconfigurable modular

 arithmetic logic units over GF(2n),” IEEE

 Trans. Comput., vol. 56, no. 9, pp. 1269–1282,

 Sep. 2007.

[11] K. Sakiyama, E. D. Mulder, B. Preneel, and I.

 Verbauwhede, “A parallel processing hardware

 architecture for elliptic curve cryptosystems,”

 in Proc. IEEE ICASSP, Toulouse, France, May

 2006, vol. 3, pp. 904–907.

[12] A. Satoh and K. Takano, “A scalable dual-field

 elliptic curve cryptographic processor,”

 IEEE Trans. Comput., vol. 52, no. 4, pp. 449–

 460, Apr. 2003.

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 365 Issue 10, Volume 10, October 2011

