
SWIDE: Semantic Web Integrated Development Environment

Islam Hany Harb
1
, Abdurrahman A. Nasr, Salah Abdel-Magid, Hany Harb

1 Computers and Systems Engineering Department

Azhar University

Cairo, Egypt

1 islam.hany@hotmail.com

Abstract: - Ontology is a specification of conceptualization. This paper introduces an environment to develop

semantic web applications. This environment integrates a lot of tools such as an editing capability, logic

reasoner and semantic search engine. Design and implementation of a generalized ontology editor is presented

in this paper through which the user may create, edit, validate, open, search (local and global), or visualize an

ontology or an instance file. The user may edit an instance to be stored either in a RDF/XML file, OWL/XML,

xml knowledge base or other formats. The user may present the ontology hierarchy and the knowledge base in

a tabular form. The environment provides an interface through which the user may consult the knowledge base

by SQL-like statements. It also allows the user to map ontology to another. It also introduces the virtualization

concept providing a mechanism to categorize the ontology instances based on given ontology features. It also

provides logic reasoner so we may check the truth of an instance against a specific knowledge base. A semantic

search engine is also available either locally or globally.

Key-Words: - Ontology Editor, RDF, OWL, XML, Semantic Web, SPARQL, Jena

1 Introduction
The Semantic Web aims at representing the

semantics of resources. It aims at providing a

promising foundation for enriching resources with

well defined meanings. The ontology defines the

vocabularies that describe the domain and it also

defines the relationships between these

vocabularies. The ontology is required to unify the

meaning of the vocabularies used in a domain.

Different words can be used to describe the same

meaning. The ontology can put the axioms that

relate these terms and vocabularies with each other.

This way makes the search more efficient and

easier. It expands the space of words that the user

can use and it can also be used to handle the

abbreviations to be matched with the corresponding

vocabularies.

A semantic web integrated development

environment (SWIDE) has been designed and

implemented in this paper. The user may stick with

this environment to do all the semantic web related

activities. The SWIDE makes it easier to work

simultaneously with both classes and instances.

Thus, a singular instance can be used on the level of

a class definition, and a class can be stored as an

instance.

The knowledge-based system is usually very

expensive to build and maintain and its development

is a team effort, including both developers and

domain experts who may have less familiarity with

computer software. The SWIDE is designed to

guide developers and domain experts through the

system development process of knowledge-based

systems. The SWIDE is designed to allow

developers to reuse domain ontologies and problem-

solving methods, thereby shortening the time

needed for development and maintenance. Several

applications can use the same domain ontology to

solve different problems, and the same problem-

solving method can be used with different

ontologies. This paper is organized as follows.

Section 2 presents the planning of the SWIDE

project, while section 3 describes the environment

architecture.

2 Planning a SWIDE project

The SWIDE is an integrated software tool used by

system developers and domain experts to develop

knowledge-based system and its problem-solving

and decision-making applications in a particular

domain. The SWIDE is designed to support iterative

development, where there are cycles of revision to

the ontologies and other components of the

knowledge-based system. Therefore developers

should not expect to "complete" ontology

development without considering other aspects of

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 310 Issue 9, Volume 10, September 2011

the process. For the development of a successful

SWIDE project, we would recommend the

following steps [3]:

1. Plan for the application and expected uses

of the knowledge base. This usually means

working with domain experts that have a set

of problems that could be solved with

knowledge-base technology.

2. Build an initial small ontology of classes

and slots.

3. When we have built this ontology (and later

when we have extended it or opened it from

file), we can directly view forms for

entering instance knowledge into the

ontology.

4. We may use these forms for acquiring slot

values of test instances. The user may judge

the ontology and the filled-out instance

forms. This inevitably leads to a set of

revisions, both to the ontology and to the

forms. Note that ontology modifications can

be expensive, since some sorts of change

could force rebuilding some or all of the

knowledge base.

5. Customize the forms to a refined

knowledge-acquisition tool. While

constructing this customized version of the

KB-sub tool, further design problems in the

original ontology may become apparent.

6. Build a somewhat larger knowledge-base

that can be tested with the application or

problem-solving method.

7. Test the full application. This step can lead

to further revisions to the ontology and the

KB-sub tool.

Figure 1 below shows this typical pattern use of the

SWIDE subsystems. The thick arrows indicate the

forward progression through the process, while the

thin arrows show places where revisions are usually

necessary (either to the ontology or the knowledge-

acquisition tool).

Fig.1: Typical pattern use of the SWIDE subsystems

At the heart of a successful SWIDE project is the

design of the class and slot structure of the ontology.

In particular, the model we use in building our

ontology must balance the needs of the domain

expert when building a knowledge base (at

knowledge-acquisition time) against the

requirements of our problem-solving method or

application (at run-time). Hopefully, these are not

too contradictory! Ontology developers should

therefore both [3]:

• Model the domain with a set of problems

and a problem-solving method in mind.

• Design the ontology so that it can be used to

generate and customize an appropriate KB-

tool for a specific set of users.

We build on our experience using SWIDE (Protege

2000), Ontolingua (Ontolingua 1997), and Chimaera

(Chimaera 2000) as ontology-editing environments.

In this paper, we use SWIDE as a developer tool for

our ontology examples. The e-learner and sensor

examples that we use throughout in this paper are

considered two case studies.The e-learner is mainly

based on an ontology and knowledge base presented

in a paper describing SEE-ONT as e-learner

ontology for Social and Educational Environment

[1].

3 The SWIDE System Architecture

The SWIDE architecture is considered as a three tier

architecture as shown in the figure 2. There are three

main layers and a database that holds any ontology

with its knowledge base (instances). The first layer

from the top is the User Interface (UI). The UI is

used to facilitate and enable all the SWIDE users

from dealing with it. The SWIDE targets users who

are experts in specific domains. Meanwhile these

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 311 Issue 9, Volume 10, September 2011

users may not be developers or may not even know

any programming language. The UI will take care of

these programming technical issues instead of the

user. The second layer is the Business Logic (BL)

which handles and services all the events

encountered by the users through the UI. It

interprets the events and the actions of the users

specifying the appropriate API functions to call.

The third layer is the Ontology Management Engine

(OME) which is the most important layer where all

the operations that are done on the ontology are

settled in this layer.

Fig.2: The SWIDE Architecture

3.1 The key components
The key components and the features that are

provided by the SWIDE system are user interface

component, ontology editor, semantic search engine,

consistency checker, ontology export, Ontology

Visualization, SPARQL, and Markup.

3.1.1 User Interface. It is the graphical forms that

enable the non-developer users from dealing with

the SWIDE system without going through

programming issues.

3.1.2 Ontology Editor. It is the component that

enables the domain experts from going through the

life cycle of the Ontology development. Editing

ontology is generalized and it includes the following

features:

• Create a new ontology

• Open an existing ontology

• Define classes in the ontology.

• Arrange the classes in a taxonomic (sub

class–super class) hierarchy.

• Define slots and describe the allowed values

for these slots,

• Fill in the values for slots for instances.

• Display the ontology in a pane of the

SWIDE either as XML DOM Tree view or

as XML code text.

3.1.3 Semantic Search Engine. Sometimes, we

do not want to create ontology from scratch. It is

preferable to have a look and search for all the

ontologies within the domain. So that we may find

appropriate predefined ontology in the same domain

and can be considered as suitable starting point.

This feature enables the users from searching

locally and globally for any ontology using

instances or classes. Figure 3 shows the SWIDE

system search engine interface that provides such

feature. This interface appeared after we pressed on

the “Search Ontologies” option. The “Text” field

will hold the class or the instance that we want to

search for its related ontology. There is “Online”

check box on the right acting as a switch between

local and global search.

 Fig.3: The local and global semantic search

features

3.1.4 Consistency Checker. The SWIDE system

enables the users to create ontology in a consistent

methodology and so not an error prone process.

Consistency check is mandatory first step before

any other reasoning service, which verifies the input

axioms do not contain contradictions and only

contain satisfiable axioms. Meanwhile loading or

importing ontology process may be campaigned

with inconsistency problems. This component

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 312 Issue 9, Volume 10, September 2011

checks for the consistency of any loaded ontology.

If ontology is not a consistent one, then it will be

loaded with error messages showing all inconsistent

states.

As an example of inconsistency, consider the

following three statements

CivilServant disjointWith Contractor

Person0853 type CivilServant, Contractor

CivilServantContractor subClassOf (CivilServant

and Contractor)

Consistency check is very important in ontology

building environments to ensure that no instances of

unsatisfiable classes exist, since any consequence

can be inferred from inconsistency. As an example

of inconsistency, consider the following three

statements

3.1.5 Ontology Export. This component is

responsible for writing or exporting ontology into

different formats. Figure 4 shows the available

formats that are supported by the SWIDE where

there is more than one tab and each tab is

corresponding for a specific format to save and

export the current ontology. The supported formats

are RDF/XML, RDF/XML Abbreviated, N3, N-

Triple, OWL/XML, OWL Functional and

Manchester.

3.1.6 Ontology Visualization. The SWIDE

provides the visualization feature for its users. The

Visualization is a mechanism to represent the

ontology as a graph. It describes all the classes, the

instances and the relationships between them in a

specific ontology. Figure 5 shows the visualization

within the SWIDE system. This graph in the figure

represents the high level taxonomy of all the

concepts in sensor ontology as one of our case

studies. Figure 6 shows another visualization graph

(cluttered graph) for sensor ontology.

Fig.4: Taps shows the different formats that are

supported by SWIDE

Fig.5: Ontology tree visualization for sensor

ontology using the SWIDE

Figure 6: Cluttered graph for sensor ontology using

the SWIDE

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 313 Issue 9, Volume 10, September 2011

3.1.7 Consult the knowledge base by

SPARQL. SPARQL is a W3C Candidate

Recommendation towards a standard query

language for the Semantic Web. Its focus is on

querying RDF graphs at the triple level. SPARQL

can be used to query an RDF Schema or OWL

model to filter out criteria with specific

characteristics. The SWIDE provides this feature to

query and retrieve any information from ontology

written with any of the triples format. Figure 7

shows the steps to be followed to run any query on

the ontology (Tools -> SPARQL). After selecting

this feature, a new form that enables the user to

construct any query will appear. This Query form is

shown in figure 8.

Fig.7: Steps to run the SPARQL feature

Fig.8: The Query Form that enables the user to

construct any of SPARQL statements

3.1.8 Ontology Validator

Ontology validation is the process of checking RDF

and OWL models for various common problems.

These problems often result in technically correct

but implausible RDF. SWIDE validator checks

against user-provided schema files and makes

various closed-world assumptions.

SWIDE ontology validator can check for:

• unknown [with respect to the schemas]

properties and classes

• bad prefix namespaces

• ill-formed URIs, with user-specifiable

constraints

• ill-formed language tags on literals

• data typed literals with illegal lexical forms

• unexpected local names in schema

namespaces

• un typed resources and literals

• individuals having consistent types,

assuming complete typing

• likely cardinality violations

• broken RDF list structures

• suspected broken use of the typed list idiom

• obviously broken OWL restrictions

• user-specified constraints written in

SPARQL

SWIDE ontology validator works by inspecting

your model against a set of schemas. The default set

of schemas includes RDF, RDFS, the XSD data

types, and any models your model imports. Figure 7

shows the ontology validation menu (Tools ->

Validate Ontology). The validation screen is shown

in Figure 9

Figure 9: The ontology validation screen which list

validation errors and explanation

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 314 Issue 9, Volume 10, September 2011

3.1.9 Mark up
The Mark up is the process of adding annotations

and semantics to the resources of the current web to

make them machine readable. Ontologies are the

best solution that can be used to annotate the web

resources. The vocabularies that are defined within

ontology allow a shared understanding of the

context for specific domain. These vocabularies

may be used to mark up and describe the web pages

and the other web resources. To make Web pages

machine-readable, they must be connected to the

appropriate ontologies corresponding to the domain

of the page need to be annotated. Semantic mark up

can be achieved by using RDF document that

contains some RDF statements describing and

corresponding to some interesting entities and

contents of web resource. Most common web

resource is a web page. These entities and contents

of the web resource represent other entities in the

real world. Ontology represents these real world

entities by classes and instances of these classes.

The connection between the web resources and that

ontology occurs using this RDF document. The

RDF statements connect the entities in the web

resources to their corresponding and the appropriate

classes and instances within the suitable ontology. It

is important to realize that a markup document is

mainly for the agents to read and it is not for human.

This attached RDF document makes the agent to be

smarter and understand the content’s semantics of

the web page. The next subsection provides the

procedures and steps to mark up any web page and

discusses the Mark Up feature in the SWIDE

system.

Semantic Mark up Steps

Marking up a web page is not a standard process.

There are different methodologies that can be used

to add annotations for any web resources. But, there

are several steps we need to follow when

semantically marking up a Web page [4] as it

follows.

Step 1: Decide which ontology or ontologies to use

for semantic markup. In this step, it is very

important to determine the most suitable ontology to

use for the annotations. The Ontology should be the

nearest and much related to the domain of web

resource’s field and entities. This involves searching

for all the existing ontologies within this domain,

then reading and understanding them carefully.

After that we may decide whether it fits our need

and whether it is enough to express the semantics of

all the interesting entities in the web resource. It is

possible that we may have to come up with our own

ontology, in which case, we need to remember the

rule of always trying to reuse existing ontologies, or

simply constructing our new ontology by extending

an existing ontology [4].

Step 2: Markup the Web page. In this step, we

should decide which entities and parts in the web

page will be annotated. Then loop through all these

entities and search for the corresponding

descriptions and concepts within our ontology.

These appropriate concepts from the ontology

should represent the semantics that we would like

the agent to understand from the annotation. The

RDF document will contain all the important

information about the interesting parts of our web

page. Be sure that this RDF document does not have

any syntax errors. If it has any syntax errors then the

agent will not be able to read and understand its

contents. Sometimes, it is useful to use a RDF

validator to make sure that this RDF document is

correct. W3C provides such validator in its official

website. Also SWIDE can be used as a validator for

this RDF document. If the SWIDE fails to open a

document, then there are syntax errors.

Step 3: Let the world know that our page has a

markup document. Once we have finished

successfully constructed the RDF document, we

have to link it with the web page and make it

accessible by the whole world. We need to indicate

explicitly to the agent that our web page has a

markup RDF document. At the time of this writing,

there is no standard way of accomplishing this. A

popular method is to add a link in the HTML header

of the Web page [4].

SWIDE’s Mark Up

SWIDE provides mark up feature for the web

contents and resources. The mark up is simply done

by creating a Mark Up file and link it with the web’s

resource that is needed to be annotated. This Mark

up file includes RDF statements that describes

partial or whole of the web’s resource. These RDF

statements use concepts and properties defined

within one or more ontologies. Now and after

adding this mark up file, this web’s resource will be

understood and its data can be processed by agent or

machine. The problem is that who will do such

mark up and annotation for them and what will be

the motivation. A lot of work is required just to

markup even a simple page. Also, the owner of the

page should know even basic information about

ontologies and OWL. So it is not that easy task for

the owners to markup their pages or other pages if

possible. This is quite a dilemma [4]: without a

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 315 Issue 9, Volume 10, September 2011

killer Semantic Web application to demonstrate

some significant benefit to the world, there will be

no motivation for the page owners to markup their

pages; on the other hand, without the link between

the current Web and the machine-readable

semantics, the killer application simply cannot be

created. There is one solution for such dilemma is to

automate this markup process. There is no till now a

standard known mechanism to automate the markup

process. The difficulties to automate the markup

process are:

1. The hypertext content of the web page. The

Internet contains highly heterogeneous text

types that are mainly made up of natural

languages.

2. The decision whether to markup all the web

page or only part of it. Sometimes it will be

difficult or even not possible for the agent to

decide what to markup within web page.

There is another problem. There are a lot of web

resources and contents that already exist without

any mark up. If we assumed that we have the

volunteers that will markup these documents and

web resources, we still have where to save these

RDF markup documents. It may happen that we

don’t have the write access to the web server where

the web page exists. One solution is to establish a

centralized server. We can upload any markup

document to this centralized server. As mentioned

above in the step3 of markup steps in the same

section, we need to link this markup with its web

page.

4 SWIDE Packages and APIs

This section introduces all the API’s packages that

we use in the SWIDE system. All the used Packages

in the SWIDE are java APIs. We have imported

different packages to support all the features and

components of the SWIDE. For example, searching

online through the World Wide Web feature, we

have used the “Watson” package APIs [5,6].

// packages imported from the WATSON

import

uk.ac.open.kmi.watson.clientapi.OntologySearch;

import

uk.ac.open.kmi.watson.clientapi.OntologySearchS

erviceLocator;

import

uk.ac.open.kmi.watson.clientapi.WatsonService;

// excerpt from the actual code…

public OntologySearchEngine(){

OntologySearchServiceLocator locator =

new OntologySearchServiceLocator();

 try{

 os = locator.getUrnOntologySearch();

 }

 catch (Exception e) {

 log.error(“Error : ”,e)

 }

}

This API returns back the list of all the ontologies in

any domain that is related to our search key. The

used search key most probably represents an

instance or class within the ontology. The SWIDE

also provides other APIs and functionalities within

this Watson package but they are deprecated. Some

of the deprecated APIs in Watson package:

•••• List all the classes within any retrieved

Ontology.

•••• List all the instances within any retrieved

ontology.

•••• List all the properties within any retrieved

ontology

•••• List all the languages used within any

retrieved ontology.

•••• Determine the number of reviews for any of

the retrieved ontology.

Jena is a Java API for semantic web applications

[7]. The API has been defined in terms of interfaces

so that application code can work with different

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 316 Issue 9, Volume 10, September 2011

implementations without change. Packages in Jena

are used within our system (SWIDE) so that

application developers can create/Edit ontologies in

RDF/OWL formats. This package contains

interfaces for representing models, resources,

properties, literals, statements and all the other key

concepts of RDF, and a ModelFactory for creating

models [7, 8].

OWL API is a Java API and reference

implementation for creating, manipulating and

serializing OWL Ontologies [8]. SWIDE uses OWL

API for representing ontology with diverse formats

import

com.hp.hpl.jena.datatypes.xsd.XSDDatatype;

import

com.hp.hpl.jena.ontology.AnnotationProperty;

import com.hp.hpl.jena.ontology.DatatypeProperty;

import com.hp.hpl.jena.ontology.Individual;

import com.hp.hpl.jena.ontology.ObjectProperty;

import com.hp.hpl.jena.ontology.OntClass;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntProperty;

import com.hp.hpl.jena.ontology.OntResource;

import com.hp.hpl.jena.ontology.Ontology;

import com.hp.hpl.jena.rdf.model.Resource;

import com.hp.hpl.jena.rdf.model.Statement;

import com.hp.hpl.jena.rdf.model.StmtIterator;

import

com.hp.hpl.jena.util.iterator.ExtendedIterator;

import com.hp.hpl.jena.vocabulary.DC;

import com.hp.hpl.jena.vocabulary.OWL;

import com.hp.hpl.jena.vocabulary.OWL2;

import com.hp.hpl.jena.vocabulary.RDFS;

Packages/APIs Used for SPQRQL

ARQ is a query engine for Jena that supports the

SPARQL RDF Query language [9]. SPARQL is the

query language developed by the W3C RDF Data

Access Working Group.

// packages imported from ARQ API

import com.hp.hpl.jena.query.Query;

import com.hp.hpl.jena.query.QueryExecution;

import

com.hp.hpl.jena.query.QueryExecutionFactory;

import com.hp.hpl.jena.query.QueryFactory;

import com.hp.hpl.jena.query.QuerySolution;

import com.hp.hpl.jena.query.ResultSet;

// excerpt from actual code

public List<QuerySolution>

 sparqlSelect(String queryString, Model model,

JTextArea logger) {

String queryString = "select distinct ?subject

?predicate ?object where

 { ?subject ?predicate ?object FILTER

isIRI(?subject) .}";

Query query = QueryFactory.create(queryString);

QueryExecution qe =

QueryExecutionFactory.create(query, model);

ResultSet resultSet = qe.execSelect();

List<QuerySolution> solutions =

ResultSetFormatter.toList(resultSet);

qe.close();

 return solutions;

 }

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 317 Issue 9, Volume 10, September 2011

Packages/APIs Used for Visualization

1. OWL2Prefuse is a Java package which creates

Prefuse graphs and trees from OWL files. It takes

care of converting the OWL data structure to the

Prefuse data structure [10]. This makes it is easy for

developers, to use the Prefuse graphs and trees into

their Semantic Web applications.

// packages imported from OWL Prefuse

import prefuse.data.Graph;

import prefuse.data.Tree;

// excerpt from actual code

public void createGraphPanel() {

 OWLGraphConverter graphConverter =

new OWLGraphConverter(owlModel, false);

 Graph graph = graphConverter.getGraph();

 GraphDisplay graphDisp = new

GraphDisplay(graph, true);

 GraphPanel graphPanel = new

GraphPanel(graphDisp, true, true);

 graphPanel.setVisible(true);

 }

2. Packages/APIs Used for Mark Up

SMORE APIs will be imported in our SWIDE.

SMORE is one of the projects developed by the

researchers and developers in the University of

Maryland at College Park. SWIDE through the

SMORE APIs enables the users from creating their

own mark up files easily by using the provided GUI.

 5 Related Works
Swoop is based on the Model-View-Controller

(MVC) paradigm [14]. The SwoopModel

component stores all ontology-centric information

pertaining to the Swoop Workspace (currently

loaded ontologies, change-logs, checkpoints) and

defines key parameters used by the Swoop UI

objects (such as selected OWL entity, view settings

for imports, QNames etc). Additionally, a

SwoopModelListener class is used to reflect

changes in the UI based on changes in the

SwoopModel (using a suitably defined event-

notification scheme). Control is handled through a

plugin based system, which loads new Renderers

and Reasoners dynamically. The obvious advantage

of a plugin framework is to ensure modularity of the

code, and encourage external developers to

contribute to the Swoop project easily. Finally, we

note that the entire Swoop code is written in Java,

maintained in a subversion repository and makes

use of numerous third party libraries, the most

prominent being the WonderWeb OWL API [11]

for parsing OWL ontologies.

6 Conclusion
The Design and implementation of a semantic web

integrated development environment (SWIDE) was

presented in this paper. The SWIDE user may create

ontology or use an existing one. The user may edit

an instance to be stored either in an xml file or in

xml knowledge base. The SWIDE may present the

ontology hierarchy and may present the knowledge

base in a tabular form. The user may consult the

knowledge base by SQL-like statement. It also

introduces the virtualization concept providing a

mechanism to categorize the ontology instances

based on given ontology features.

References:

[1] Islam H. Harb, S. Abdel-Mageid, H. Farahat,

Ahmed Abdel_Nabi, SEE ONT: E-Learner Otology

For Social and Educational Environment, Al-Azhar

Engineering Eleventh International Conference,

ISSN 1110-6409, Volume 5, No.8, December 21 -

23, 2010

[2] Islam H. Harb, Semantic Web Technologies,

National Workshop on Computational Intelligence

and the Web, Egypt IEEE Computational

Intelligence Chapter and Al-Azhar University

Student Chapter, 4th December 2010

[3]

http://protegewiki.stanford.edu/wiki/PrF_UG_intro_

all

[4] Liyang Yu, Introduction to the Semantic Web

and Semantic Web Services, Chapman and

Hall/CRC 2007, Pages 173–185, Print ISBN: 978-1-

58488-933-5, eBook ISBN: 978-1-58488-934-2,

DOI: 10.1201/9781584889342.ch9

[5] http://www.w3.org/2001/sw/wiki/Watson

[6] http://watson.kmi.open.ac.uk/WS_and_API.html

[7] http://jena.sourceforge.net/

[8] http://owlapi.sourceforge.net/

[9] http://jena.sourceforge.net/ARQ/

[10] http://owl2prefuse.sourceforge.net/

[11] Bechhofer, S., Lord, P., Volz, R. Cooking the

Semantic Web with the OWL API. Proceedings of

the International Semantic Web Conference (2003)

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 318 Issue 9, Volume 10, September 2011

[12] Cuenca-Grau, B., Parsia, B., Sirin, E.: Working

with Multiple Ontologies on the Semantic Web.

Proceedings of the Third International Semantic

Web Conference (ISWC) (2004)

[13] Kahan, J., Koivunen, M.R., Prud’Hommeaux,

E., Swick, R.: Annotea: An Open RDF

Infrastructure for Shared Web Annotations. Proc. of

the WWW10 International Conference (2001)

[14] Aditya Kalyanpur , Bijan Parsia , Evren Sirin

, Bernardo Cuenca Grau , James Hendler, Swoop:

Design and Architecture of a Web Ontology

Browser (/Editor), Journal of Web Semantics,

2005, Scholarly Paper for Master's Degree in

Computer Science with Non-Thesis Option, Fall

2004

WSEAS TRANSACTIONS on COMPUTERS
Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ISSN: 1109-2750 319 Issue 9, Volume 10, September 2011

