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Abstract: - Compiling documents in extensible markup language (XML) increasingly requires access to data 

services which provide both rapid response and the precise use of search engines. Efficient data service should 

be based on a skillful representation that can support low complexity and high precision search capabilities. In 

this paper, a novel complete path representation (CPR) associated with a modified inverted index is presented 

for the provision of efficient XML data services, where queries can be versatile in terms of predicates. CPR can 

completely preserve hierarchical information, and the new index is used to save semantic information. The 

CPR approach can provide template-based indexing for fast data search. An experiment is also conducted for 

the evaluation of the CPR approach. 
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1 Introduction 
By recommendation of the World Wide Web 

Consortium (W3C) [1], XML has served as a 

standard information description language widely 

used in communications of computers. This facility 

demands skillful XML documents (or data) 

representation and indexing for fast data search in a 

large XML database [2]. Since XML data can be 

uniquely described with a semantically structured 

tree (i.e., a hierarchical structure associated with 

relationships among nodes), both structure and 

semantics are significant feature elements of XML 

data representation.  

Traditional XML data representations can be 

categorized into string [3-4] and path [5-15] groups. 

String representation can be derived with a preorder 

traversal algorithm; it requires dynamic 

programming for edit distance measurement. This 

approach, with its lack of structure information, may 

lead to indeterminate search results. Path 

approaches use sub-paths as feature elements, and 

represent each XML datum with a binary vector. An 

element in the binary vector denotes whether the 

datum involves a corresponding feature, where such 

features can be defined as start-end tags [5-6], two-

node sub-paths (i.e., node-pair (NP)) [7], Xpaths 

and whole paths (WP) [8-10]. For search efficiency 

improvement, modified path approaches were also 

proposed. Yang et al. [11] used the content instead 

of the leaf node for node representation. Liu et al. 

[12] combined NP and WP for XML data 

description. Based on the determined finite 

automata, Mustafa et al. [13] and Lee et al. [14] 

presented a path-embedded string representation. 
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For improving common Xpath efficiency and 

principal component analysis, Li [15] presented a 

modified WP with limited-length paths. 

The elements of NP and WP are commonly 

indexed with inverted index list [24] or B*-tree 

structure [19] [27] [28]. These two indices only 

recording tag names and pointers do not provide 

enough information useful for inferring the 

existence undefined features, e.g., sub-paths by 

level, ancestor-descendant (AD) paths, sibling (SB) 

and cousin (CN) relations. These features are 

usually required for versatile queries. Based on 

XML QBE [16], XQuery [17] and query pattern tree 

(QPT) [19], several stack-based parser algorithms, 

PathStack, TwigStack, and TJFast [18] [20] [23], 

have been proposed for the search of AD elements 

(i.e., sub-paths). These stack-based parsers can 

check only one document for each parsing. This 

query service manner will be time-consuming for 

large database. For versatile queries service, stack-

based parsers can be also used for extracting all the 

AD elements of a large database. However, this 

approach do not provide any indexing for fast AD 

element search. This implies that exhaustive search 

of AD features is necessary for each query service. 

Moreover, stack-based parsers are inefficient for 

searching the features with SB and CN relations.  

In this paper, a novel path approach referred to 

as complete path representation (CPR) is proposed. 

The CPR scheme that uses complete path elements 

(CPEs) as representation features can well preserve 

the hierarchical structure of XML data. A modified 

inverted index structure is also presented for 

recording the CPEs and hierarchically semantic 

data, i.e., path lengths and levels. The semantic data 

are useful for extracting the feature elements with 

AD, SB, and CN relationships. The modified index 

can also provide a template-based indexing for fast 

XML data search. 

This paper is organized as follows: In Section 2, 

the CPR is proposed for XML data description. In 

Section 3, the modified inverted index is described. 

Section 4 shows the performance evaluation results 

of handling versatile queries by using variant 

approaches. Finally, conclusions are drawn in 

Section 5. 

 

2 XML DATA REPRESENTATION 

USING COMPLETE PATH 

ELEMENTS 
Any XML datum defined with the document type 

definition (DTD) can be modeled as an ordered 

label tree [3]. In this section, the hierarchical tree 

information is extracted by a pre-ordered traversal 

process performed with a document object model 

(DOM) API [1]. Following this, the CPE extraction 

based on the SSTs of XML data is described and the 

CPR is presented. 

 

2.1 The Extraction of Structural 

Summary  
SST is the XML tree skeleton commonly used 

for XML data representation [3]. The SST of an 

XML document can be extracted by four functional 

processes, as follows: 

 

Step 1. This step performs a tree conversion 

using Java DOM (JDOM), where the 

tree element values are neglected. For 

the DTD-formatted XML datum of 

Example 1, the tree conversion process 

result is illustrated in Fig. 1. 

Step 2. For efficient matching, we symbolize 

the name of the tree node with an 

abbreviated character order, as shown 

in Figure 2. 

Step 3. Based on the pre-order traversal process 

[3], SST extraction requires two 

simplification procedures: 

 a) For each node, examine whether the 

current node’s name is equal to an 

ancestor’s name. If it is, set the current 

node’s sub-tree to be a child of the 

ancestor; otherwise, check the next 

node. The purpose of this procedure is 

to remove nested sub-paths, as shown 

in Fig. 3. 

 b) Exhaustive searching based on a 

Hash table is applied for discovering 

and eliminating repeated branches. Fig. 

4 shows the repeated branch 

elimination result where the simplified 

tree is the SST. 

Step 4. For the extraction of CPEs, it is 

necessary to construct the adjacent-

linked (AL) lists of the SSTs of all 

XML data. An AL list is a data 

structure that records the linking 

information of each node and facilitates 

the pre-order traversal process. The AL 

list of the SST in Fig. 4 is given in 

Table 1 where δi[n] denotes the nth 
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head node of the ith XML datum. 

 

 

 
Fig.1. Tree representation of Example 1 based on the 

JDOM  
 

  

 
Fig.2. Symbolization process for the XML tree from 

Example 1 
 

 

Fig.3. The XML tree of Example 1 with nested nodes 

removed 
 

 
Fig.4. The SST of Example 1 where the level of root is 

defined as 1 and increased to the leaves 
 

Table 1: The AL list of the SST of Example 1 

 

2.2 Complete Path Element Extraction and 

Representation 

Traditional WP and NP representations, with 

their lack of linking information, cannot serve such 

queries as (/B/~/~/~/~) and (/~/I/A/L). For efficient 

query service, CPR describes XML data with the 

complete paths (CPs) of all SSTs. The CPs set of a 

tree is defined as all the branches, (i.e., sub-paths) 

starting from each level to the leaves. For 

convenience, let CPL-i denote a set of CP elements 

starting from the ith level, where the root level is 

defined as one and is increased toward the leaves. 

An example of level definition is shown in Fig. 4, 

where four CP sets: CPL-1, CPL-2, CPL-3, and CPL-4, 

can be defined. The elements of the four CP sets are 

shown in Table 2.  

 
Table 2: The four level complete paths of the SST of 

Example 1 
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For the extraction of CP elements, a recursive 

depth-first search (DFS) algorithm based on the AL 

list is developed to search all branches, starting from 

each level. The CP element extraction algorithm is 

described as follows: 

 

 
 

 
 

Essentially, DFS is an exhaustive search algorithm 

that is guaranteed to find all of the branches of an 

XML tree. Once this is done, the CPR for the 

description of considerable XML data can be 

defined as: 

∪
L

i

iLiLS CPCP
1

 {CP
=

−−= is a set involving the i-th level 

CPs of all XML data}, 

where ∪  denotes union operation and L is the 

maximum level number. Considering a database 

comprised of the three XML data shown in Fig. 5, 

the CPR can be found in Table 3. In Fig. 5, there are 

two I nodes for both DOC 1 and 3. The two nodes 

with different children are distinct and cannot be 

merged. The two sub-paths /B/I/T in DOC 2 and 

/B/I/T/~ in DOC 1 have the same path length equal 

to 3, but have distinct distances from leaf node. The 

same distinctions also exist between the two 

elements /M/I/~ and /M/I/~/~ in the 1−LCP . 

Fig.5: The SSTs for three XML documents 
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Table 3: The CPR for the description of the three 

XML data shown in Fig. 5 

 

 

3 INDEXING THE COMPLETE 

PATH ELEMENTS 
A CPE with the tree characteristic is a high 

dimensional feature. Traditional B-tree indexing 

[27] [28] based on node relationships is suitable for 

WP, NP and twig queries, but is inefficient for CPR, 

which regards each CPE as a feature element. In this 

section, a new index with feature similarity structure 

(FSS) is presented for CPE management. The FSS 

provides a fast template-based hierarchical indexing. 

The CPEs of Table 3 can be represented with a tree 

structure, as shown in Fig. 6, where Pi denotes the 

subset of the CPEs with path length equal to i. The 

CPEs in Fig. 6 are inherent with the hierarchical 

information involving path length (Pi) and level 

( lLCP − ) that are available for inferring semantic 

relations, e.g., ancestor-descendant (AD), sibling 

(SB) and cousin (CN) relationships. B-tree index 

with a key design can achieve balanced binary tree 

structure for efficient NP and WP element indexing, 

but cannot provide hierarchical information. To 

facilitate the inference of semantic information, the 

inverted index structure with additional fields is 

applied for CPE indexing. These additional fields 

are used for recoding nodes’ children and the CPR 

level defined in the tree representation of Fig. 6. The 

modified inverted index referred to as the FSS is 

defined as follows: 

 
As shown in Table 4, the FSS can be used to define 

either an internal node or a leaf node. The difference 

between the two data structures is the setting of the 

active field. 

Table 4: Illustration of the FSS indexes for two 

example nodes 

 

 

The FSS with feature similarity provides a 

template-based hierarchical query service. This 

query service method can effectively reduce the 

searching complexity induced by the path element 

increment of CPR, compared to that of the NP and 

WP representations. Utilizing the one-to-one 

property of iρ , XML documents can be uniquely 

described with a feature vector (FV), defined as: 

] , , ,[FV 110 −= NDOC ρρρ ⋯ , }1 ,0{∈iρ , (1) 

where N denotes the number of CPEs. The element 

ρi = 1 implies that the document involves the ith 

labeled CPE. With the FV description, CPEs can be 

labeled with a hierarchical structure, as shown in 

Table 5. This labeling provides a template-based 

hierarchical query service. Let CPsT(l, i) be a query 
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template involving the CPEs of CPL-l and iP . A 

query template with )1,1(),( =il  can be defined as: 

1

1
3210#

0000
)1,1(

−









=

LCP

P

SW
CPsT

ρρρρρ
   

where SW denotes switch. Setting a field of SW to 

one indicates that the corresponding CPE is 

selected. For the example, a query template defined 

by: 

1

4
16151413#

1101
)4,1(

−









=

LCP

P

SW
CPsT

ρρρρρ
 

will yield a response as:  

ρ13 = /B/I/T/D in Doc1 

ρ15 = /B/I/A/L in Doc1 and Doc2 

ρ16 = /M/I/A/L in Doc3.  

Like the Region [22] and Dewey [26] methods, the 

CPE index can be easily updated with numerical 

labeling, as shown in Table 6. Updating the Dewey 

method is based on the extended Dewey labeling 

[25] [27, 28] which uses modular function to reserve 

even numbers for the insertion of new path 

elements. On the other hand, the updating of the 

CPE index only needs to increase the label in a 

template. Suppose that a new CPE /B/I/A/M will be 

added between /B/I/A/F and /B/I/A/L, as in Fig. 6. 

This updating will introduce four new CPEs: /CPL-

1/P4/"/B/I/A/M", /CPL-2/P3/"/~/I/A/M", /CPL-

3/P2/"/~/~/A/M" and /CPL-4/P1"/~/~/~/M" (the italic 

type in Fig. 6), and lead to some modifications: 

CPsT(1, 4), CPsT(2, 3), CPsT(3, 2), and CPsT(4, 1), 

as shown in Table 6, where only the content’s order 

of CPsT(1, 4) needs to be rearranged (i.e., the new 

labels in parentheses). 

 

Table 5: The template-based hierarchical labeling 

for the 34 CPEs of Fig. 6 

 

 

Table 6: A mapping for numerically labeling the 34 

CPEs of Fig. 6 
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Figure 6: The index structure of the tree 

representation of Fig. 5. Italic is a new path inserted 

 

The FSS with path length and level also allows 

the inference of semantic information. The path 

elements with AD relationships can easily be 

obtained from the CPEs with the path length field 

filled in Pi for 3≥i , i.e., path length ≥ 3. For the 

example in Fig. 5, there are two kinds of AD 

relationship shown in Table 7, where A1 involves 

the path elements with one-generation AD, and A2 

involves the path elements with two-generation AD. 

Note that these path elements are different from 

CPE, and are labeled as 110 ~ δδ . SB and CN are 

relations among nodes, where these nodes have 

different descendants but have the same father and 

grandfather node, respectively. For SB, the father 

nodes can be found in levels CPL-l for 11 −≤≤ Ll . 

Furthermore, the search of CN nodes is to verify 

whether their father nodes are inherent with a SB 

relationship. The hierarchical labeling templates of 

SB and CN relations are shown in Table 8. The tree 

structure index, including semantic information, is 

illustrated in Fig. 7, where SB and CN indexing 

requires fewer levels than the indexing of AD. 

 

Table 7: The template-based hierarchical labeling 

for the AD path elements of Fig. 5 

 

 

Table 8: Sibling (SB) and Cousin (CN) relations for 

Fig. 6 
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Figure 7: The index structure of the ADs, SBs, and 

CNs of Fig. 6 

 

4 EXPERIMENTAL RESULTS 

For the data service efficiency analysis of CPR, 

an experiment using the simple dataset of Fig. 5 was 

performed. In this dataset, WP and NP have 6 and 

10 feature elements respectively. For CPR, the 

feature elements of CPE and AD relation are 34 and 

13, respectively. Some queries shown in Table 9 are 

designed for the simulation of versatile client 

requests. These queries can be categorized into CPE 

(TPQ1~TPQ8), AD (TPQ9~TPQA), and SB&CN 

(TPQB~TPQD) groups, where TPQ1~TPQ5 belong to 

WP and NP types. TPQD is special due to the 

distinct I nodes. Decoded with the query parser [23], 

these statements can be translated into compound 

tree-pattern queries. Two commonly used indices: 

searching complexity and accuracy, are applied for 

performance evaluation. The searching complexity 

(SC) is defined with the total checking times 

required for matching all of the query paths. Here, 

we suppose that all of the path elements (in dataset) 

fitting query conditions should be checked in each 

query path matching. For TPQ1, there are four query 

paths with level=1 and path length=4. The level and 

path length determine the selection of the query 

template: )4,1(CPsT , where four path elements: 

1613 ~ ρρ , satisfy the conditions. Considering 

exhaustive matching, each query path should be 

matched four times. Thus the query service of CPR 

requires a complexity of 1644 =×=SC , and the 

SW fields of 1613 ~ ρρ  will be set to 1:  

1

4
16151413#

1111
)4,1(

−









=

LCP

P

SW
CPsT

ρρρρρ
. 

The complexities required for serving TPQ2~TPQ9 

are evaluated in Table 10, where the symbol ‘-‘ 

denotes that this representation method cannot serve 

the query. For TPQA, there are three 1-level query 

paths involving two one-generation AD and one 

two-generation AD. The level and AD relations 

determine the selection of two query templates: 

)1,1(ADsT  and )2,1(ADsT , where the former has 

five elements ( 40 ~ δδ ), and the latter has four 

elements ( 85 ~ δδ ). Also considering exhaustive 

search, the SC of TPQA can be found as SC = 5 * 2 

+ 4 = 14. The query templates are set by: 

 
1

2

1

1

8765#

43210#

0001
)2,1(

,
00110

)1,1(

−

−









=









=

L

L

AD

A

AD

A

SW
ADsT

SW
ADsT

δδδδδ

δδδδδδ

. 

For TPQB~D, the level and semantic relations will 

determine the selection of the three query templates: 

)3(SBsT , )3(CNsT , and )2(SBsT . By using 

exhaustive search, the SC of the three queries can be 

found as SC = 4(2*2), 9(3*3), and 4(2*2) 

respectively. The query templates are set by: 
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3

2726#

11
)3(

−









=

LSB
SW

SBsT
ρρρ

,

3

272625#

111
)3(

−









=

LCN
SW

CNsT
ρρρρ

, and 

2

1817#

11
)2(

−









=

LSB
SW

SBsT
ρρρ

. 

Searching accuracy (SA) is defined with two bi-

levels: Success and Fail, indicating whether or not 

the document can be found. With WP and NP 

element queries, the documents satisfying the 

conditions of TPQ1~TPQ5 can easily be retrieved for 

the WP and NP approaches respectively. For queries 

TPQ6~TPQ8 that request sub-paths starting from 

different levels, neither NP nor WP can handle these 

queries due to a lack of level information. The 

experiment clearly shows that NP and WP are 

subsets of the CPR. Nevertheless, with hierarchical 

template search, the increased feature elements do 

not reduce the searching efficiency of CPR at all. 

With the semantic relation inference capability, 

CPR can also easily serve the queries with inherent 

AD, SB and CN relationships. The SC of TPQ9 and 

TPQD are shown in Table 10. However, neither WP 

nor NP can handle these queries due to a lack of 

level and path length information. 

 

Table 9: Some queries for the simulation of versatile 

client requests 

 

 

Table 10: A comparison of the XML data service 

performances of WP, NP and CPR approaches for 

the queries given in Table 9 
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5 Conclusion 
In this paper, a new XML data representation called 

CPR is presented as a means of providing an 

efficient and versatile query service. CPR uses 

complete path elements as XML data description 

features. In association with a modified inverted 

index, the CPR approach can preserve both structure 

and semantic information, as well as provide a 

template-based indexing for fast XML data search. 

Performance evaluation results show that the CPR 

can be an efficient kernel for XML data service.  
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