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Abstract: - This paper present a novel approach for incremental computation of Radial Basis Functions (RBF) 
for Fuzzy Systems and Neural Networks with computational complexity of O(N2) is presented. This technique 
enables efficient insertion of new data and removal of selected or invalid data. RBF are used across many 
fields, including geometrical, image processing and pattern recognition, medical applications, signal 
processing, speech recognition, etc. The main prohibitive factor is the computational cost of the RBF 
computation for larger data sets or if data set is changed and RBFs have to be recomputed. 
 
The presented technique is applicable in general to fuzzy systems as well offering a significant speed up due to 
lower computational complexity of the presented approach. The Incremental RBF Computation enables also 
fast RBF recomputation on “sliding window” data due to fast insert/remove operations. This is a very 
significant factor especially in guided Neural Networks case. Generally, interpolation based on RBF is very 
often used for scattered scalar data interpolation in n-dimensional space. As there is no explicit order in data 
sets, computations are quite time consuming that leads to limitation of usability even for static data sets. 
Computational complexity of RBF for N values is of O(N3) or O(k N2), k is a number of iterations if an iterative 
method is used, which is prohibitive for many real applications. The inverse matrix can also be computed by 
the Strassen algorithm based on matrix block notation with O(N2.807) complexity. Even worst situation occurs 
when interpolation has to be made over non-constant data sets, as the whole set of equations for determining 
RBFs has to be recomputed when data set is changed. This situation is typical for applications in which some 
values are becoming invalid and new values are acquired. 
 
Key-Words - RBF, interpolation, incremental computation, neural networks, fuzzy systems, algorithm, matrix 
inversion. 
 

1 Introduction 
Radial basis functions interpolation was originally 
introduced by [Hardy 1971] by introduction of 
multiquadric method, which he called Radial Basis 
Function (RBF) method, which is based on 
interpolation formula 

݂ሺݔሻ ൌ ෍ ௜ߣ

ே

௜ୀଵ

߶ሺݎ௜ሻ 

where: ߶ሺݎ௜ሻ ൌ ߶ሺԡ࢞ െ -is generally n ࢞  ௜ԡሻ and࢞
dimensional vector and ߣ௜ are weights. Since then 
many different RFBF interpolation schemes have 
been developed with some specific properties, e.g. 
[Duchon 1977] uses ߶ሺݎሻ ൌ  which is called ,ݎ ଶ݈݃ݎ
Thin-Plate Spline (TPS), a function ߶ሺݎሻ ൌ ݁ିሺఢ௥ሻమ 
was proposed by [Shagen 1979] and [Wetland 2005] 
introduced Compactly Supported RBF (CSRBF) as  

߶ሺݎሻ ൌ ൜ሺ1 െ ,ሻݎሻ௤ ܲሺݎ 0 ൑ ݎ ൑ 1
 0, ݎ ൐ 1   , 

where:  ܲሺݎሻ is a polynomial function and q is a 
parameter. An analysis of algorithms of RBF for 
neural networks can be found in [Stastny et all 
2007]. 

Theoretical problems with stability and solvability 
were solved by [Micchelli 1986] and [Wright 2003] 
and he has extended the RBF by adding a 
polynomial function ௞ܲሺ࢞ሻ of degree k to the RBF 
that resulted to:  

݂ሺ࢞ሻ ൌ ෍ ௜ߣ

ே

௜ୀଵ

߶ሺԡ࢞ െ ௜ԡሻ࢞ ൅ ௞ܲሺ࢞ሻ

ൌ ෍ ௜ߣ

ே

௜ୀଵ

߶௜ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ 

and additional conditions were introduced: 
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∑ ௜ߣ
ே
௜ୀଵ ൌ 0                         ∑ ௜ߣ

ே
௜ୀଵ ࢞ ൌ ૙ 

Usually a linear polynomial is used, i.e. the 
polynomial ௞ܲሺ࢞ሻ is taken as  

௞ܲሺ࢞ሻ ൌ ܽ଴ ൅  ࢞ ்ࢇ

As the values ݂ሺ࢞௜ሻ at points ࢞௜  are known, the 
equations above form a system of linear equations 
that has to be solved in order to determine 
coefficients  ߣ௜ and ܽ଴,   .i.e , ࢇ

݂൫࢞௝൯ ൌ ෍ ௜ߣ

ே

௜ୀଵ

߶൫ฮ࢞௝ െ ௜ฮ൯࢞ ൅ ௞ܲ൫࢞௝൯

ൌ ෍ ௜ߣ

ே

௜ୀଵ

߶௜,௝ ൅ ௞ܲ൫࢞௝൯ 

݆ ൌ 1, … , ݊ 

It can be seen that for n-dimensional case and N 
points given a system of ሺܰ ൅ ݊ ൅ 1ሻ has to be 
solved, where N is a number of points in the dataset 
and n is dimensionality of data. For n=2 vectors xi 
and a are given as ࢞௜ ൌ ሾݔ௜, ࢇ ௜ሿ் andݕ ൌ ൣܽ௫, ܽ௬൧்

. 

 

Using the matrix notation we can write for 2-
dimensions:  

ۏ
ێ
ێ
ێ
ێ
ۍ
߶ଵ,ଵ . . ߶ଵ,ே ଵݔ ଵݕ 1

: : : : :
߶ே,ଵ . . ߶ே,ே ேݔ ேݕ 1

ଵݔ . . ேݔ 0 0 0
ଵݕ . . ேݕ 0 0 0
1 . . 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵߣ
:

ேߣ
ܽ௫
ܽ௬
ܽ଴ ے

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ଵ݂

:
ே݂
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ې

 

ቂ ࡮ ࡼ
்ࡼ ૙ቃ ቂࣅ

ቃࢇ ൌ ቂࢌ
૙

ቃ  ࢞࡭ ൌ  ࢈

൅ ܽ଴ ࢏࢞ ்ࢇ ൌ ܽ௫ ݔ௜ ൅ ܽ௬ ݕ௜ ൅ ܽ଴  

It can be seen that for 2-dimensional case and N 
points given a system of ሺܰ ൅ 3ሻ linear equations 
has to be solved. If “global” functions, e.g. TPS 
(߶ሺݎሻ ൌ  are used the matrix B is “full”, if ,( ݎ ଶ݈݃ݎ
CSRBF functions are used, the matrix B can be 
sparse.  

Applications of RBF in Fuzzy Systems and Neural 
Networks are widely known, e.g. [Hunt et al 1996], 
[Gonzalez et al 2003], [Maglogiannis et al. 2008] 
and [Berthold et al 1998]. Unfortunately they use 
standard RBF computation. 

 
Fig.1: Surface reconstruction (438000 points)  

[Carr et al. 2001] 

Original image 
[Bertalmio et al. 2000] 

Reconstructed image 
[Uhlir and Skala 2006] 

Fig.2: Reconstruction of inpainting 
 

 
Fig.3a: Original image with 60% of damaged pixels 

 
Fig.3b: Reconstructed image 

There are also other interesting problems that can be 
solved using RBF interpolation quite effectively, 
e.g. surface reconstruction from scattered data [Carr 
et al. 2001], [Ohtake et al. 2005], reconstruction of 
damaged images [Uhlir and Skala 2006], [Zapletal 
et al. 2009], inpainting removal [Bertalmio et al. 
2000], [Wang and Kwok 2009] etc. 
 
Let us consider, for simplicity, geometrical analogy. 
It should be noted that in geometrically based 
applications we have to handle many and many 
points, so extreme efficiency is needed. 
 
All those applications of RBFs based interpolation 
has one significant disadvantage – the cost of 
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computation. This is especially severe in 
applications where data are not static.  
Generally we are looking for RBF interpolation of 
z=f(x,y) in two dimensional case, where x, y are 
“points”, i.e. independent variables while z is the 
value associated with this point. 
There are actually two cases: 
1. Position of points is fixed, but the value 

associated with a point is changed. In this case 
iterative methods are usually faster than 
explicit computation of an inverse matrix. 

2. Position of points is changed. It means that 
the whole system of linear equations has to be 
form and recomputed which leads generally to 
O(N3) computational complexity and 
unacceptable time consuming computation. 

In some applications a “sliding window” on data is 
required, especially in time related applications, 
when old data should not be used in the 
interpolation and new data should be included. This 
is typical situation in signal processing applications. 

Considering facts above there is a questions how to 
compute RBF incrementally with a lower 
computational complexity?. This question will be 
answered in the following section.  
 

2 Incremental RBF computation 
The main question to be answered is: 

Is it possible to use already computed RFB 
interpolation  

if a new point is included to the data set? 
If the answer is positive it should lead to significant 
decrease of computational complexity. In the 
following we will present how a new point can be 
inserted (new data given), a selected point can be 
removed (non-relevant data are to be removed) and 
also how to select the best candidate for a removal 
according to an error caused by this point removal. 
The above mentioned operation are needed 
especially in neural networks and they lead to 
change of the dimensionality of the matrix A, resp. 
M. 
Sherman-Morrison formula 
Sherman-Morrison formula states, that inverse 
matrix of A perturbed by ࢛ ٔ ࢜ ൌ  note that it) ்࢜ ࢛
is column x row operation – the result is a matrix) 
can be computed as  

ሺ࡭ ൅ ࢛ ٔ ሻିଵ࢜ ൌ ଵି࡭ ሺି࡭ଵ࢛ሻ ٔ ሺି࡭்࢜ଵሻ
1 ൅ ߣ

 

where: ߣ ൌ  . ࢛૚ି࡭்࢜

Please, see section 2.1 for actual matrix structure, 
now. We can see that the matrix ࢛ ٔ  is a very ࢜
special as it will contain only last column and last 
row of non-zero values generally. 
Then, in our case, the incremental computation is 
made actually in 3 steps: 

• Generation of a new matrix B as an 
extension of the matrix A by one row and 
one column so that 

௜,௝ܤ ൌ ൝
௜,௝ܣ 1, . . ݊

1 ݅, ݆ ൌ ሺ݊ ൅ 1, ݊ ൅ 1ሻ
0 othewise

  

ଵ࡮ • ൌ ࡮ ൅ last row of ࢛ ٔ   ࢜
ଶ࡮ • ൌ ଵ࡮ ൅ last column of ࢛ ٔ  ࢜

Now we can apply the original Sherman-Morison 
formula for the case that a new point – new data – is 
inserted to the data set. The problem is with the 
removal of improper point- improper data from the 
given set. The Sherman-Morrison formula is aimed 
for general the perturbation case. 
In the case of the incremental RBF interpolation we 
do have a very specific case, where the matrix A is 
symmetric with a very special structure, as it was 
presented above. This should lead to more efficient 
computational method. 
 
Let us consider some operations with block matrices 
(we will assume that all operations are correct and 
matrices are non-singular in general etc.). 

ቂ࡭ ࡮
࡯ ቃࡰ

ିଵ

ൌ  ൤ ሺ࡭ െ ሻିଵ࡯ଵିࡰ࡮ െି࡭ଵ࡮ሺࡰ െ ሻିଵ࡮ଵି࡭࡯

െሺࡰ െ ଵି࡭࡯ሻିଵ࡮ଵି࡭࡯ ሺࡰ െ ሻିଵ࡮ଵି࡭࡯ ൨ 

Let us consider a matrix M of (n+1) × (n+1) and a 
matrix A of n × n in the following block form: 

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

Then the inverse of the matrix ࡹ  applying the rule 
above can be written as: 

ଵିࡹ ൌ

ۏ
ێ
ێ
࡭൬ۍ െ

1
ܿ

൰்࢈࢈
ିଵ

െ
1
݇

࢈ଵି࡭

െ
1
݇

ଵି࡭்࢈ 1
݇ ے

ۑ
ۑ
ې
 

 

ൌ  ൦
ଵି࡭ ൅

1
݇

ଵି࡭்࢈࢈ଵି࡭ െ
1
݇

࢈ଵି࡭

െ
1
݇

ଵି࡭்࢈ 1
݇

൪ 

where:  ݇ ൌ ܿ െ  ࢈ଵି࡭்࢈

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

ISSN: 1109-2750 369 Issue 11, Volume 10, November 2011



 

 
 

We can easily simplify this equation if the matrix A 
is symmetrical as: 

ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ  ࢈ࢀࣈ

ଵିࡹ ൌ  
1
݇

ቈ݇ି࡭ଵ ൅ ࢀࣈ۪ࣈ െࣈ
െࢀࣈ 1

቉ 

where: ࢀࣈ۪ࣈ means the tensor multiplication. It can 
be seen that all computations needed are of O(N2) 
computational complexity. 
It means that we can compute an inverse matrix 
incrementally with O(N2) complexity instead of 
O(N3) complexity required originally in this specific 
case. It can be seen that the structure of the matrix 
M is “similar to the matrix of the RBF specification. 
Now, there is a question how the incremental 
computation of an inverse matrix can be used for 
RBF interpolation? 
We know that the matrix A in the equation ࢞࡭ ൌ  ࢈
is symmetrical and non-singular if appropriate rules 
for RBFs are kept. 
 

2.1 Point Insertion 
Let us imagine a simple situation. We have already 
computed the interpolation for N points and we need 
to include a new point into the given data set. A 
brute force approach of full RBF computation on the 
new data set can be used with O(N3) complexity 
computation. 

Let us consider RBF interpolation for N+1 points 
and the following system of equations is obtained:  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

߶ଵ,ଵ . . ߶ଵ,ே ߶ଵ,ேାଵ ଵݔ ଵݕ 1
: . . : : : 1

߶ே,ଵ : ߶ே,ே ߶ே,ேାଵ ேݔ ேݕ 1
߶ேାଵ,ଵ ߶ேାଵ,ே ߶ேାଵ,ேାଵ ேାଵݔ ேାଵݕ 1

ଵݔ . . ேݔ ேାଵݔ 0 0 0
ଵݕ . . ேݕ ேݕ 0 0 0
1 . . 1 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

ଵߣ
:

ேߣ
ேାଵߣ

ܽ௫
ܽ௬
ܽ଴ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵ݂

:
ே݂

ே݂ାଵ
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

where:  ߶௜,௝ ൌ ߶௝,௜ 

Reordering the equations above we get: 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0 0 0 ଵݔ . . ேݔ ேାଵݔ
0 0 0 ଵݕ . . ேݕ ேାଵݕ
0 0 0 1 . . 1 1
ଵݔ ଵݕ 1 ߶ଵ,ଵ . . ߶ଵ,ே ߶ଵ,ேାଵ
: : : : : :

ேݔ ேݕ 1 ߶ே,ଵ . . ߶ே,ே ߶ே,ேାଵ
ேାଵݔ ேାଵݕ 1 ߶ேାଵ,ଵ . . ߶ேାଵ,ே ߶ேାଵ,ேାଵے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

ܽ௫
ܽ௬
ܽ଴
ଵߣ
:

ேߣ
ےேାଵߣ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

0
0
0
ଵ݂
:
ே݂

ே݂ାଵے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

We can see that last row and last column is 
“inserted”. As RBF functions are symmetrical the 
recently derived formula for iterative computation 
of the inverse function can be used. So the RBF 
interpolation is given by the matrix M as  

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

where the matrix A is the RBF matrix 
(N+3) × (N+3)  and the vector b (N+3) and scalar 
value c are defined as: 

࢈ ൌ ሾݔேାଵ ேାଵݕ 1 ߶ଵ,ேାଵ . . ߶ே,ேାଵሿ் 

ܿ ൌ ߶ேାଵ,ேାଵ 

It means that we know how to compute the matrix 
  .ଵ is knownି࡭ ଵ if the matrixିࡹ

That is exactly what we wanted! 
Recently we have proved that iterative computation 
of inverse function is of O(N2)complexity, that 
offers a significant performance improvement for 
points insertion. It should be noted that some 
operations can be implemented more effectively, 
especially ࢀࣈ۪ࣈ ൌ  ଵି࡭  ଵ as the matrixି࡭்࢈࢈ଵି࡭
is symmetrical etc. 
 

2.2 Point Removal 
In some cases it is necessary to remove a point from 
the given data set. It is actually an inverse operation 
to the insertion operation described above. Let us 
consider a matrix M of the size (N+1) × (N+1) as  

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

Now, the inverse matrix M -1 is known and we want 
to compute matrix A-1, which is of the size N × N. 

Recently we derived opposite rule: 
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ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ  ࢈ࢀࣈ

ଵିࡹ ൌ  ൦
ଵି࡭ ൅

1
݇

ࢀࣈ۪ࣈ െ
1
݇

ࣈ

െ
1
݇

ࢀࣈ 1
݇

൪ ൌ ൤ࡽଵଵ ଵଶࡽ
ଶଵࡽ ଶଶࡽ

൨ 

It can be seen that 

ଵଵࡽ ൌ ଵି࡭ ൅
1
݇

 ࢀࣈ۪ࣈ

and therefore 

ଵି࡭ ൌ ଵଵࡽ  െ
1
݇

 ࢀࣈ۪ࣈ

Now we have both operations, i.e. insertion and 
removal, with effective computation of O(N2) 
computational complexity instead of O(N3). It 
should be noted that vectors related to the point 
assigned for a removal must be in the last row and 
last column of the matrix M -1. 
 
2.3 Point selection 
As the number of points within the given data set 
could be high, the point removal might be driven by 
a requirement of removing a point which causes a 
minimal error of the interpolation. This is a tricky 
requirement as there is probably no general answer. 
The requirement should include additional 
information which interval of x is to be considered. 

Generally we have a function  

݂ሺ࢞ሻ ൌ ෍ ௜ߣ

ே

௜ୀଵ

߶௜ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ 

and we want to remove a point xj which causes a 
minimal error ߝ௝ of interpolation, i.e.  

௝݂ሺ࢞ሻ ൌ ෍ ௜ߣ

ே

௜ୀଵ,௜ஷ௝

߶௜ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ 

and we want to minimize  

௝ߝ ൌ න ห݂ሺ࢞ሻ െ ௝݂ሺ࢞ሻห ݀࢞
Ω

 

where ߗ is the interval on which the interpolation is 
to be made. It means that if the point xj is removed 
the error εj is determined as: 

௝ߝ ൌ ௝ߣ න ߶൫ฮ࢞ െ ࢞௝ฮ൯݀࢞
Ω

 

As we know the interval ߗ on which the 
interpolation is to be used, we can compute or 
estimate the error ߝ௝ for each point xj in the given 

data set and select the best one. For many functions 
߶ the error ߝ௝ can be computed or estimated 
analytically as the evaluation of ߝ௝ is simple for 
many functions, e.g. 

න ௠ݎ ln ݎ݀ ൌ ௠ାଵݎ ln ݎ
݉ ൅ 1

െ
1

ሺ݉ ൅ 1ሻଶ 

It means that for TPS function ݎଶ ln  ௞ isߝ the error  ݎ
easy to evaluate. In the case of CSRBF the 
estimation is even simpler as they have a limited 
influence, so generally ߣ௝ determines the error ߝ௝. 

It should be noted, that a selection of a point with 
the lowest influence to the interpolation precision in 
the given interval ߗ is of O(N) complexity only. 

We have shown a novel approach to RBF 
computation which is convenient for larger data 
sets. It is especially convenient for t-varying data 
and for applications, where a “sliding window” is 
used. Basic operations – point insertion and point 
removal – have been introduced. These operations 
have O(N2) computational complexity only, which 
makes a significant difference from the original 
approach used for RBFs computation.  Fig. 4 
presents differences of computational time if one 
point is added or removed to the given set with N 
points. Fig.5 presents actual speed up defined as a 
ratio of the standard and incremental computation. 

 

 
Fig.4: Comparison of computational time [ms] for 

standard and incremental method 
Dimension means number of points 

 

0,1
1,0

10,0
100,0

1 000,0
10 000,0

100 160 250 400 630 1 000
dimension

Standard Incremental
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Fig.5: Speed up for incremental computation  

(1 point added /removed) 

 

3 Implementation aspects 
Radial basis functions are very powerful method as 
it enables interpolation of scattered data generally in 
k-dimensional space. 
As experiments proved the incremental computation 
of RBF is significantly faster than the :standard: 
one. 
Of course, it requires more computational power 
than methods specialized on order data sets. 
Unorganized data sets are very typical for some 
applications like neural networks, data mining, 
computer graphics etc. As computer graphics 
applications process huge amount of data, typically 
106-107 if points, we used computer graphics to 
evaluate behavior of the RBF interpolation on large 
data sets. A nice example of RBF use is a 
reconstruction of images, as it is two dimensional, 
damaged pixels are un-ordered, the complexity of 
computation grows with the square of the image 
resolution. As the image reconstruction is an 
iterative process the RBF interpolation is called 
many, many times. The extension of the RBF 
interpolation to k-dimensional space is simple and 
the matrix of RBF grows O(N2), i.e. if the we 
change the image size from 1000x1000 to 
2000x2000 we have to count with 4-times more 
elements of the matrix for RBF interpolation. 
As the computational requirements grow fast, there 
is a possibility to use Graphical processing Unit 
(GPU) available on all PCs and notebooks today. 
First experiments we made proved that speed up on 
single GPU can be achieved by a factor 10-200.  
Also, there are “personal supercomputers” based on 
GPU like TESLA/FERMI from NVIDIA. In this 
case significant speed up can be achieved as well. 
 

4 Conclusion 
The proposed Incremental RBF Computation 
method has advantages over the standard techniques 
based RBF interpolation used in Fuzzy systems and 
Neural Networks due to incremental insertion and/or 
removal of points with decreased computational 
complexity from O(N3) to O(N2). It enables to apply 
this approach in applications when interpolation of 
data in a “sliding window” and / or t-varying 
interpolation data are required; in applications when 
some data are becoming invalid, new data are 
acquired and need to be included into the processed 
data set, i.e. in typical cases of RBF use in Fuzzy 
Systems or Neural Networks. Due to lower 
computational complexity it is possible to handle 
larger data sets in which scalar values are associated 
with t-varying points, i.e. it is possible to handle 
non-static data. 
It is expected that the presented approach can lead to 
development of new algorithms in Neural Networks 
and Fuzzy Systems. As the proposed Incremental 
RBF Computation uses vector – matrix operations 
exclusively, the presented approach is suitable for 
matrix-vector architectures including GPU/Larabee 
architectures as well. 
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Pankaj Singh, M.C. Deo 
 
Application of neural networks in forecasting engine systems 
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Pages 255-268 
K. Xu, M. Xie, L. C. Tang, S. L. Ho 
 
A predictive and probabilistic load-balancing algorithm for 

cluster-based web servers 
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Objective Particle Swarm Optimization for Medical 
Diseases Diagnosis 
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Available online 5 May 2010 

Sultan Noman Qasem, Siti Mariyam Shamsuddin 
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The use of computational intelligence in intrusion detection 

systems: A review 
Applied Soft Computing, Volume 10, Issue 1, January 2010, 

Pages 1-35 
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A complete fuzzy discriminant analysis approach for face 
recognition 
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yu Yang 
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