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Abstract: - Implementing Public-Key cryptography systems is a challenge for most application platforms when 

several factors have to be considered in selecting the implementation platform. Elliptic Curve Cryptography is 

considered much more suitable than other public-key algorithms. It uses lower power consumption, has higher 

performance and can be implemented on small areas that can be achieved by using ECC. In this work, scalable 

and parallel framework  of  FPGA based ,Dual Field ( Prime and  Binary Field) ECC processor  is 

explored.Using Altera –Quartus software tool, a 160 bit ECC processor core with  four  32 bit Arithmetic Units  

is evaluated  on EP3SE50F780C3 .Scalar multiplication is performed in  445 µsecs and occupies 9763 LUT’s . 
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1 Introduction                                                                                            
 The incredible improvements in ubiquitous 

computing, and its indispensable implications gives 

rise to its being an effective domain of interest. As 

the notion of ubiquitous computing is becoming 

more and more part of life, various applications 

consisting of this new technology can be 

encountered.  

 PKC is indispensable for secure digital 

communications in security systems including high 

performance applications (e.g. ATMs) and low 

power applications (e.g. smart cards and RFID tags). 

In order to satisfy the performance requirements of 

different public-key cryptosystems, the hardware 

has to support modular operations over GF(p) or  

GF(2
m
) with different operation sizes . 

Moreover, it is preferable to have scalability in 

performance, that is, when allocating more hardware 

resources, a higher performance should be obtained. 

In this work, a flexible and scalable datapath for 

ECC processor  is proposed. Having flexibility in 

the controller block is also necessary for public-key 

crypto systems to support different computational 

sequences in RSA and curve-based cryptography. 

ECC depends on  hard number theoretic 

problem: Elliptic Curve Discrete Logarithms 

(ECDL). At the base of ECC operations is finite 

field (Galois Field) algebra which focuses on prime 

 

Galois Fields (GF(p)) and binary extension Galois  

Fields (GF(2
m
)). It is Standardized by NIST, ANSI  

and IEEE: NIST, NSA Suite B, ANSI X9.62, IEEE 

P       1363, etc. 

 An Arithmetic unit is called scalable, if it 

can be reused or replicated in order to generate long 

precision results independently of the data path 

precision for which the unit was originally designed. 

To speed up the multiplication operation, various 

dedicated multiplier modules were developed. These 

designs operate over a fixed finite field. For 

example, the multiplier designed for 155 bits cannot 

be used for any other field of higher degree. When a 

need for a multiplication of larger precision arises a 

new multiplier must be designed. Another way to 

avoid redesigning the module is to use software 

implementations and fixed precision multipliers. 

However, software implementations are inefficient 

in utilizing inherent concurrency of the 

multiplication because of the inconvenient pipeline 

structure of the microprocessors being used. 

Furthermore, software implementations on fixed 

digit multipliers are more complex and require 

excessive amount of effort in coding. Therefore, a 

scalable hardware module specifically tailored to 

take advantage of the concurrency of the 

Montgomery multiplication algorithm becomes 

extremely attractive. 
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Even though prime and binary extension fields, 

GF(p) and GF(2
m
),have dissimilar properties, the 

elements of either field are represented using almost 

the same data structures inside the computer. Also, 

the algorithms for basic arithmetic operations in 

both fields have structural similarities allowing a 

unified module design methodology. For example, 

the steps of the Montgomery multiplication 

algorithm for binary extension field GF(2
m
) given in 

[9] only  slightly differs from those of the integer 

Montgomery multiplication algorithm . Therefore, a 

scalable arithmetic module, which can be adjusted 

to operate in both types of fields, is feasible, 

provided that this extra functionality does not lead 

to an excessive increase in area or a dramatic 

decrease in speed.  
 

 Performance, security, size and versatility of 

ECC systems are a function of : finite field 

selection, elliptic curve type ,point representation 

type ,algorithms used ,protocol ,key size, hardware 

only, software only or mixed hardware-software 

implementations ,memory available (table lookups)  

and area. 

 The Experimental results show that the 

processor over Binary Field has high throughput , 

high speed and is compact in area.  

 Main contributions in this paper are 

summarized below, 

 

• Simplified  Hardware Architecture for  

Arithmetic Unit  is introduced. 

• A New  Scheduling  Unit  is  developed. 

• Montgomery Multiplication Unit is 

modified. 

• An Efficient DATA PATH  for the 

processor is presented. 

• .We  Analyse the Design considerations 

such as the effect  of Time , Area ,Power , 

Number of Arithmetic Units in Parallel etc., 

by supplying implementation results 

obtained by Altera Quartus Synthesis Tools.   

 
 

2  Literature Survey 
 PUBLIC-KEY cryptosystems provide 

robust data security for vital applications such as 

private communications and services. Among them, 

elliptic curve cryptography (ECC) [4],[6],[9] has 

been regarded mature, having higher security 

strength, compared with other conventional public-

key cryptosystems (e.g., RSA), when considering 

the same key length. However, ECC involves 

complicated finite-field arithmetic, i.e., a sequence 

of modular multiplications and additions with large 

numbers. ECC is based on point operations on 

elliptic curves (ECs) over a finite field, either prime 

field GF(p) or binary field GF(2
m
). Many ECC 

designs have been published over specified finite 

fields [2],[3],[7],[10],[11],[12], either GF(p) or 

GF(2
m
), especially because ECC over a specific 

GF(2
m
) is fast and compact due to its carry-

propagation-free nature. Recently, there have been 

more and more dual-field ECC designs addressing 

flexibility and scalability for widespread 

applications [7] [11], [12]. In addition, parallel ECC 

architectures with multiple arithmetic units 

[7],[10],[11] have been proposed to effectively 

reduce operation time, compared with serial ones. In 

this brief, the previous work on the two-phase 

scheduling methodology and a parallel ECC 

architecture [7] is extended, addressing the hardware 

architecture for realistic chip implementation, 

measurement, and characterization, and 

performance analysis when integrated with a 

practical system platform. In addition, to full fill 

efficient system applications, such as the elliptic 

curve digital signature algorithm (ECDSA) [1] and 

data encryption/ decryption schemes were done. 

Point double and point addition of López’s 

projective coordinate [8] over GF(2
m
) were done in 

previous work. For hardware efficiency, the word-

based Montgomery multiplication [5] is adopted for 

fast modular multiplication. 

 

 

3  EC  Arithmetic Operations    
       ECC manipulates points on the given EC to 

add or double them. Our processor focuses on the 

ECs over GF(2
m
) specified in the IEEE 1363 

Standard Specifications for Public-Key 

Cryptography . The standardized EC over GF(2
m
) is 

 

 y
2
 + xy = x

3
 + αx

2
 + β,  

where x, y € GF(2
m
)   and  β ≠  0.  

  The most common point operation of ECC 

is the point scalar multiplication, i.e.,  

 

         kP = P + P + ・ ・ ・ + P,  

 

 

                          k  times 

where k is a scalar and P is a point on EC. We adopt 

the addition-and-subtraction method for the point 

scalar multiplication, which consists of iteratively 

point double and/or point double with point 

addition/ subtraction. Lopez projective coordinate 

(x,y,z)⟵(x/z, y/z
2
) is used for GF(2

m
). 
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  Equations (1) and (2),summarize the 

computation of point double and  point addition 

using  López’s projective coordinate over GF(2
m
). 

 

               

                                         (1) 

                                                

    
 

 

 

 

 

 

                                                     (2) 

 

 

  

 

 

  

 

3.1  Montgomery Multiplier   
 Our work is  focussed  in  the binary field. 

In the case of GF(2
m
), we use polynomials of degree 

at most m−1 with coefficients from the binary field 

GF(2) to represent the field elements. Given two 

polynomials 

 

 A(x)= am−1x 
m−1

 +  a m−2 x 
m−2

 + · · · + a1x + a 0    (3) 

 

B(x)= b m−1 x 
m−1

 + b m−2  x 
m−2

 + · · · + b1x + b 0     (4)     

 and the irreducible polynomial of degree m 

p(x) = x 
m
 + p m−1 x 

m−1
 +  .. +  · · + p1x + p 0         (5) 

generating the field GF(2
m
),the Montgomery 

multiplication of A(x) and B(x) is defined as the field 

element C(x) which is given as 

C(x) = A(x) · B(x) · R(x) 
–m

  (mod p(x))              (6) 

 The Montgomery image of a polynomial 

A(x) is given as A*(x) = A(x) · x
m
 (mod p(x)). 

Similarly, before performing Montgomery 

multiplication, the operands must be transformed 

into the Montgomery domain and the result must be 

transformed back. These transformations are 

accomplished using the pre-computed variable  

R
2
(x) = x

2m
 (mod p(x)) as follows: 

A*(x) = MonMul(A,R
2
)  

          = A(x) · R
2
(x) · R

−1
(x) 

          = A(x) · R(x) (mod p(x))                (7)          

B*(x) = MonMul(B,R
2
) 

          = B(x) · R
2
(x) · R

−1
(x) 

          = B(x) · R(x) (mod p(x))                           (8) 

C(x) = MonMul( C*, 1) 

         = C(x) · R(x) · R
−1

(x)  

         = C(x) (mod p(x)) .                                    (9) 
 

 

 
4    Elliptic Curve  Processor  
4.1   Overall Architecture 

  

 

Fig 1 ECC PROCESSOR 

 The ECC instructions and data are fed into 

the input buffer through the standard advanced 

microcontroller bus architecture advanced high-
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performance bus (AHB) interface. The main 

controller decodes the instructions that support 

comprehensive cryptographic functions, including 

the point coordinate conversion, point double, point 

addition, point scalar multiplication, Montgomery 

pre-/post processing, modular exponentiation, 

common finite-field arithmetic operations, and RSA 

basic operations. Then, the microinstructions are 

generated for the EC Controller to manipulate the 

data path, i.e., dual-field multipliers and adders. In 

addition, the Montgomery controller is used for 

efficient Montgomery multiplication. The dual-field 

multipliers and dual-field adders are capable of 

performing arithmetic over both the prime and 

binary fields by a unified hardware. Each 

intermediate variable during the EC operations  

stored  in the register file. Finally, the output buffer 

stores the results, which can be accessed via the bus. 

 
Fig 2 Data path  of  ECC Processor 

The parallel architecture utilizes four 32-bit 

word-based multipliers and four 64-bit word-based 

adders. By applying the two-phase scheduling 

methodology  the ECC throughput can be improved 

2.5 times over GF(p) and 3.2 times over GF(2
m
). 

Using the word-based approach, a scalable key size 

can be supported by simply extending the buffer 

size in the register file and the Montgomery data 

selector. Extending the key size requires the 

processor to complete the operation in more cycles. 

The area increases by about 28 K gates for the larger 

buffers. On the other hand, a larger word width can 

be used for the word-based arithmetic units. Let m 

be the data width of the field size and r be the data 

width of the multiplier; the number of cycles for the 

Montgomery multiplication is proportional to (m/r)
2
. 

In addition, the number of cycles for EC operations 

(e.g., the EC point scalar multiplication and EC 

point addition) is proportional to that for the 

Montgomery multiplication. Therefore, the larger 

arithmetic unit can speed up the operation for the 

price of area overhead. 

  Fig 2  shows the proposed dual-field data 

path, which consists of the word-based  dual-field 

adders, EC data selector, Montgomery data selector, 

and register file. The inputs include curve 

parameters α and β, the prime or irreducible 

polynomial p, and base point (x0, y0, z0). The EC 

point scalar multiplication can be done by iteratively 

point double and/or point double with point 

addition. To accomplish point addition and doubling 

over the prime field and the same over the binary 

field, the EC controller decomposes the equations 

into a sequence of atomic operations with a single 

multiplication/addition. It manages the operation 

scheduling by control signal stage. For the addition 

phase, the EC data selector directly accesses the 

dual-field adders by control signal mul/add. The 

word-oriented partial results are then stored in the 

register file by mul/add as well. For the 

multiplication phase, the 160-bit operands are 

manipulated by the Montgomery data selector to 

perform the Montgomery multiplication, which 

consists of word-based multiplication and addition, 

via word index signal (w-index) from the 

Montgomery controller. At most seven 160-bit 

intermediate results are stored in the register file. 

The two levels of EC data selection and 

Montgomery data selection make the architecture 

highly scalable for different field sizes and word  

widths, and flexible for arbitrary EC parameters. 

 

 
4.2  Algorithm  
  The basic EC arithmetic, e.g., the point 

double, addition, or subtraction, consists of a 

heterogeneous variety of primitive finite field 

operations, such as addition, subtraction, 

multiplication, and inversion. The EC arithmetic 

with traditional affine coordinate involves finite 

field inversion which is much more expensive than 

multiplication and addition. Our  design adopts 

Jacobian’s projective coordinate (x,y,z)->(x/z
2
,y/z

3
)  

over GF(P) to effectively replace the field inversion 

with several field multiplications. Furthermore, 

López’s projective coordinate is used over GF(2
m
) 

because there are fewer field operations in López’s 

projective coordinate (x,y,z)-> (x/z,y/z
2
) than those 

in Jacobian’s over GF(2
m
). Despite the inversion, 

the finite field multiplication is critical among 

primitive field operations. Montgomery algorithm is 
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a well-known fast modular multiplication algorithm.  

Our design adopts finely integrated operand 

scanning (FIOS) Montgomery algorithm , as shown 

in Algorithm . It is a word-based algorithm for both 

GF(P) and  GF(2
m
) . Let m be the number of bits of 

the prime or the irreducible polynomial, and r be the 

word width of the multiplier, then w=(m/r) ,which is 

the number of words in an operand. In our design  

5=160/32. Different field size can be supported by 

changing w accordingly. When adopting projective 

coordinate representation and Montgomery 

multiplication, the pre/post-processing is needed. 

The post-processing requires a Montgomery 

multiplication with the unity value 1. The 

conversion of the EC point between affine and 

projective coordinates are also required. Converting 

a EC point from affine coordinate to projective 

coordinate can be easily done, i.e., 

. 

However, field inversions and multiplications are 

needed to to convert the point in the projective 

coordinate to affine coordinate,i.e., 

 over GF(P),and   

         over     GF(2
m
). 

Word Based Montgomery  Multiplication 

Algorithm 

Input:   a,b,p,q 

Output:  c=a×b×2
 –m

 (mod p) 

Steps: 

C=0; 

For i=0 to w-1 by +1 do 

 z=0; 

 {z, c 0 }= c 0 +a I  × b 0  ; 

 t= c 0 ×q (mod 2
r
 ); 

  {z, c 0 }= {z, c 0 }+t×p0 ; 

 for j to w-1 by +1 do 

  {z,c j }=cj + ai ×bj +z; 

  {z,c j-1 }= {z,c j }+t × p j   ; 

 end for; 

 c w-1 =z; 

end for;  

 

4.3 Proposed Montgomery Multiplier Unit 
    Fig 3 shows the data path for the modified 

Montgomery Multiplier Unit. Four 160 bit inputs 

are  a,b,p,q .The  control signals are fieldsel, clk, en. 

Splitter is used to divide 160 bit number into five  

32 bit numbers to perform word –based  

multiplication algorithm. It involves series of 

preprocess, Dual Multiplication Unit (Dual mult 

unit), Field Multiplexer (Field Mux),  Dual Field 

Adder( DFA)  and  Dual Field Multiplxer (DFA 

Mux). After completion of Five iterations, the result  

cout is obtained. 

 

 
 

Fig 3 Modified  Multiplier  Unit 

 

 
4.4  Proposed Arithmetic Unit 

 In this unit arithmetic operations are 

performed by either choosing Mont Multiplier or 

dfa_au unit. The inputs a,b,p,q are fed for both units. 

By using correct control signals   sel, fieldsel, as_sel 

either Mulout or Addout is obtained. 
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Fig 4  Proposed  Arithmetic  Unit 

 

 
 

Fig 5  Proposed  Scheduling  Unit 

 

 In this scheduling unit,base point 

x0,y0,z0,x1,y1,curve parameters are fed to perform 

scalar multiplication.c_count and stage are 

incremented as operations are carried out in 

different Arithmetic Units (AU’s) by their 

respective control signals.Final values obtained are 

listed in this Fig.5 
 

5  Design  Scheduling 
 The computation of ECC is decomposed 

into atomic finite field operations and optimized 

under the proposed parallel architecture. Based on 

the parallel architecture, scalable ECC processor 

with multiple AUs is presented.Once we have the 

specific hardware architecture, the design 

exploration can be done effectively with various 

design parameters, e.g., area, throughput, etc. Point 

scalar multiplication, the most crucial operation in 

our ECC processor, consists of repeated point 

double (PDBL) and point addition/subtraction 

(PADDSUB) that requires primitive finite field 

operations. Traditional serial ECC architectures 

utilized single finite field AU and addressed on its 

faster design. Recently, several parallel architectures 

tried to shorten the computation time with multiple 

AUs in a straightforward manner.  A two-phase 

approach to schedule the primitive operations based 

on our parallel ECC architecture, which consists of 

the coarse-grained scheduling and fine-grained 

scheduling. With multiple AUs and the proposed 

methodology, successive iterations (i.e., PDBL-

PDBL, PDBL-PADDSUB, or PADDSUB-PDBL) 

can be further folded up to reduce the operation time 

in the point scalar multiplication. 

 

 

5.1. Coarse-Grained Scheduling 
 The coarse-grained (or global) scheduling is 

based on the data path scheduler using the integer 

linear programming (ILP, also known as LIP) 

technique, which can guarantee the optimal result 

under the given constraints. An example is used here 

for the illustration of coarse-grained scheduling 

approach. Suppose part of the EC point arithmetic 

over GF(p) is listed as follows: 

 

     
 

                            (10) 

  

  

 Where  p0=(x0,y0,z0), p1=( x1,y1,z1 ) and  

p2=( x2,y2,z2 )= p0+ p1  . For the simplification only  

x2 and  z2  are considered in the example, and we 

assume the intermediate value  p  in equation (10) is 

pre calculated and known in advance. The first step 

of the scheduling is to further decompose the EC 

arithmetic into atomic (or primitive) finite field 
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operations (e.g., the single multiplication, square, 

addition or subtraction). For this example, 11 atomic 

operations are obtained as shown in  Table  1 . 

Suppose there are atomic field additions, 

subtractions, and multiplications in an EC arithmetic 

operation. Each  can  be  labeled   as Oi  , where 

 1≤  i ≤ n  . Data precedence relation can be defined 

as  oi  → oj  if output of  Oi  is one of the inputs 

of  Oj , i.e., Oi  is the immediate predecessor of  Oj. 

The start time (si) and  require time (ri) of ith atomic 

operation can be found by the data precedence 

relation. With each atomic operation taking  one 

stage, several parameters are also defined: 

 

 1)  Ns   represents the number of stages.  

 2) Nau   denotes the number of AUs in our ECC  

processor core. 

3)  xi,j is a zero-one variable. If  Oi  is scheduled in      

Stage  j , xi,j =1, otherwise  

     xi,j =0. 

Therefore, our scheduling becomes an ILP 

optimization subject to the following constraints: 

                      (11) 

       (12) 

                     (13) 

Equation (11) defines the mobility that Oi  

must be executed between the Sith Stage and  ri th 

Stage. Equation (12) ensures that the precedence 

relations are preserved, where K is the number of 

stages required for executing Oi. We assume that 

each operation takes one stage and the K  is 

assigned to be 1. Equation (13) constrains the 

maximum number of operations in each stage as the 

given number of AUs (i.e., Nau ). Finally, our 

objective is to minimize Ns  for the smallest number 

of stages (i.e.,T) with the given constraint of Nau  

(i.e.,A)—in other words, to obtain the highest 

throughput under the given parallel architecture. Our 

observation shows that when performing area or 

throughput optimization, the finite field addition and 

subtraction play a minor role as compared with the 

multiplication. Therefore our coarse grained 

scheduling focuses on the multiplications. Table  2 

shows the data precedence relation of atomic 

operations in Table 1.  

 
 Table 1  Atomic operations of  Equation 10 

Table 2  Data precedence relation of  Table 1 

    

    

    

 
Table 3  Scheduling for GF(2

m
) with  3 AU’s 

 

S
 AU1 AU2 AU3 

1 
   

2 
   

3  

 

 

 

 

4 
 

 

 

 

 

5 
 

 

  

6  

 

  

7  

 

  

8  

 

  

9  
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similarly the scheduling was performed with 2,3,and 

4 arithmetic Units .Simulation and synthesis for all 

has be done and the snap shots are shown. To study 

the   Performance Comparison of Binary with the 

Prime field , the Scheduling for the prime filed is 

also performed. 

 

Table 4  Scheduling for GF(2
m
) with  2 AU’s 

 

 

 

                Table  5 shows the scheduling result for 

data flow diagram given in Fig 6. It has been 

realized using two AU’s and four stages. The 

coarse-grained scheduling is applied to optimize the 

PDBL and mix-coordinate PADDSUB 

simultaneously. The scheduling results of the PDBL 

with PADDSUB over  GF(2
m
) and for GF(p) is also 

performed. 

               
 

Fig  6 Data Flow Diagram 

 

          Table 5  Scheduling result   for DFD. 

 

 

          

 

         Scheduling with more than four AUs cannot 

obtain further improvement. For a single stage, each 

AU (with one multiplier and one adder) performs 

one modular multiplication with at most two       

S AU1 AU2 

1   

2 
  

3 
  

4 
 

 

 

 

5 
 

 

 

6 
 

 

 

7 
  

8  

 

 

9  
 

10  

 

 

11 
 

 

 

 

 

12 
 

 

 

S AU1 AU2 

1 
  

2  

 

 

 

3 
  

4  

 

 

WSEAS TRANSACTIONS on COMPUTERS Rahila Bilal, M. Rajaram

ISSN: 1109-2750 360 Issue 10, Volume 10, October 2011



modular additions and subtractions. We allow 

multiple additions and subtractions in a single stage 

because of their little cycle overhead as compared 

with the cycles of multiplication. The asterisk marks 

in the figures identify those operations belonging to 

the PDBL to produce  (xq,yq,zq). whereas the 

complete set of operations are to calculate the 

PDBL-PADDSUB, i.e.,( x2,y2,z2) . The result has 

been summarized in Table 6 

 

 

Table 6 comparison - coarse grained scheduling  

 
FIELD SHEDULING               NAU 

1 2 3 4 

GF(P) COARSE-

GRAINED 

22 11 8 7 

GF(2m) COARSE-

GRAINED 

24 12 9 7 

 

. 

 

5.2. Fine-grained scheduling: 
 

After the coarse-grained scheduling, several fine-

grained (or detailed) scheduling techniques can be 

further applied, i.e.,Operand rescheduling, Atomic 

rescheduling and Loop folding.It is obvious that the 

computation of the PDBL is much simple than that 

of the PDBL-PADDSUB. For the illustration we 

redraw one iteration for the PDBL with four AUs 

(that perform atomic operations with asterisk 

marks), as shown in Table 7. The AUs are not fully 

utilized in this scheduling. For example,AU3 and 

AU4  are both idle at Stages 1, 3, 4, and 5 for the 

PDBL over GF(2
m
) . 

 Therefore, the p8 and  yq by  AU1  at the 

Stage 5 can be moved to Stage 4 and executed by 

while keeping the correct data precedence as shown 

in Table 8 .Therefore, the simple atomic 

rescheduling can reduce the stage number of the 

PDBL over from 5 to 4. As previously mentioned, 

the EC scalar multiplication consists of iteratively 

PDBL and PDBL-PADDSUB operations. We 

present here a loop folding technique to further 

improve the scheduling with four AUs. As shown in 

Table 7 after the atomic rescheduling, AU3 and AU4   

are still idle at Stages 1, 3, and 4. If AU3 and  AU4 at 

Stage 1 are used for the computation of P0 and  p1 , 

as shown in Table 8,  AU3 and AU4   at Stage 4 can 

also be used to compute the P0 and  p1 of the next 

iteration no matter the successive iteration is the 

PDBL or PDBL-PADDSUB [i.e.,(PDBL)-(PDBL) 

or (PDBL)-(PDBL-PADDSUB)], because both of 

them also require only two AUs at Stage 1. 

Similarly, AU3 and AU4   at the last Stage of the 

PDBL-PADDSUB can be used to compute the P0 

and  p1  of the successive PDBL or PDBL-

PADDSUB iteration [i.e., (PDBL-PADDSUB)-

(PDBL) or (PDBL-PADDSUB)-(PDBL-

PADDSUB)] over GF(2
m
). Loop folding technique 

can be applied to the PDBL-PDBL and PADDSUB-

PDBL over GF(p) with four AUs as well . The two 

consecutive iterations can be overlapped for one 

stage. This kind of loop folding technique, which is 

similar to the software pipelining, can efficiently 

improve the hardware utilization and throughput as 

long as no precedence violation occurs. For the 

scheduling with four AUs one stage can be 

effectively removed for each iteration. As a result, 

the minimal number of stages are obtained. 

 

Table 7  Coarse grained scheduling for PDBL with 4  

             AU’s over GF(2
m
) 

 
S AU1 AU2 AU3 AU4 

1  

2     

3  

 

 

 

4  

5  

 

 
Table 8  Fine grained scheduling for PDBL with 4   

              AU’s over GF(2
m
) 

 

 

Darkened cells shows the beginning of next 

iteration. Thus in total, only 3 stages are required for 

point doubling operation with four AU’s over 

GF(2
m
). 

 

S AU1 AU2 AU3 AU4 

1     
2 

    
3 

 

 

 

  

4 
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6  Simulation Results   

 

Fig 7  Montgomery Multiplier Unit(160 bit): 

 

 

Fig 8  Scheduling with 2 AU-binary(160 bit): 

   

 

Fig 9 Scheduling with  4  AU-binary(160 bit): 

        

 

                                                                                      

Fig 10 Scheduling with  4 AU(pd)-binary-fine 

                  grained(160 bit): 
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Table 9  Comparision  of   Various Designs -                       

              Scalar    Multiplication 

 

 

 

 

Fig 11  Au Binary-Fine Grain-Synthesis . 

 

Fig 12  4 AU binary-power summary 

 

 

 Fig 13  Scalar multiplication Space Complexity             

            analysis 
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Fig 14. Clk to output time vs AU’s 

 

Fig 15 . CPU TIME vs AU’S 

 

7  Conclusion 
 This paper  presents a high-throughput 

Binary field elliptic-curve based crypto (ECC) 

processor that features all ECC functions with the 

programmable field and curve parameters over both  

prime and binary fields. The proposed ECC 

processor outperforms other ECC hardware designs 

in terms of functionality, scalability, performance, 

cost effectiveness, and power consumption.  

  The scalable ECC architecture and unified 

data path for both the prime and binary fields has 

been presented. In addition, to the basic EC 

arithmetic operations, i.e., point coordinate 

conversion, point double, point addition, and point 

scalar multiplication, this processor has been 

extended to form parallel architecture with 2, 3, 4 

AU’s.  Scheduling is performed with coarse grained 

and fine grained scheduling. 

 All functional block units have been 

realized using VHDL language and simulated using  

Altera Modelsim 6.0 and synthesized on Quartus 

software tools. Simulated  output waveform 

windows are shown. Synthesis  summary 

window, Comparison Results obtained is 

plotted and shown . 

 Results  show that, throughput of 4 AU 

system is increased when compared to processor 

with two  or three number of AU’s by reduction in 

cycle count. Various parameters were taken to 

compare Binary vs Prime field system. It shows that 

binary system is more area efficient and time 

efficient when compared to prime field system. 

Maximum throughput is further achieved by 

introducing fine grain scheduling to coarse grain 

scheduling. Cycle count decreases to 11,643 from 
16,743 (@115.47MHz) in Fine grain scheduling to 

achieve high throughput. 

 As number of AU’s increases ,CPU time 

decreases with some area overhead. On analysis of 

parameters like ALUT’s, logic registers, clock to 

output time, CPU time, cycle count, power for 

different number of AU’s , 4 AU system achieves 

Optimum  result. Our design is  compared with 

various designs given in Literature survey. This 

design  in Altera-quartus platform (Target device-

EP3SE50F780C3)  Outperforms the other designs . 

This design can further be extended to CMOS 

platform. 
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