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Abstract: - This paper addresses the use of a data analysis approach to extract information from a large number 
of failure equipment notifications. Based on that, a fuzzy system, capable of learning and optimizing the 
knowledge from historical evidence, is formed. Subsequently, its use as a guiding tool in decision making 
processes at the strategic level (estimation of the number of spare parts based on the warehouse location and 
type of failure), is outlined. To highlight its advantages, the fuzzy sets approach for spare parts allocation is 
compared with a probabilistic one. 
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1 Introduction 
 
1.1. Spare parts allocation 

Many businesses purchase expensive computer 
equipment to carry out their services. The computer 
equipment suppliers that sell these complex systems 
not only supply the businesses with the product, but 
must also ensure that the systems remain constantly 
functional.  

However, computer equipment systems invariably 
fail, generating a demand for repair parts. This 
demand is extremely time-sensitive, as the computer 
equipment systems, and the businesses that depend 
on these systems, become crippled without the 
timely response of a repair vendor with the 
appropriate service parts. The consequences in the 
event of equipment failure or malfunction could 
cause significant losses to the company. 

Policies regarding where and how many repair parts 
to store are far from obvious. For example, storing 
many and different types of repair parts close to the 
businesses’ locations will virtually guarantee an 
extremely rapid response to a failure. 

However, a computer equipment company would 
hardly be able to economically justify such a policy 

due to the cost of maintaining many warehouses, 
and of holding a generous number of repairable 
parts in inventory. In the latter case, holding parts 
"in storage" causes the computer equipment 
company to incur an opportunity cost, primarily a 
function of the company's inability to derive 
revenue-either directly from the sale of the repair 
part or indirectly through the part's inherent value-
while the part sits in a warehouse unused 
(potentially becoming obsolete) [1]. 

 

1.2 . Fuzzy sets  

The concept of fuzzy sets was conceived at the 
University of California at Berkley in 1965, and 
presented as a way of processing data by allowing 
partial set membership rather than crisp set 
membership or non-membership. This approach to 
set theory was not applied until the 70's due to 
insufficient small-computer capability prior to that 
time. It was reasoned that people do not require 
precise, numerical information input, and yet they 
are capable of highly adaptive control. If feedback 
controllers could be programmed to accept noisy, 
imprecise input, or linguistic input, they would be 
much more effective and perhaps easier to 
implement. Unfortunately, U.S. manufacturers have 
not been so quick to embrace this technology while 
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the Europeans and Japanese have been aggressively 
building real products around it. 

 In this context, a fuzzy system is a problem-
solving system methodology that lends itself to 
implementation in systems ranging from simple, 
small, embedded micro-controllers to large, 
networked, multi-channel PC or workstation-based 
data acquisition and control systems. It can be 
implemented in hardware, software, or a 
combination of both. Fuzzy sets provide a simple 
way to arrive at a definite conclusion based upon 
vague, ambiguous, imprecise, noisy, or missing 
input information, often expressed in linguistic 
terms. Fuzzy sets approach to control problems 
mimics how a person would make decisions, only 
much faster. 

 Fuzzy sets incorporate a simple, rule-based 
IF X AND Y THEN Z approach to a solving control 
problem rather than attempting to model a system 
mathematically. The fuzzy sets model is 
empirically-based, relying on an operator's 
experience rather than their technical understanding 
of the system. For example, rather than dealing with 
numerical values in the measured attributes, terms 
like "IF (input 1 is adjective 3) AND (input 2 is 
adjective 3) THEN (output is adjective 2)" or "IF 
(input 2 is adjective 2) AND (input 4 is adjective 1) 
AND (input 5 is adjective 5) THEN (output is 
adjective 6)" are used. These terms are imprecise 
and yet very descriptive of what must actually 
happen. Fuzzy sets are capable of mimicking this 
type of behavior at very high rate. 

 Fuzzy set approach requires some numerical 
parameters in order to operate, such as what is 
considered significant error and significant rate-of-
change-of-error, but exact values of these numbers 
are usually not critical unless very responsive 
performance is required in which case empirical 
tuning would determine them.  

 Fuzzy sets approach was conceived as a 
better method for sorting and handling data but has 
proven to be a excellent choice for many system 
applications since it mimics human logic. It can be 
built into anything from small, hand-held products 
to large computerized process control systems. It 
uses an imprecise but very descriptive language to 
deal with input data more like a human operator. It 
is very robust and forgiving of operator and data 
input and often works when first implemented with 
little or no tuning. 

2  Spare parts stock level calculations 
– item approach 
 
In order to appreciate the advantages of fuzzy rule 
based approach, we will first step through a set of 
examples detailed by Fukuda in [2] using Poisson 
probability process. The purpose of the spare 
computer parts stock level calculations – item 
approach is to describe a technique to calculate the 
spare parts quantity (for a given computer cluster 
size and inventory) taking into account item 
reliability (that can be initially modelled by Poisson 
probability process). 

Variables considered in this approach, after Fukuda 
[2], were: 
1. Reliability of item to be spared (expressed as 
failure, removal, or replacement; or inversely as 
Mean Time Between Removals (MTBR) in usage 
hours) 
2. Number of items installed per machine (indicated 
as A) 
3. Required probability that a spare will available 
when needed, that is, the chance of having a spare 
part in inventory when required (90% ≤  P ≤  95%), 
also called Fill Rate or confidence level 
4. Number of machines to be supported N 
5. Period to be supported as operational time or 
between initial and subsequent order (time T in 
months) 
6. Average machine utilization (M in hours per 
month or day per machine). It may be expressed in 
%, e.g., 9.5 h/day = 9.5 h/24h = 39.58% 
Spare parts are divided, for application of this 
approach, to repairable and non-repairable. For 
repairable parts, a stock level of spare parts was 
calculated to compensate items undergoing the 
process of repair. 
7. For repairable items an average time it takes to 
repair (indicated as time between repairs RT) was 
considered instead of time of support T of point 5 
above. Also, it is advisable to take into account an 
additional stock level of spare parts to compensate 
for unavoidable scrap of some repairable items. 
8. The scrap rate of a repairable item can be 
estimated from historical evidence, for example, R = 
0.15 or 1.5%. 
 
Poisson distribution can be used in spare parts 
quantity determination as a forecasting technique 
with the use of reliability analysis [2]. The demand 
for spare parts for covering replacement of failed 
items, occurring as a result of maintenance action, is 
an event described as Poisson distribution process, 
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assuming it occurs at a constant average rate and the 
number of events occurring in any interval is 
independent of the number of events occurring in 
any other time interval. These rather strict 
requirements are replaced in fuzzy systems 
approach. 

For the purpose of reliability analysis, it is assumed  

    
where:  
λ is a failure rate 
t is  time (or total operational period of all items) 
x is a number of failures (or number of spare parts 
required) 
λt is a mean value (number of failures in time t) 
In terms of the probability of n or fewer failures in 
time t, we have [2]: 
 

 

 

2.1 Non-repairable items 

After Fukuda [2], for these items the number of 
failures is equal to number of spare parts. The 
quantity of spare parts is the minimum value of n 
that satisfies the following condition as close as 
possible: 

 

where t is a total operating time for all items. Thus, 
attributing to Fukuda [2], the number of failures in 
time t can be expressed as: 

 

It is worth noting [2] that the above equation can be 
also directly used as a deterministic method for 
computing spare parts quantity. T may be mean 
resupply time, order, or production lead time. 

Numerical example (non-repairable items) 

Following Fukuda [2], let us calculate the spare 
parts quantity of a non-repairable item which is 
installed on 4 units per machine (A = 4EA), and 
having a mean time between removals of 7,500 
usage hours (MTBR = 7, 500 h) for a computer 
cluster of 2 machines (N = 2) operating each one for 
225 usage hours per month (M = 225 
h/month/machine), and considering an initial period 
of 2 years (T = 24 months) to achieve a confidence 
level of 90% (P = 0.90). 

 

Proceeding recursively, we have the following: 

for 0 spare parts, P = exp(-5.76) = 0.003 = 0.3% < 
90% 

for 1 spare part, P = 0.003(1+5.76) = 0.02 = 2% < 
90% 

for 2 spare parts, P = 0.003(6.76+16.6) = 0.07 = 7% 
< 90% 

for 3 spare parts, P = 0.003(23.36+31.85) = 0.17 = 
17% < 90% 

for 4 spare parts, P = 0.003(55.21+45.9) = 0.303 = 
30.3% < 90% 

for 5 spare parts, P = 0.003(101.1+52.8) = 0.462 = 
46.2% < 90% 

for 6 spare parts, P = 0.003(153.91+50.7) = 0.614 = 
61.4% < 90% 

for 7 spare parts, P = 0.003(204.6+41.7) = 0.74 = 
74% < 90% 

for 8 spare parts, P = 0.003(246.3+30.1) = 0.83 = 
83% < 90% 

for 9 spare parts, P = 0.003(276.4+34.2) = 0.932 = 
93.2% > 90% 

thus obtaining the recommended quantity of 9 spare 
parts, that could be used in our decision making 
process at the tactical level (optimal inventory of 
non-repairable spare parts at a given warehouse). 
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2.2  Repairable Items 

For these items the number of failure is different 
from number of spare parts. As indicated in Fukuda 
[2], it is a direct application of Palm’s theorem. The 
stock level of spare parts has to compensate for 
repairable items undergoing the process of repair 
and could be expressed by [2]: 

 

To replace the very first failed item it is necessary to 
have an initial single spare part. Thus, substituting n 
by (n-1) in previous equation, we obtain the 
following: 

 

Numerical example (repairable items) 

As pointed out by Fukuda [2], considering the 
example of non-repairable items, we can calculate a 
number of spare repairable parts taking into account 
repair time of 3 months (RT = 3 months) [2]: 

for 0 spare parts, P = exp(-0.72) = 0.487 = 48.7% < 
90% 

for 1 spare part, P = 0.487(1+0.72) = 0.837 = 83.7% 
< 90% 

for 2 spare parts, P = 0.487(1.72+0.259) = 0.963 = 
96.3% > 90% 

thus obtaining the recommended quantity of (n-1) = 
2 or n = 3 spare parts, that could be used again in 
our decision making process at the tactical level 
(optimal inventory of repairable spare parts at a 
given warehouse). 

2.3 Repairable items with Scrap Rate 

Repairable items returned to shop are sometimes 
scraped, that is, not repaired because through 
inspection, it is decided that some items were not 
economically feasible to repair. The scrap generally 
results in an increase of spare parts requirement. For 
this scenario, the approach could be a combination 
of repairable and non-repairable methods [2]. 

 

Numerical example (scrap rate) 

Let us calculate the number of spare parts, if an item 
is considered a repairable with scrap rate of 10% (R 
= 0.10).  

Previously (from the non-repairable item numerical 
example), we had 9 failures in the period requiring 
maintenance, thus 0.1 x 9 ~ 1 EA becomes scrap. 
From the repairable item numerical example, the 
total number of parts to support the operation was 3 
EA. Adding 1 EA discarded now results in 4 spare 
parts [2]. 

Note:  All the above described item approaches can 
be extended to system approaches, where the 
objective would be to solve the system maintenance 
problem determining the maximum total fill rate, or 
alternatively, minimum total expected back order in 
terms of repairable spare parts given a specific 
amount of allocated funds.  
 
 
3 Fuzzy Rule-based System 

The probability approach [2], as outlined above, 
requires that an event is described as Poisson 
distribution process, assuming it occurs at a constant 
average rate and the number of events occurring in 
any interval is independent of the number of events 
occurring in any other time interval. Thus, our 
research was focused on deriving an optimized 
fuzzy rule-based system from real life failure data, 
where those strict requirements are relaxed. Such a 
system would be a great asset to any decision maker 
dealing with the estimation of the number of spare 
parts based on the warehouse location and type of 
failure (strategic decisions).  

Data used in the analysis were a courtesy of Prof. 
Garth Gibson, Computer Science Department at 
Carnegie Mellon University, and its Computer 
Failure Data Repository (CFDR) [3]. It was 
acknowledged that with the growing scale of 
today’s IT installations, component failure was 
becoming a significant problem. Yet, very little data 
on failures in real systems were publicly available, 
forcing researchers working on system reliability to 
base their work on simulated, rather than empirical 
data. 

The computer failure data repository (CFDR) [3] 
aims at accelerating research on system reliability 
by providing a collection of public data with 
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detailed failure from a variety of large production 
systems.  

In the reported research, memory hardware failure 
data collected on a 212 node server farm at internet 
services cluster ask.com from December 06 through 
February 07 were used. The data themselves were 
collected by the University of Rochester researchers 
who contributed to the repository [4]. The set 
consisted of 1,698 seven dimensional vectors. The 
dimensions were as follows: 

• Machine ID: generic machine name 

• First seen: when the error was first observed 

• Last seen: when it was last observed 

• Times: how many times the error in that error 
correction code (ECC) word was reported during the 
whole monitoring period 

• Address: the system address of the error, that is 
physical memory address 

• Row/Column/Bank: row/column/bank address of 
the error, translated from the system address 

• Syndrome: error syndrome, which can be used to 
determine which bits are wrong within an error 
correction code ECC word 

(Note: ECC (error correction code) allows data that 
are being read or transmitted to be checked for 
errors). 
 
3.1 Dimensionality reduction 
 
Dimensionality reduction techniques (data analysis 
algorithms) were employed to identify the most 
contributing dimensions from the set [5].  
One of the approaches used was regression analysis, 
and it is highlighted below. Yet another approach 
could be a count of the repeating fuzzy rules to 
determine the retained ones.  
Though all the independent attributes contribute in 
the regression equation towards estimation of the 
number of spare parts, some of the attributes 
contribute more than others. If the attributes that 
contribute the least to the prediction ability of the 
regression equation are eliminated, the overall 
dimensionality of the data set comes down. Using 
stepwise regression analysis, one can reduce the 
dimensionality of the data, keeping only the most 
influential properties while eliminating properties 

contribute minimally to the prediction ability of 
regression equation. In addition to using Beta 
standardized coefficients as indicators while 
determining the importance of each attribute in the 
regression equation, partial correlation coefficients 
can also be used as indicators as they are measures 
of association between an attribute and the number 
of spare parts when the influences of the rest 
attributes are removed. Similar to the Beta 
coefficients, their absolute magnitudes reflect their 
relative degree of association with estimation of the 
number of spare parts. The absolute magnitude of 
partial coefficient ranges from 0 to 1. A partial 
correlation coefficient with a value close to 1 is an 
indication that the attribute is strongly associated 
with the number of spare parts, and the opposite is 
true for partial correlation coefficients with values 
close to 0.   
It was found out that the most important features 
were: location (machine ID), error type (error 
syndrome), and count (how many times the error in 
that error correction code (ECC) word was reported 
during the whole monitoring period). 
  
3.2 Generation of fuzzy rules 

Subsequently, fuzzy rule generation algorithm was 
used to generate a knowledge base for decision 
making processes. Correlation analysis approach (as 
opposed to data point rules) was used to come up 
with an optimized knowledge base. In practical 
terms it means clipping rule consequent fuzzy sets 
by the degree of truth of the rule’s antecedent. 

Thus, instead of generating an impractical set of 
1,698 rules, the system came up with an optimized 
knowledge base with 12 rules that could be used in 
the decision making processes at the strategic level 
(estimation of the number of spare parts based on 
the warehouse location and type of failure). The 
obtained knowledge base is listed below. 

Fuzzy Rules (optimized): 

IF location IS location_M1 AND error IS 
error_type_0x0 THEN count IS around_6; 

IF location IS location_M1 AND error IS 
error_type_0x1 THEN count IS around_60; 

IF location IS location_M1 AND error IS 
error_type_0x2 THEN count IS around_3; 

IF location IS location_M1 AND error IS 
error_type_0x3 THEN count IS around_50; 
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IF location IS location_M6 AND error IS 
error_type_0x0 THEN count IS around_3; 

IF location IS location_M6 AND error IS 
error_type_0x1 THEN count IS around_1; 

IF location IS location_M6 AND error IS 
error_type_0x2 THEN count IS around_3; 

IF location IS location_M6 AND error IS 
error_type_0x3 THEN count IS around_3; 

IF location IS location_M8 AND error IS 
error_type_0x0 THEN count IS around_1; 

IF location IS location_M8 AND error IS 
error_type_0x1 THEN count IS around_3; 

IF location IS location_M8 AND error IS 
error_type_0x2 THEN count IS around_1; 

IF location IS location_M8 AND error IS 
error_type_0x3 THEN count IS around_1; 
 
 

4 Conclusion 
 
Because repair parts can be extremely valuable, 
even minor reductions in repair parts inventory can 
result in significant savings for the computer 
equipment company. Therefore, research 
investigating optimal inventory policies is 
important. In addition to determining the stocking 
levels for each part at each warehouse, questions 
concerning the number and location of warehouses 
must also be answered. Different types of 
warehouses must be considered. Some only hold 
inventory, while others hold inventory and repair 
broken parts.  
 
A final level of complexity presents itself in 
determining the way in which warehouses interact, 
e.g., whether one warehouse ships parts to another 
stocked out warehouse [6, 7]. 
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