Islam Hany Harb, Abdurrahman A. Nasr,
WSEAS TRANSACTIONS on COMPUTERS Salah Abdel-Magid, Hany Harb

SWIDE: Semantic Web Integrated Development Environment

Islam Hany Harb', Abdurrahman A. Nasr, Salah Abdel-Magid, Hany Harb
1 Computers and Systems Engineering Department
Azhar University
Cairo, Egypt
1 islam.hany@hotmail.com

Abstract: - Ontology is a specification of conceptualization. This paper introduces an environment to develop
semantic web applications. This environment integrates a lot of tools such as an editing capability, logic
reasoner and semantic search engine. Design and implementation of a generalized ontology editor is presented
in this paper through which the user may create, edit, validate, open, search (local and global), or visualize an
ontology or an instance file. The user may edit an instance to be stored either in a RDF/XML file, OWL/XML,
xml knowledge base or other formats. The user may present the ontology hierarchy and the knowledge base in
a tabular form. The environment provides an interface through which the user may consult the knowledge base
by SQL-like statements. It also allows the user to map ontology to another. It also introduces the virtualization
concept providing a mechanism to categorize the ontology instances based on given ontology features. It also
provides logic reasoner so we may check the truth of an instance against a specific knowledge base. A semantic
search engine is also available either locally or globally.

Key-Words: - Ontology Editor, RDF, OWL, XML, Semantic Web, SPARQL, Jena

1 Introduction domain experts who may have less familiarity with
The Semantic Web aims at representing the computer software. The SWIDE is designed to
semantics of resources. It aims at providing a guide developers and domain experts through the
promising foundation for enriching resources with system development process of knowledge-based

well defined meanings. The ontology defines the systems. The SWIDE is designed to allow
vocabularies that describe the domain and it also developers to reuse domain ontologies and problem-
defines the relationships between these solving methods, thereby shoﬁemng the time
vocabularies. The ontology is required to unify the needed for development and maintenance. Several
meaning of the vocabularies used in a domain. applications can use the same domain ontology to
Different words can be used to describe the same solve different problems, and the same problem-
meaning. The ontology can put the axioms that solving method can be used with different
relate these terms and vocabularies with each other. ontologies. This paper is organized as follows.
This way makes the search more efficient and Section 2 presents the planning of the SWIDE
casier. It expands the space of words that the user prqe;ct, while section 3 describes the environment
can use and it can also be used to handle the architecture.

abbreviations to be matched with the corresponding

vocabularies.

2 Planning a SWIDE project

The SWIDE is an integrated software tool used by
system developers and domain experts to develop

A semantic web integrated development
environment (SWIDE) has been designed and
implemented in this paper. The user may stick with

this environment to do all the semantic web related knowledge-based system and its problem-solving
activities. The SWIDE makes it easier to work and decision-making applications in a particular
simultaneously with both classes and instances. domain. The SWIDE is designed to support iterative
Thus, a singular instance can be used on the level of development, where there are cycles of revision to

a class definition, and a class can be stored as an

the ontologies and other components of the

Instance. knowledge-based system. Therefore developers

The knowledge-based system is usually very
expensive to build and maintain and its development i T
is a team effort, including both developers and development without considering other aspects of

should not expect to "complete" ontology

ISSN: 1109-2750 310 Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

the process. For the development of a successful
SWIDE project, we would recommend the
following steps [3]:

1. Plan for the application and expected uses
of the knowledge base. This usually means
working with domain experts that have a set
of problems that could be solved with
knowledge-base technology.

2. Build an initial small ontology of classes
and slots.

3. When we have built this ontology (and later
when we have extended it or opened it from
file), we can directly view forms for
entering instance knowledge into the
ontology.

4. We may use these forms for acquiring slot
values of test instances. The user may judge
the ontology and the filled-out instance
forms. This inevitably leads to a set of
revisions, both to the ontology and to the
forms. Note that ontology modifications can
be expensive, since some sorts of change
could force rebuilding some or all of the
knowledge base.

5. Customize the forms to a refined
knowledge-acquisition tool. While
constructing this customized version of the
KB-sub tool, further design problems in the
original ontology may become apparent.

6. Build a somewhat larger knowledge-base
that can be tested with the application or
problem-solving method.

7. Test the full application. This step can lead
to further revisions to the ontology and the
KB-sub tool.

Figure 1 below shows this typical pattern use of the
SWIDE subsystems. The thick arrows indicate the
forward progression through the process, while the
thin arrows show places where revisions are usually
necessary (either to the ontology or the knowledge-
acquisition tool).

ISSN: 1109-2750

311

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

Revise

5 Build Ontology

Rewvise

Design and implement

Knowledge-base Generator

Build Knowledge-base

Testing

Fig.1: Typical pattern use of the SWIDE subsystems

At the heart of a successful SWIDE project is the
design of the class and slot structure of the ontology.
In particular, the model we use in building our
ontology must balance the needs of the domain
expert when building a knowledge base (at
knowledge-acquisition time) against the
requirements of our problem-solving method or
application (at run-time). Hopefully, these are not
too contradictory! Ontology developers should
therefore both [3]:

e Model the domain with a set of problems
and a problem-solving method in mind.

e Design the ontology so that it can be used to
generate and customize an appropriate KB-
tool for a specific set of users.

We build on our experience using SWIDE (Protege
2000), Ontolingua (Ontolingua 1997), and Chimaera
(Chimaera 2000) as ontology-editing environments.
In this paper, we use SWIDE as a developer tool for
our ontology examples. The e-learner and sensor
examples that we use throughout in this paper are
considered two case studies.The e-learner is mainly
based on an ontology and knowledge base presented
in a paper describing SEE-ONT as e-learner
ontology for Social and Educational Environment

[1].

3 The SWIDE System Architecture

The SWIDE architecture is considered as a three tier
architecture as shown in the figure 2. There are three
main layers and a database that holds any ontology
with its knowledge base (instances). The first layer
from the top is the User Interface (UI). The Ul is
used to facilitate and enable all the SWIDE users
from dealing with it. The SWIDE targets users who
are experts in specific domains. Meanwhile these

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

users may not be developers or may not even know
any programming language. The Ul will take care of
these programming technical issues instead of the
user. The second layer is the Business Logic (BL)
which handles and services all the events
encountered by the users through the UL It
interprets the events and the actions of the users
specifying the appropriate API functions to call.
The third layer is the Ontology Management Engine
(OME) which is the most important layer where all
the operations that are done on the ontology are
settled in this layer.

User Interface

Business Logic Layer

o

Ontology Management Engine Layer
(APIs)

PN

Fig.2: The SWIDE Architecture

3.1 The key components

The key components and the features that are
provided by the SWIDE system are user interface
component, ontology editor, semantic search engine,
consistency checker, ontology export, Ontology
Visualization, SPARQL, and Markup.

3.1.1 User Interface. It is the graphical forms that
enable the non-developer users from dealing with
the SWIDE system without going through
programming issues.

3.1.2 Ontology Editor. It is the component that
enables the domain experts from going through the
life cycle of the Ontology development. Editing
ontology is generalized and it includes the following
features:

e Create a new ontology
¢ Open an existing ontology

o Define classes in the ontology.

ISSN: 1109-2750

312

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

e Arrange the classes in a taxonomic (sub
class—super class) hierarchy.

e Define slots and describe the allowed values
for these slots,

e Fill in the values for slots for instances.

e Display the ontology in a pane of the
SWIDE either as XML DOM Tree view or
as XML code text.

3.1.3 Semantic Search Engine. Sometimes, we
do not want to create ontology from scratch. It is
preferable to have a look and search for all the
ontologies within the domain. So that we may find
appropriate predefined ontology in the same domain
and can be considered as suitable starting point.
This feature enables the users from searching
locally and globally for any ontology using
instances or classes. Figure 3 shows the SWIDE
system search engine interface that provides such
feature. This interface appeared after we pressed on
the “Search Ontologies” option. The “Text” field
will hold the class or the instance that we want to
search for its related ontology. There is “Online”
check box on the right acting as a switch between
local and global search.

3 Select Dption
Dptions

Create ontology

Opean existing ontoloo

Saocrch Ontologiss

Text | |

Specify Directory | Search

[Case sensitive

[Recursively

Fig.3: The local and global semantic search
features

3.1.4 Consistency Checker. The SWIDE system
enables the users to create ontology in a consistent
methodology and so not an error prone process.
Consistency check is mandatory first step before
any other reasoning service, which verifies the input
axioms do not contain contradictions and only
contain satisfiable axioms. Meanwhile loading or
importing ontology process may be campaigned
with inconsistency problems. This component

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

checks for the consistency of any loaded ontology.
If ontology is not a consistent one, then it will be
loaded with error messages showing all inconsistent
states.

As an example of inconsistency, consider the
following three statements

CivilServant disjointWith Contractor
Person0853 type CivilServant, Contractor

CivilServantContractor subClassOf (CivilServant
and Contractor)

Consistency check is very important in ontology
building environments to ensure that no instances of
unsatisfiable classes exist, since any consequence
can be inferred from inconsistency. As an example
of inconsistency, consider the following three
statements

3.1.5 Ontology Export. This component is
responsible for writing or exporting ontology into
different formats. Figure 4 shows the available
formats that are supported by the SWIDE where
there is more than one tab and each tab is
corresponding for a specific format to save and
export the current ontology. The supported formats
are RDF/XML, RDF/XML Abbreviated, N3, N-
Triple, OWL/XML, OWL Functional and
Manchester.

3.1.6 Ontology Visualization. The SWIDE
provides the visualization feature for its users. The
Visualization is a mechanism to represent the
ontology as a graph. It describes all the classes, the
instances and the relationships between them in a
specific ontology. Figure 5 shows the visualization
within the SWIDE system. This graph in the figure
represents the high level taxonomy of all the
concepts in semsor ontology as one of our case
studies. Figure 6 shows another visualization graph
(cluttered graph) for sensor ontology.

ISSN: 1109-2750

313

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

‘D OntoEdit - Main Demo Ver1.0 (
Fie Tooks

fam_org_ ontology ed it E-L owl)

Savelodel | SaveTert Saeicill EportGraphasinage | Refresh Model
Clsses | Propertiss | Tndividusls | Dom Tree | ROFIAML Wew | RDFJ{ML Abbrevisked View | N3 Vizw | -Trie iew | OWLIAAL Vi | OWL Frctiona View | Manchester View | Vsuslization

adtOF
salesircf="ht . 03.0rg]1 39/02122 1 -syrkarcnst”
3, 09/2002 07 ol
oo w3 012001 [XPLSchema”
tology{e-eamer_ontolcgy.ovls”
ros="hity: .3 crgf200]0 e schema >
rdf:escrstion cfiabout="htpantologyle-zarnet_ontclogy.oml'>
<rdfitype rdfiresource="htto: e, 2, orgf2002/C7 owl#Ontclogy
<t Desciption>
o

it nsceen >
it v 3. 200131 't

<dfsidonain 't i i
i oorgl2002/C perty'f

< Desarption
o

| {samer ontcogy. oW Tteresis'>

rditype rcf resounce="htt: .= g {20027/ owléClss>

< Descrption
o

- vy

<rdfityperck nesourse="het:{ [WE. 2002/ CT ol Class >
<JrdFDesciption>
.

i Joarner_okclogy. ol GoasindObjecives'>
rdhtype el resource="ttt: . g 20027 owlClass >

<l Descrption>

i, 4 satnet i

<rdfitype ok tesouce="httz: . WE. 02002/ C7 ol Class >

<l Descrption>

o 4 barner._ strants's
<rdityps reiresource="ttts w02 org 2002IC7jonl s

e Desciption>

Ve et Jsarner_ontclogy. owkeSecurity'>

<rdhtyperdf resource="htt: . wE.rg2002]C7 ol Clase >

<Jre:Desciption>

o zatmer_ortdogy onl#Afiati’>

<rdfitypercfitesource="het: [W& cral2002/CT ol Class >
<JdrDesciption>

<crlitype o resource="htt: .. org/2002/C7 ok Clss'f >

Fig.4: Taps shows the different formats that are
supported by SWIDE

€ ic) -E X

VL ExportGraph AsImage | RefreshModel

ROF /XML View || ROF/XML Abbreviated View || N3 View || N-Triple View || OWLAML View | OWL Fnctional View || Manchester View || Visuaization

Tree | Graph

Measrand

XBOW_Measurand Legend
componentHstory
DataGroup Tuple OWL class
SersorCapabiities B oW individuat
CapabiltiesDescrption
atformCapabiities e

LinearV/aryingAngle

Coefficent Path to slected node

Countparameter TypedCount Node in search result st
MD_SecuityConstraints Mass Defanit color
Duration
AngularvelocityParameter R
OFERER Orintation:
AngularAccelerationParameter @ left-toright
Thing SEimIE QuantityParametar Volume O top-to-botiom
ParameterTuple TypedQuantityParameter -
BooleanParameter ;elﬂcltvpa\amete\
istance
_ LinearVaryingDistance T
T LinearanyinoQuantity
Latitude
Locationparameter
Longitude:
_Humidty
light_
ResponseModel e
Temperature
Quantity TypedQuantity
Magnetic_Flux_Density
Electrical
componentDesctiption Dimen -

Default NS : http:/wwew.owl-ontologies.comjury

Fig.5: Ontology tree visualization for sensor
ontology using the SWIDE

) SET
Fe ook
[Saveodel | SaveText Save A i Export Grapn Asnage | Reres Moo]
Giasses | Properties | Incividuais | Dom Tree | RDF/XML View || ROF/XML Abbreviated View | N3 View | N-Tripie View || OWLXML View || OWL Fcionai View | Manchester View | Vissaiaton |
Toee Gk
Legend
OWL class
I oW indivictuat
Selected node
Neighbour of selected node
Node in search result set
Defauit color
Hops conral
Number of hops:
o
Default NS : tepsi:/fabdurrahman/Ontoloay # ﬁ

Figure 6: Cluttered graph for sensor ontology using
the SWIDE

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

3.1.7 Consult the knowledge base by
SPARQL. SPARQL is a W3C Candidate
Recommendation towards a standard query

language for the Semantic Web. Its focus is on
querying RDF graphs at the triple level. SPARQL
can be used to query an RDF Schema or OWL
model to filter out criteria with specific
characteristics. The SWIDE provides this feature to
query and retrieve any information from ontology
written with any of the triples format. Figure 7
shows the steps to be followed to run any query on
the ontology (Tools -> SPARQL). After selecting
this feature, a new form that enables the user to
construct any query will appear. This Query form is
shown in figure 8.

£ OntoEdit - Main Dema Verl.0 (E:\islam workimasterstislam_org_1-10-2010 papets'paper3 ntology ed

Fe Tt
Sa Fid CHF | EputGaphids Inags | Refresh ol

SRARGL ChiShites . .
C_\a - 2 | RDFJYM View | RDFJHAL Abbreviated View | W3 View | -TrnkMiew | CNLIML Yiew
T Vaidate Ontology~ CrbeShift+)

£ Preferences
LRI itk fontalog eleamer_ontelogy, b Preferences
B GosletndObjectves
LRI itk fortalogy eleamer ontology,ouhk Goalstindbjectives

B HeathEniotion5taus

LRI hétp:fontalogy e-eamer_ontoloay owlHeathEmotionStatus

- i

Fig.7: Steps to run the SPARQL feature

Q OntoEdit - Main Demo Verd 0 Exislani; \islam_org '\ OntEdit]
Al s
prpE——r B sARQ. Eitor &

Hep

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

SWIDE ontology validator can check for:

e unknown [with respect to the schemas]
properties and classes

e bad prefix namespaces

e ill-formed URIs, with user-specifiable
constraints

o ill-formed language tags on literals

o data typed literals with illegal lexical forms

e unexpected local names in schema
namespaces

e un typed resources and literals

e individuals having consistent types,
assuming complete typing

o likely cardinality violations

e broken RDF list structures

e suspected broken use of the typed list idiom

e obviously broken OWL restrictions

e user-specified constraints written in
SPARQL

SWIDE ontology validator works by inspecting
your model against a set of schemas. The default set
of schemas includes RDF, RDFS, the XSD data
types, and any models your model imports. Figure 7
shows the ontology validation menu (Tools ->
Validate Ontology). The validation screen is shown
in Figure 9

D Ontokdit Prof
Fle Tods

ntology Editor (http:// ot wig)

e i LTER BIR:(7sudject) 1}
LRI wpifjcrtaogyfe-karnd
£ GaastndObedives
w1 plertaogylekand
£ HoabEnondatis
LRI wdpidicrtaogyjeearnd]
£ Afileton
LRI vtpsfiertoogsieeand (" Eecuts sebc Evecuts Constrt) (zeutessc) (Zoaterexis)

£ qulfcatoniinkdepacid
© Learigiv ke b

rshps portocey e ane ontogy cifGea.. it s w8 g/ thenassu
Feartacoyfe e ontog: coifGua, g e w1g/13

et
g cr 20027 g
i 0027 el

03]

G
& denttylomatin

€ e ondgy .. bty ol S
s cpiertacs kg ulfELr...Hep I ity 2t
S e e g .. D o 5 /2T Sbeneds. G e 02 T
€ S _ontlogy i ? . g Tfovleclos
€ Torprs ElO ke g e 2 o

[EertaceyjerBarmer_ontclgy culfQu... i Jfwe w3,
(et pcrtaceyfe-learner_ontologe.culfel . hHEp ffswent Wi
B Je-larne

ftp i e il
it . W [S, I e o 31200

[etpfertaccyfe Barne_onto

Query exected ir 0 willisezons. .

Fig.8: The Query Form that enables the user to
construct any of SPARQL statements

3.1.8 Ontology Validator

Ontology validation is the process of checking RDF
and OWL models for various common problems.
These problems often result in technically correct
but implausible RDF. SWIDE validator checks
against user-provided schema files and makes
various closed-world assumptions.

ISSN: 1109-2750

314

SaveModel | SaveText Save AsXVL ExportGraphAsInage | Refresh Mode

Classes | Properties | Individuals | DomTree | RDF/XML View | RDF/XML Abbreviated View | N3 View | N-Triple View | OWL/XML View | OWL Fnctional View | Manchester View | Visualization

o Classes
B Adie
[Mesacie vea |/ Ontology validation and consistency checker
B MCA
& e Validation error. [~
2 Explanaton below o
& Dimen <rdf:ROF
[CKL29LP3_Platform xmins:rdf="http:/fwww.w3.0rg/1939/02/22rdf syntax-ns#”
5 YBon.Totd Radaton || IS vard="t: .3 org 200 vcard - 3.0%°
- rm—_s smins:owl="http:/fwww. w3, 0rg/2002/07fowl£*
@ UnesrVoryignge | i et four ng ifeementsf. 1
1@ MTS_420_Ambient mins:ontoEdit="http: /fjena.hpl.hp.com/Eyeball#™
@ Tonperatwe Tupls | ninsorsd="t: .. crg /200 Schema ™
- sminsirss="http:/fpurl.orgls/L.01
5 Gauss
fww.exampl.orc/”
@ Sensor : o, daml.org /200 103carml il "
@ StopAction amins:rdifs="Tttp: fwww.w3.0rg/2000/01frdf-schema #*
ot i a=tp: e . con/ 2005/ L1 Asenbler £°>
- <ontoEdit:Item>
SRR fatirn <ontuEditorStatements
@ MEP410_Photosyntheticl| <rdf:Statement>
@ TypedQuantityParamets <rdf:subject rdf:parseType="TResource™>
B il Mkt (OO0
g . <rfpredicate rdfresource="http: . w3.0r0/2002/07fow Ecardinaity”T>
& Obser rdf:object “hitp: w3.0rg/2001/XM_Schemaint”
[MD_SearityConstraints|| >Le<fidfobject>
@ CapabiltesDescrpton | <rdfStatement>
& <JontoEdit:onStatement >
[PassieStandOff s e e
[CXLI0PL Platfor i perty dfresource="htips fenz. hplhp. ate’f>
@ XBow_Temperature <fontoEdit:Ttem >
B iy | - T
ik <ontoEdit:onStatement>
@ standalonePlatform <rdf:Statement
@ MIS300 Platform <rdfisubject rdfinodelD ="A0"/>
- <dfpredicate rd htp: o 3.0/ 1998/02/ 22+ synta-ns st L]
:: Egi:::m <rdf object rdF-datatype="http: fwww.w3.ro/2001 M. Schema #string”™ 3

[MTS_300_Bi-Axial_Accelerometer
(@ MSP410CA_Platform

Figure 9: The ontology validation screen which list
validation errors and explanation

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

3.1.9 Mark up

The Mark up is the process of adding annotations
and semantics to the resources of the current web to
make them machine readable. Ontologies are the
best solution that can be used to annotate the web
resources. The vocabularies that are defined within
ontology allow a shared understanding of the
context for specific domain. These vocabularies
may be used to mark up and describe the web pages
and the other web resources. To make Web pages
machine-readable, they must be connected to the
appropriate ontologies corresponding to the domain
of the page need to be annotated. Semantic mark up
can be achieved by using RDF document that
contains some RDF statements describing and
corresponding to some interesting entities and
contents of web resource. Most common web
resource is a web page. These entities and contents
of the web resource represent other entities in the
real world. Ontology represents these real world
entities by classes and instances of these classes.
The connection between the web resources and that
ontology occurs using this RDF document. The
RDF statements connect the entities in the web
resources to their corresponding and the appropriate
classes and instances within the suitable ontology. It
is important to realize that a markup document is
mainly for the agents to read and it is not for human.
This attached RDF document makes the agent to be
smarter and understand the content’s semantics of
the web page. The next subsection provides the
procedures and steps to mark up any web page and
discusses the Mark Up feature in the SWIDE
system.

Semantic Mark up Steps

Marking up a web page is not a standard process.
There are different methodologies that can be used
to add annotations for any web resources. But, there
are several steps we need to follow when
semantically marking up a Web page [4] as it
follows.

Step 1: Decide which ontology or ontologies to use
for semantic markup. In this step, it is very
important to determine the most suitable ontology to
use for the annotations. The Ontology should be the
nearest and much related to the domain of web
resource’s field and entities. This involves searching
for all the existing ontologies within this domain,
then reading and understanding them carefully.
After that we may decide whether it fits our need
and whether it is enough to express the semantics of
all the interesting entities in the web resource. It is
possible that we may have to come up with our own

ISSN: 1109-2750

315

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

ontology, in which case, we need to remember the
rule of always trying to reuse existing ontologies, or
simply constructing our new ontology by extending
an existing ontology [4].

Step 2: Markup the Web page. In this step, we
should decide which entities and parts in the web
page will be annotated. Then loop through all these
entities and search for the corresponding
descriptions and concepts within our ontology.
These appropriate concepts from the ontology
should represent the semantics that we would like
the agent to understand from the annotation. The
RDF document will contain all the important
information about the interesting parts of our web
page. Be sure that this RDF document does not have
any syntax errors. If it has any syntax errors then the
agent will not be able to read and understand its
contents. Sometimes, it is useful to use a RDF
validator to make sure that this RDF document is
correct. W3C provides such validator in its official
website. Also SWIDE can be used as a validator for
this RDF document. If the SWIDE fails to open a
document, then there are syntax errors.

Step 3: Let the world know that our page has a
markup document. Once we have finished
successfully constructed the RDF document, we
have to link it with the web page and make it
accessible by the whole world. We need to indicate
explicitly to the agent that our web page has a
markup RDF document. At the time of this writing,
there is no standard way of accomplishing this. A
popular method is to add a link in the HTML header
of the Web page [4].

SWIDE’s Mark Up

SWIDE provides mark up feature for the web
contents and resources. The mark up is simply done
by creating a Mark Up file and link it with the web’s
resource that is needed to be annotated. This Mark
up file includes RDF statements that describes
partial or whole of the web’s resource. These RDF
statements use concepts and properties defined
within one or more ontologies. Now and after
adding this mark up file, this web’s resource will be
understood and its data can be processed by agent or
machine. The problem is that who will do such
mark up and annotation for them and what will be
the motivation. A lot of work is required just to
markup even a simple page. Also, the owner of the
page should know even basic information about
ontologies and OWL. So it is not that easy task for
the owners to markup their pages or other pages if
possible. This is quite a dilemma [4]: without a

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

killer Semantic Web application to demonstrate
some significant benefit to the world, there will be
no motivation for the page owners to markup their
pages; on the other hand, without the link between
the current Web and the machine-readable
semantics, the killer application simply cannot be
created. There is one solution for such dilemma is to
automate this markup process. There is no till now a
standard known mechanism to automate the markup
process. The difficulties to automate the markup
process are:

1. The hypertext content of the web page. The
Internet contains highly heterogeneous text
types that are mainly made up of natural
languages.

2. The decision whether to markup all the web
page or only part of it. Sometimes it will be
difficult or even not possible for the agent to
decide what to markup within web page.

There is another problem. There are a lot of web
resources and contents that already exist without
any mark up. If we assumed that we have the
volunteers that will markup these documents and
web resources, we still have where to save these
RDF markup documents. It may happen that we
don’t have the write access to the web server where
the web page exists. One solution is to establish a
centralized server. We can upload any markup
document to this centralized server. As mentioned
above in the step3 of markup steps in the same
section, we need to link this markup with its web

page.

4 SWIDE Packages and APIs

This section introduces all the API’s packages that
we use in the SWIDE system. All the used Packages
in the SWIDE are java APIs. We have imported
different packages to support all the features and
components of the SWIDE. For example, searching
online through the World Wide Web feature, we
have used the “Watson” package APIs [5,6].

// packages imported from the WATSON
import
uk.ac.open.kmi.watson.clientapi.OntologySearch;

import
uk.ac.open.kmi.watson.clientapi.OntologySearchS

ISSN: 1109-2750

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

erviceLocator;

import
uk.ac.open.kmi.watson.clientapi. WatsonService;

/I excerpt from the actual code...

public OntologySearchEngine(){

OntologySearchServiceLocator locator =
new OntologySearchServiceLocator();

try{

os = locator.getUrnOntologySearch();

}

catch (Exception e) {

log.error(“Error : ”,e)

This API returns back the list of all the ontologies in
any domain that is related to our search key. The
used search key most probably represents an
instance or class within the ontology. The SWIDE
also provides other APIs and functionalities within
this Watson package but they are deprecated. Some
of the deprecated APIs in Watson package:
e List all the classes within any retrieved

Ontology.
List all the instances within any retrieved
ontology.

List all the properties within any retrieved
ontology

List all the languages used within any
retrieved ontology.

Determine the number of reviews for any of
the retrieved ontology.

Jena is a Java API for semantic web applications
[7]. The API has been defined in terms of interfaces
so that application code can work with different

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

implementations without change. Packages in Jena
are used within our system (SWIDE) so that
application developers can create/Edit ontologies in
RDF/OWL formats. This package contains
interfaces for representing models, resources,
properties, literals, statements and all the other key
concepts of RDF, and a ModelFactory for creating
models [7, 8].

OWL API is a Java APl and reference
implementation for creating, manipulating and
serializing OWL Ontologies [8]. SWIDE uses OWL
API for representing ontology with diverse formats

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

Packages/APIs Used for SPQRQL

ARQ is a query engine for Jena that supports the
SPARQL RDF Query language [9]. SPARQL is the
query language developed by the W3C RDF Data
Access Working Group.

import
com.hp.hpl.jena.datatypes.xsd. XSDDatatype;

import
com.hp.hpl.jena.ontology. AnnotationProperty;

import com.hp.hpl.jena.ontology.DatatypeProperty;
import com.hp.hpl.jena.ontology.Individual;
import com.hp.hpl.jena.ontology.ObjectProperty;
import com.hp.hpl.jena.ontology.OntClass;
import com.hp.hpl.jena.ontology.OntModel;
import com.hp.hpl.jena.ontology.OntProperty;
import com.hp.hpl.jena.ontology.OntResource;
import com.hp.hpl.jena.ontology.Ontology;
import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.rdf.model.Statement;
import com.hp.hpl.jena.rdf.model.Stmtlterator;

import
com.hp.hpl.jena.util.iterator. ExtendedIterator;

import com.hp.hpl.jena.vocabulary.DC;
import com.hp.hpl.jena.vocabulary.OWL;
import com.hp.hpl.jena.vocabulary. OWL2;

import com.hp.hpl.jena.vocabulary.RDFS;

/I packages imported from ARQ API
import com.hp.hpl.jena.query.Query;
import com.hp.hpl.jena.query.QueryExecution;

import
com.hp.hpl.jena.query.QueryExecutionFactory;

import com.hp.hpl.jena.query.QueryFactory;
import com.hp.hpl.jena.query.QuerySolution;
import com.hp.hpl.jena.query.ResultSet;

/I excerpt from actual code
public List<QuerySolution>

sparqlSelect(String queryString, Model model,
JTextArea logger) {

String queryString = "select distinct ?subject
?predicate ?object where

{ ?subject ?predicate = ?object = FILTER

isIRI(?subject) .}";

Query query = QueryFactory.create(queryString);

QueryExecution ge =
QueryExecutionFactory.create(query, model);

ResultSet resultSet = ge.execSelect();

List<QuerySolution> solutions =
ResultSetFormatter.toList(resultSet);

ge.close();

return solutions;

ISSN: 1109-2750

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

Packages/APIs Used for Visualization

1. OWL2Prefuse is a Java package which creates
Prefuse graphs and trees from OWL files. It takes
care of converting the OWL data structure to the
Prefuse data structure [10]. This makes it is easy for
developers, to use the Prefuse graphs and trees into
their Semantic Web applications.

/l packages imported from OWL Prefuse
import prefuse.data.Graph;
import prefuse.data.Tree;
/I excerpt from actual code
public void createGraphPanel() {

OWLGraphConverter graphConverter =
new OWLGraphConverter(owlModel, false);

Graph graph = graphConverter.getGraph();

GraphDisplay graphDisp = new
GraphDisplay(graph, true);
GraphPanel graphPanel = new

GraphPanel(graphDisp, true, true);

graphPanel.setVisible(true);

}

2. Packages/APIs Used for Mark Up

SMORE APIs will be imported in our SWIDE.
SMORE is one of the projects developed by the
researchers and developers in the University of
Maryland at College Park. SWIDE through the
SMORE APIs enables the users from creating their
own mark up files easily by using the provided GUI.

5 Related Works

Swoop is based on the Model-View-Controller
(MVC) paradigm [14]. The SwoopModel
component stores all ontology-centric information
pertaining to the Swoop Workspace (currently
loaded ontologies, change-logs, checkpoints) and
defines key parameters used by the Swoop Ul
objects (such as selected OWL entity, view settings
for imports, QNames etc). Additionally, a
SwoopModelListener class is used to reflect
changes in the Ul based on changes in the
SwoopModel (using a suitably defined event-
notification scheme). Control is handled through a

ISSN: 1109-2750

318

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

plugin based system, which loads new Renderers
and Reasoners dynamically. The obvious advantage
of a plugin framework is to ensure modularity of the
code, and encourage external developers to
contribute to the Swoop project easily. Finally, we
note that the entire Swoop code is written in Java,
maintained in a subversion repository and makes
use of numerous third party libraries, the most
prominent being the WonderWeb OWL API [11]
for parsing OWL ontologies.

6 Conclusion

The Design and implementation of a semantic web
integrated development environment (SWIDE) was
presented in this paper. The SWIDE user may create
ontology or use an existing one. The user may edit
an instance to be stored either in an xml file or in
xml knowledge base. The SWIDE may present the
ontology hierarchy and may present the knowledge
base in a tabular form. The user may consult the
knowledge base by SQL-like statement. It also
introduces the virtualization concept providing a
mechanism to categorize the ontology instances
based on given ontology features.

References:

[1] Islam H. Harb, S. Abdel-Mageid, H. Farahat,
Ahmed Abdel Nabi, SEE ONT: E-Learner Otology
For Social and Educational Environment, Al-Azhar
Engineering Eleventh International Conference,
ISSN 1110-6409, Volume 5, No.8, December 21 -
23,2010

[2] Islam H. Harb, Semantic Web Technologies,
National Workshop on Computational Intelligence
and the Web, Egypt IEEE Computational
Intelligence Chapter and Al-Azhar University
Student Chapter, 4th December 2010

[3]
http://protegewiki.stanford.edu/wiki/PrF_UG _intro
all

[4] Liyang Yu, Introduction to the Semantic Web
and Semantic Web Services, Chapman and
Hall/CRC 2007, Pages 173—185, Print ISBN: 978-1-
58488-933-5, eBook ISBN: 978-1-58488-934-2,
DOI: 10.1201/9781584889342.ch9

[5] http://www.w3.0rg/2001/sw/wiki/Watson

[6] http://watson.kmi.open.ac.uk/WS _and APLhtml
[7] http://jena.sourceforge.net/

[8] http://owlapi.sourceforge.net/

[9] http://jena.sourceforge.net/ ARQ/

[10] http://owl2prefuse.sourceforge.net/

[11] Bechhofer, S., Lord, P., Volz, R. Cooking the
Semantic Web with the OWL API. Proceedings of
the International Semantic Web Conference (2003)

Issue 9, Volume 10, September 2011

WSEAS TRANSACTIONS on COMPUTERS

[12] Cuenca-Grau, B., Parsia, B., Sirin, E.: Working
with Multiple Ontologies on the Semantic Web.
Proceedings of the Third International Semantic
Web Conference (ISWC) (2004)

[13] Kahan, J., Koivunen, M.R., Prud’Hommeaux,
E., Swick, R.: Annotea: An Open RDF
Infrastructure for Shared Web Annotations. Proc. of
the WWW10 International Conference (2001)

[14] Aditya Kalyanpur , Bijan Parsia, Evren Sirin
, Bernardo Cuenca Grau, James Hendler, Swoop:
Design and Architecture of a Web Ontology
Browser (/Editor), Journal of Web Semantics,
2005, Scholarly Paper for Master's Degree in
Computer Science with Non-Thesis Option, Fall
2004

ISSN: 1109-2750

319

Islam Hany Harb, Abdurrahman A. Nasr,
Salah Abdel-Magid, Hany Harb

Issue 9, Volume 10, September 2011

