
A Complete Path Representation Method with a Modified Inverted

Index for Efficient Retrieval of XML Documents

Hsu-Kuang Chang
 *, **

, King-Chu Hung
**

, and I-Chang Jou
*

*
Department of Information Engineering,

I-Shou University,

No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001

Taiwan, R.O.C.

**
 Department of Electronic Engineering,

National Kaohsiung First University of Science and Technology,

2 Jhuoyue Rd., Nanzih, Kaohsiung City, 811

Taiwan, R.O.C.

 hkchang@isu.edu.tw, kchung@ccms.nkfust.edu.tw, and icjou@isu.edu.tw

Abstract: - Compiling documents in extensible markup language (XML) increasingly requires access to data

services which provide both rapid response and the precise use of search engines. Efficient data service should

be based on a skillful representation that can support low complexity and high precision search capabilities. In

this paper, a novel complete path representation (CPR) associated with a modified inverted index is presented

for the provision of efficient XML data services, where queries can be versatile in terms of predicates. CPR can

completely preserve hierarchical information, and the new index is used to save semantic information. The

CPR approach can provide template-based indexing for fast data search. An experiment is also conducted for

the evaluation of the CPR approach.

Key-Words: - XML, DTD, Complete path representation (CPR), Structural summary tree (SST),

versatile query

1 Introduction
By recommendation of the World Wide Web

Consortium (W3C) [1], XML has served as a

standard information description language widely

used in communications of computers. This facility

demands skillful XML documents (or data)

representation and indexing for fast data search in a

large XML database [2]. Since XML data can be

uniquely described with a semantically structured

tree (i.e., a hierarchical structure associated with

relationships among nodes), both structure and

semantics are significant feature elements of XML

data representation.

Traditional XML data representations can be

categorized into string [3-4] and path [5-15] groups.

String representation can be derived with a preorder

traversal algorithm; it requires dynamic

programming for edit distance measurement. This

approach, with its lack of structure information, may

lead to indeterminate search results. Path

approaches use sub-paths as feature elements, and

represent each XML datum with a binary vector. An

element in the binary vector denotes whether the

datum involves a corresponding feature, where such

features can be defined as start-end tags [5-6], two-

node sub-paths (i.e., node-pair (NP)) [7], Xpaths

and whole paths (WP) [8-10]. For search efficiency

improvement, modified path approaches were also

proposed. Yang et al. [11] used the content instead

of the leaf node for node representation. Liu et al.

[12] combined NP and WP for XML data

description. Based on the determined finite

automata, Mustafa et al. [13] and Lee et al. [14]

presented a path-embedded string representation.

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 321 Issue 10, Volume 10, October 2011

For improving common Xpath efficiency and

principal component analysis, Li [15] presented a

modified WP with limited-length paths.

The elements of NP and WP are commonly

indexed with inverted index list [24] or B*-tree

structure [19] [27] [28]. These two indices only

recording tag names and pointers do not provide

enough information useful for inferring the

existence undefined features, e.g., sub-paths by

level, ancestor-descendant (AD) paths, sibling (SB)

and cousin (CN) relations. These features are

usually required for versatile queries. Based on

XML QBE [16], XQuery [17] and query pattern tree

(QPT) [19], several stack-based parser algorithms,

PathStack, TwigStack, and TJFast [18] [20] [23],

have been proposed for the search of AD elements

(i.e., sub-paths). These stack-based parsers can

check only one document for each parsing. This

query service manner will be time-consuming for

large database. For versatile queries service, stack-

based parsers can be also used for extracting all the

AD elements of a large database. However, this

approach do not provide any indexing for fast AD

element search. This implies that exhaustive search

of AD features is necessary for each query service.

Moreover, stack-based parsers are inefficient for

searching the features with SB and CN relations.

In this paper, a novel path approach referred to

as complete path representation (CPR) is proposed.

The CPR scheme that uses complete path elements

(CPEs) as representation features can well preserve

the hierarchical structure of XML data. A modified

inverted index structure is also presented for

recording the CPEs and hierarchically semantic

data, i.e., path lengths and levels. The semantic data

are useful for extracting the feature elements with

AD, SB, and CN relationships. The modified index

can also provide a template-based indexing for fast

XML data search.

This paper is organized as follows: In Section 2,

the CPR is proposed for XML data description. In

Section 3, the modified inverted index is described.

Section 4 shows the performance evaluation results

of handling versatile queries by using variant

approaches. Finally, conclusions are drawn in

Section 5.

2 XML DATA REPRESENTATION

USING COMPLETE PATH

ELEMENTS
Any XML datum defined with the document type

definition (DTD) can be modeled as an ordered

label tree [3]. In this section, the hierarchical tree

information is extracted by a pre-ordered traversal

process performed with a document object model

(DOM) API [1]. Following this, the CPE extraction

based on the SSTs of XML data is described and the

CPR is presented.

2.1 The Extraction of Structural

Summary
SST is the XML tree skeleton commonly used

for XML data representation [3]. The SST of an

XML document can be extracted by four functional

processes, as follows:

Step 1. This step performs a tree conversion

using Java DOM (JDOM), where the

tree element values are neglected. For

the DTD-formatted XML datum of

Example 1, the tree conversion process

result is illustrated in Fig. 1.

Step 2. For efficient matching, we symbolize

the name of the tree node with an

abbreviated character order, as shown

in Figure 2.

Step 3. Based on the pre-order traversal process

[3], SST extraction requires two

simplification procedures:

 a) For each node, examine whether the

current node’s name is equal to an

ancestor’s name. If it is, set the current

node’s sub-tree to be a child of the

ancestor; otherwise, check the next

node. The purpose of this procedure is

to remove nested sub-paths, as shown

in Fig. 3.

 b) Exhaustive searching based on a

Hash table is applied for discovering

and eliminating repeated branches. Fig.

4 shows the repeated branch

elimination result where the simplified

tree is the SST.

Step 4. For the extraction of CPEs, it is

necessary to construct the adjacent-

linked (AL) lists of the SSTs of all

XML data. An AL list is a data

structure that records the linking

information of each node and facilitates

the pre-order traversal process. The AL

list of the SST in Fig. 4 is given in

Table 1 where δi[n] denotes the nth

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 322 Issue 10, Volume 10, October 2011

head node of the ith XML datum.

Fig.1. Tree representation of Example 1 based on the

JDOM

Fig.2. Symbolization process for the XML tree from

Example 1

Fig.3. The XML tree of Example 1 with nested nodes

removed

Fig.4. The SST of Example 1 where the level of root is

defined as 1 and increased to the leaves

Table 1: The AL list of the SST of Example 1

2.2 Complete Path Element Extraction and

Representation

Traditional WP and NP representations, with

their lack of linking information, cannot serve such

queries as (/B/~/~/~/~) and (/~/I/A/L). For efficient

query service, CPR describes XML data with the

complete paths (CPs) of all SSTs. The CPs set of a

tree is defined as all the branches, (i.e., sub-paths)

starting from each level to the leaves. For

convenience, let CPL-i denote a set of CP elements

starting from the ith level, where the root level is

defined as one and is increased toward the leaves.

An example of level definition is shown in Fig. 4,

where four CP sets: CPL-1, CPL-2, CPL-3, and CPL-4,

can be defined. The elements of the four CP sets are

shown in Table 2.

Table 2: The four level complete paths of the SST of

Example 1

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 323 Issue 10, Volume 10, October 2011

For the extraction of CP elements, a recursive

depth-first search (DFS) algorithm based on the AL

list is developed to search all branches, starting from

each level. The CP element extraction algorithm is

described as follows:

Essentially, DFS is an exhaustive search algorithm

that is guaranteed to find all of the branches of an

XML tree. Once this is done, the CPR for the

description of considerable XML data can be

defined as:

∪
L

i

iLiLS CPCP
1

 {CP
=

−−= is a set involving the i-th level

CPs of all XML data},

where ∪ denotes union operation and L is the

maximum level number. Considering a database

comprised of the three XML data shown in Fig. 5,

the CPR can be found in Table 3. In Fig. 5, there are

two I nodes for both DOC 1 and 3. The two nodes

with different children are distinct and cannot be

merged. The two sub-paths /B/I/T in DOC 2 and

/B/I/T/~ in DOC 1 have the same path length equal

to 3, but have distinct distances from leaf node. The

same distinctions also exist between the two

elements /M/I/~ and /M/I/~/~ in the 1−LCP .

Fig.5: The SSTs for three XML documents

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 324 Issue 10, Volume 10, October 2011

Table 3: The CPR for the description of the three

XML data shown in Fig. 5

3 INDEXING THE COMPLETE

PATH ELEMENTS
A CPE with the tree characteristic is a high

dimensional feature. Traditional B-tree indexing

[27] [28] based on node relationships is suitable for

WP, NP and twig queries, but is inefficient for CPR,

which regards each CPE as a feature element. In this

section, a new index with feature similarity structure

(FSS) is presented for CPE management. The FSS

provides a fast template-based hierarchical indexing.

The CPEs of Table 3 can be represented with a tree

structure, as shown in Fig. 6, where Pi denotes the

subset of the CPEs with path length equal to i. The

CPEs in Fig. 6 are inherent with the hierarchical

information involving path length (Pi) and level

(lLCP −) that are available for inferring semantic

relations, e.g., ancestor-descendant (AD), sibling

(SB) and cousin (CN) relationships. B-tree index

with a key design can achieve balanced binary tree

structure for efficient NP and WP element indexing,

but cannot provide hierarchical information. To

facilitate the inference of semantic information, the

inverted index structure with additional fields is

applied for CPE indexing. These additional fields

are used for recoding nodes’ children and the CPR

level defined in the tree representation of Fig. 6. The

modified inverted index referred to as the FSS is

defined as follows:

As shown in Table 4, the FSS can be used to define

either an internal node or a leaf node. The difference

between the two data structures is the setting of the

active field.

Table 4: Illustration of the FSS indexes for two

example nodes

The FSS with feature similarity provides a

template-based hierarchical query service. This

query service method can effectively reduce the

searching complexity induced by the path element

increment of CPR, compared to that of the NP and

WP representations. Utilizing the one-to-one

property of iρ , XML documents can be uniquely

described with a feature vector (FV), defined as:

] , , ,[FV 110 −= NDOC ρρρ ⋯ , }1 ,0{∈iρ , (1)

where N denotes the number of CPEs. The element

ρi = 1 implies that the document involves the ith

labeled CPE. With the FV description, CPEs can be

labeled with a hierarchical structure, as shown in

Table 5. This labeling provides a template-based

hierarchical query service. Let CPsT(l, i) be a query

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 325 Issue 10, Volume 10, October 2011

template involving the CPEs of CPL-l and iP . A

query template with)1,1(),(=il can be defined as:

1

1
3210#

0000
)1,1(

−









=

LCP

P

SW
CPsT

ρρρρρ

where SW denotes switch. Setting a field of SW to

one indicates that the corresponding CPE is

selected. For the example, a query template defined

by:

1

4
16151413#

1101
)4,1(

−









=

LCP

P

SW
CPsT

ρρρρρ

will yield a response as:

ρ13 = /B/I/T/D in Doc1

ρ15 = /B/I/A/L in Doc1 and Doc2

ρ16 = /M/I/A/L in Doc3.

Like the Region [22] and Dewey [26] methods, the

CPE index can be easily updated with numerical

labeling, as shown in Table 6. Updating the Dewey

method is based on the extended Dewey labeling

[25] [27, 28] which uses modular function to reserve

even numbers for the insertion of new path

elements. On the other hand, the updating of the

CPE index only needs to increase the label in a

template. Suppose that a new CPE /B/I/A/M will be

added between /B/I/A/F and /B/I/A/L, as in Fig. 6.

This updating will introduce four new CPEs: /CPL-

1/P4/"/B/I/A/M", /CPL-2/P3/"/~/I/A/M", /CPL-

3/P2/"/~/~/A/M" and /CPL-4/P1"/~/~/~/M" (the italic

type in Fig. 6), and lead to some modifications:

CPsT(1, 4), CPsT(2, 3), CPsT(3, 2), and CPsT(4, 1),

as shown in Table 6, where only the content’s order

of CPsT(1, 4) needs to be rearranged (i.e., the new

labels in parentheses).

Table 5: The template-based hierarchical labeling

for the 34 CPEs of Fig. 6

Table 6: A mapping for numerically labeling the 34

CPEs of Fig. 6

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 326 Issue 10, Volume 10, October 2011

Figure 6: The index structure of the tree

representation of Fig. 5. Italic is a new path inserted

The FSS with path length and level also allows

the inference of semantic information. The path

elements with AD relationships can easily be

obtained from the CPEs with the path length field

filled in Pi for 3≥i , i.e., path length ≥ 3. For the

example in Fig. 5, there are two kinds of AD

relationship shown in Table 7, where A1 involves

the path elements with one-generation AD, and A2

involves the path elements with two-generation AD.

Note that these path elements are different from

CPE, and are labeled as 110 ~ δδ . SB and CN are

relations among nodes, where these nodes have

different descendants but have the same father and

grandfather node, respectively. For SB, the father

nodes can be found in levels CPL-l for 11 −≤≤ Ll .

Furthermore, the search of CN nodes is to verify

whether their father nodes are inherent with a SB

relationship. The hierarchical labeling templates of

SB and CN relations are shown in Table 8. The tree

structure index, including semantic information, is

illustrated in Fig. 7, where SB and CN indexing

requires fewer levels than the indexing of AD.

Table 7: The template-based hierarchical labeling

for the AD path elements of Fig. 5

Table 8: Sibling (SB) and Cousin (CN) relations for

Fig. 6

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 327 Issue 10, Volume 10, October 2011

Figure 7: The index structure of the ADs, SBs, and

CNs of Fig. 6

4 EXPERIMENTAL RESULTS

For the data service efficiency analysis of CPR,

an experiment using the simple dataset of Fig. 5 was

performed. In this dataset, WP and NP have 6 and

10 feature elements respectively. For CPR, the

feature elements of CPE and AD relation are 34 and

13, respectively. Some queries shown in Table 9 are

designed for the simulation of versatile client

requests. These queries can be categorized into CPE

(TPQ1~TPQ8), AD (TPQ9~TPQA), and SB&CN

(TPQB~TPQD) groups, where TPQ1~TPQ5 belong to

WP and NP types. TPQD is special due to the

distinct I nodes. Decoded with the query parser [23],

these statements can be translated into compound

tree-pattern queries. Two commonly used indices:

searching complexity and accuracy, are applied for

performance evaluation. The searching complexity

(SC) is defined with the total checking times

required for matching all of the query paths. Here,

we suppose that all of the path elements (in dataset)

fitting query conditions should be checked in each

query path matching. For TPQ1, there are four query

paths with level=1 and path length=4. The level and

path length determine the selection of the query

template:)4,1(CPsT , where four path elements:

1613 ~ ρρ , satisfy the conditions. Considering

exhaustive matching, each query path should be

matched four times. Thus the query service of CPR

requires a complexity of 1644 =×=SC , and the

SW fields of 1613 ~ ρρ will be set to 1:

1

4
16151413#

1111
)4,1(

−









=

LCP

P

SW
CPsT

ρρρρρ
.

The complexities required for serving TPQ2~TPQ9

are evaluated in Table 10, where the symbol ‘-‘

denotes that this representation method cannot serve

the query. For TPQA, there are three 1-level query

paths involving two one-generation AD and one

two-generation AD. The level and AD relations

determine the selection of two query templates:

)1,1(ADsT and)2,1(ADsT , where the former has

five elements (40 ~ δδ), and the latter has four

elements (85 ~ δδ). Also considering exhaustive

search, the SC of TPQA can be found as SC = 5 * 2

+ 4 = 14. The query templates are set by:

1

2

1

1

8765#

43210#

0001
)2,1(

,
00110

)1,1(

−

−









=









=

L

L

AD

A

AD

A

SW
ADsT

SW
ADsT

δδδδδ

δδδδδδ

.

For TPQB~D, the level and semantic relations will

determine the selection of the three query templates:

)3(SBsT ,)3(CNsT , and)2(SBsT . By using

exhaustive search, the SC of the three queries can be

found as SC = 4(2*2), 9(3*3), and 4(2*2)

respectively. The query templates are set by:

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 328 Issue 10, Volume 10, October 2011

3

2726#

11
)3(

−









=

LSB
SW

SBsT
ρρρ

,

3

272625#

111
)3(

−









=

LCN
SW

CNsT
ρρρρ

, and

2

1817#

11
)2(

−









=

LSB
SW

SBsT
ρρρ

.

Searching accuracy (SA) is defined with two bi-

levels: Success and Fail, indicating whether or not

the document can be found. With WP and NP

element queries, the documents satisfying the

conditions of TPQ1~TPQ5 can easily be retrieved for

the WP and NP approaches respectively. For queries

TPQ6~TPQ8 that request sub-paths starting from

different levels, neither NP nor WP can handle these

queries due to a lack of level information. The

experiment clearly shows that NP and WP are

subsets of the CPR. Nevertheless, with hierarchical

template search, the increased feature elements do

not reduce the searching efficiency of CPR at all.

With the semantic relation inference capability,

CPR can also easily serve the queries with inherent

AD, SB and CN relationships. The SC of TPQ9 and

TPQD are shown in Table 10. However, neither WP

nor NP can handle these queries due to a lack of

level and path length information.

Table 9: Some queries for the simulation of versatile

client requests

Table 10: A comparison of the XML data service

performances of WP, NP and CPR approaches for

the queries given in Table 9

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 329 Issue 10, Volume 10, October 2011

5 Conclusion
In this paper, a new XML data representation called

CPR is presented as a means of providing an

efficient and versatile query service. CPR uses

complete path elements as XML data description

features. In association with a modified inverted

index, the CPR approach can preserve both structure

and semantic information, as well as provide a

template-based indexing for fast XML data search.

Performance evaluation results show that the CPR

can be an efficient kernel for XML data service.

References:

[1] World Wide Web Consortium. The document

object model. http://www.w3.org/DOM/

[2] Theodore Dalamagas, Tao Cheng, Klaas Jan

Winkel, Timos Sellis, A Methodology for

Clustering XML Documents by Structure,

Information Systems, 31(3): 187-228, 2006.

[3] T. Dalamagas et al., “Clustering XML

Documents using Structural Summaries”,

EDBT Work-shop on Clustering Information

over the Web (ClustWeb04), Heraklion, Greece,

2004.

[4] A. Nierman, H. V. Jagadish, “Evaluating

Structural Similarity in XML Documents”,

Fifth International Workshop on the Web and

Databases (WebDB 2002).

[5] S. Flesca et al., “Fast Detection of XML

Structural Similarity”, IEEE Transactions on

Knowledge and Data Engineering, Vol. 17, No.

2, February 2004. pp 160-175.

[6] W. Lian et al., “An Efficient and Scalable

Algorithm for Clustering XML Documents by

Structure”, IEEE Transactions on Knowledge

and Data Engineering, Vol. 16, No. 1, January

2004. pp 82-96.

[7] Michal Kozielski ,“Improving the Results and

Performance of Clustering Bit-encoded XML

Documents”, Sixth IEEE International

Conference on Data Mining - Workshops

(ICDMW'06).

[8] Jin-sha Yuan, Xin-ye Li, Li-na Ma, "An

Improved XML Document Clustering Using

Path Feature," fskd, vol. 2, pp.400-404, 2008

Fifth International Conference on Fuzzy

Systems and Knowledge Discovery, 2008.

[9] Ho-pong Leung, Fu-lai Chung, Chan, S.C.F,

Luk, R., “XML Document Clustering Using

Common Xpath”, Proceedings of the

International Workshop on Challenges in Web

Information Retrieval and Integration, Tokyo

,pp. 91-96, April 2005.

[10] J. A. Termier, M-C. Rousset, M. Sebag,

“treefinder: a first step towards XML data

mining”, Proceedings of IEEE International

Conference on Data Mining, Maebashi, pp.

450-457, December 2002.

[11] Jianwu Yang, William K. Cheung, Xiaoou

Chen, “Learning the Kernel Matrix for XML

Document Clustering”, Proceedings of the

2005 IEEE International Conference on e-

Technology, e-Commerce and e-Service

(EEE'05), Hong Kong, pp. 353-358, April

2005.

[12] Jianghui Liu, Wang, J.T.L, Hsu.W,

Herbert,K.G., “XML Clustering by Principal

Component Analysis”, Proceedings of the 16th

IEEE International Conference on Tools with

Artificial Intelligence (ICTAI'04), Boca Raton,

pp.658-662, November 2004.

[13] Mustafa H. Qureshi, Kozielski, M. H.

Samadzadeh, “Determining the Complexity of

XML Documents”, Proceedings of the

International Conference on Information

Technology: Coding and Computing (ITCC'05)

- Volume II - Volume 02, Pages: 416 – 421.

[14] Jung won lee, kiho lee, won kim, “Preparation

For Semantic-Based XML Mining”, The 2001

IEEE International Conference on Data

Mining, San Jose, pp.345-352, November 2001.

[15] Xin-Ye Li, “Using Clustering Technology to

Improve XML Semantic Search”, Proceedings

of the Seventh International Conference on

Machine Learning and Cybernetics: Volume:

5, Page(s):2635-2639, July 2008.

[16] S. Zhang, J. T. L. Wang, and K. G. Herbert. ,

Xml query by example. International Journal

of Computational Intelligence and

Applications, 2(3):329–337, 2002.Jonathan

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 330 Issue 10, Volume 10, October 2011

Robie and Red Hat, IEEE Internet Computing,

“XML Processing and Data Integration with

XQuery”, August 2007, (vol. 11 no. 4) pp. 62-

67.

[17] Jonathan Robie and Red Hat, IEEE Internet

Computing, “XML Processing and Data

Integration with XQuery”, August 2007, (vol.

11 no. 4) pp. 62-67.

[18] N. Bruno, N. Koudas, D. Srivastava, Holistic

twig joins: optimal XML pattern matching, in:

Proceedings of the SIGMOD Conference, 2002,

pp. 310–321.

[19] Qiankun Zhao, Ling Chen, Sourav S.

Bhowmick, Sanjay Kumar Madria: XML

structural delta mining: Issues and challenges.

Data and Knowledge Engineering 59(3): 627-

651 (2006).

[20] S. Chen, H.G. Li., J. Tatemura, W.P. Hsiung,

D. Agrawal, K.S. Candan, Twig
2
Stack: bottom-

up processing of generalized tree-pattern

queries over XML documents, in: Proceedings

of the VLDB Conference, 2006, pp. 283–294.

[21] L. Qin, J. Xu Yu, B. Ding, TwigList: make

twig pattern matching fast, in Proceedings of

the DASFAA Conference, 2007, pp. 850–862.

[22] J. Lu, T.W. Ling, C.Y. Chan, T. Chen, From

region encoding to extended Dewey: on

efficient processing of XML twig pattern

matching, in: Proceedings of the VLDB

Conference, 2005, pp. 193–204.

[23] Sayyed K. Izadi, Theo Härder and Mostafa S.

Haghjo, S
3
: Evaluation of tree-pattern XML

queries supported by structural summaries,

Data & Knowledge Engineering, Vol. 68, Issue

1, pp. 126-145, Jan. 2009.

[24] Barbara Catania and Anna Maddalena, “XML

Document Indexes: A Classification”, IEEE

Internet Computing, October 2005, (vol. 9 no.

5) pp. 64-71.

[25] P. O'Neil, E. O'Neil, S. Pal, I. Cseri, G.

Schaller, N. Westbury: ORDPATHs: Insert-

Friendly XML Node Labels. SIGMOD (2004)

903-908.

[26] S. Tatarinov, K.S. Viglas., J. Beyer, E.

Shanmugasun-daram, J. Shekita, C. Zhang,

Storing and querying ordered XML using a

relational database system. SIGMOD (2002)

204-215.

[27] T. Harder, M.P. Haustein, C. Mathis, M.

Wagner: Node labeling schemes for dynamic

XML documents reconsidered, Data and

Knowledge Engineering 60 (1) (2007) 126–

149.

[28] M.P. Haustein, T. Harder: An efficient

infrastructure for native transactional XML

processing, Data and Knowledge Engineering

61 (3) (2007) 500–523.

WSEAS TRANSACTIONS on COMPUTERS Hsu-Kuang Chang, King-Chu Hung, I-Chang Jou

ISSN: 1109-2750 331 Issue 10, Volume 10, October 2011

