
Agent Based Load Balancing Scheme using Affinity Processor

Scheduling for Multicore Architectures

G.MUNEESWARI

Research Scholar

Department of computer Science and Engineering

RMK Engineering College, Anna University (Chennai)

INDIA

munravi76@gmail.com http://www.rmkec.ac.in

Dr.K.L.SHUNMUGANATHAN

Professor & Head

Department of computer Science and Engineering

RMK Engineering College, Anna University (Chennai)

INDIA

kls_nathan@yahoo.com http://www.rmkec.ac.in

Abstract:-Multicore architecture otherwise called as CMP has many processors packed together on a single

chip utilizes hyper threading technology. The main reason for adding large amount of processor core brings

massive advancements in parallel computing paradigm. The enormous performance enhancement in multicore

platform injects lot of challenges to the task allocation and load balancing on the processor cores. Altogether it

is a crucial part from the operating system scheduling point of view. To envisage this large computing capacity,

efficient resource allocation schemes are needed. A multicore scheduler is a resource management component

of a multicore operating system focuses on distributing the load of some highly loaded processor to the lightly

loaded ones such that the overall performance of the system is maximized. We already proposed a hard-soft

processor affinity scheduling algorithm that promises in minimizing the average waiting time of the non critical

tasks in the centralized queue and avoids the context switching of critical tasks. In this paper we are

incorporating the agent based load balancing scheme for the multicore processor using the hard-soft processor

affinity scheduling algorithm. Since we use the actual round robin scheduling for non critical tasks and due to

soft affinity the load balancing is done automatically for non critical tasks. We actually modified and simulated

the linux 2.6.11 kernel process scheduler to incorporate the hard-soft affinity processor scheduling concept. Our

load balancing performance is depicted with respect to different load balancing algorithms and we could realize

the performance improvement in terms of response time against the various homogeneous and heterogeneous

load conditions. The results also shows the comparison of our agent based load balancing algorithm against the

traditional static and dynamic sender, receiver initiated load balancing algorithms.

Key-Words: - Hard Affinity, Soft Affinity, Scheduler, Middle Agent, Processor Agent, Multicore

Architecture, Scheduling, Agent Control Block , Load balancing, Response time

1 Introduction

Multicore architectures, which include several

processors on a single chip [12], are being widely

touted as a solution to serial execution problems

currently limiting single-core designs. In most

proposed multicore platforms, different cores share

the common memory. High performance on

multicore processors requires that schedulers be

reinvented. Traditional schedulers focus on keeping

execution units busy by assigning each core a thread

to run. Schedulers ought to focus, however, on high

utilization of the execution of cores, to reduce the

idleness of processors. Multi-core processors do,

however, present a new challenge that will need to

be met if they are to live up to expectations. Since

multiple cores are most efficiently used (and cost

effective) when each is executing one process,

organizations will likely want to run one job per

core. But many of today’s multi-core processors

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 247 Issue 8, Volume 10, August 2011

share the front side bus as well as the last level of

cache. Because of this, it's entirely possible for one

memory-intensive job to saturate the shared memory

bus resulting in degraded performance for all the

jobs running on that processor. And as the number

of cores per processor and the number of threaded

applications increase, the performance of more and

more applications will be limited by the processor’s

memory bandwidth. Schedulers in today’s operating

systems have the primary goal of keeping all cores

busy executing some runnable process which need

not be a critical processes.

P1 P2 P3 P4

 ……………………….

………………………

 Fig.1. General Multicore System Architecture

One technique that mitigates this limitation is to

intelligently schedule jobs of both critical and non

critical in nature onto these processors with the help

of hard and soft affinities and intelligent approach

like multiagents. Multi-Agent Systems (MAS) have

attracted much attention as means of developing

applications where it is beneficial to define function

through many autonomous elements. Mechanisms

of selforganisation are useful because agents can be

organised into configurations for useful application

without imposing external centralized controls. The

paper [10] discusses several different mechanisms

for generating self-organisation in multi-agent

systems [11]. A theory has been proposed (called

AMAS for Adaptive Multi-Agent Systems) in which

cooperation is the engine thanks to which the system

self-organizes for adapting to changes coming from

its environment. Cooperation in this context is

defined by three meta-rules: (1) perceived signals

are understood without ambiguity, (2) received

information is useful for the agent’s reasoning, and

(3) reasoning leads to useful actions toward other

agents. Interactions between agents of the system

depend only on the local view they have and their

ability to cooperate with each other.

The Paper is organized as follows. Section 2

reviews related work on scheduling. In Section 3 we

introduce the multiagent system interface with

multicore architecture. In section 4 we describe the

processor scheduling which consists of hard affinity

scheduling and round robin based soft affinity

scheduling. Section 5 load balancing is explained

along with the scheduling point of view. In section 6

we discuss the evaluation and results and section 7

presents future enhancements with multicores.

Finally, section 8 concludes the paper.

2 Background and Related Work

The research on contention for shared resources [1]

significantly impedes the efficient operation of

multicore systems has provided new methods for

mitigating contention via scheduling algorithms.

Addressing shared resource contention in multicore

processors via scheduling [2] investigate how and to

what extent contention for shared resource can be

mitigated via thread scheduling. The research on the

design and implementation of a cache-aware

multicore real-time scheduler [3] discusses the

memory limitations for real time systems. The paper

on AMPS [4] presents, an operating system

scheduler that efficiently supports both SMP-and

NUMA-style performance-asymmetric

architectures. AMPS contains three components:

asymmetry-aware load balancing, faster-core-first

scheduling, and NUMA-aware migration. In

Partitioned Fixed-Priority Preemptive Scheduling

[5], the problem of scheduling periodic real-time

tasks on multicore processors is considered.

Specifically, they focus on the partitioned (static

binding) approach, which statically allocates each

task to one processing core. [26] Load balancing is a

computer networking methodology to distribute

workload across multiple computers or a computer

cluster, network links, central processing units, disk

drives, or other resources, to achieve optimal

resource utilization, maximize throughput, minimize

response time, and avoid overload. Using multiple

components with load balancing, instead of a single

component, may increase reliability through

redundancy. The load balancing service is usually

provided by dedicated software or hardware, such as

a multilayer switch or a Domain Name System

server.

Shared Memory

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 248 Issue 8, Volume 10, August 2011

In the traditional multi processor system, the critical

load balancing task is performed through hardware.

In [6] The cooperative load balancing in distributed

systems is achieved through processor interaction.

dynamic load balancing algorithm [7] deals with

many important issues: load estimation, load levels

comparison, performance indices, system stability,

amount of information exchanged among nodes, job

resource requirements estimation, job’s selection for

transfer, remote nodes selection. In ACO algorithm

[8] for load balancing in distributed systems will be

presented. This algorithm is fully distributed in

which information is dynamically updated at each

ant movement. The real-time scheduling on

multicore platforms [9] is a well-studied problem in

the literature. The scheduling algorithms developed

for these problems are classified as partitioned

(static binding) and global (dynamic binding)

approaches, with each category having its own

merits and de-merits. So far we have analyzed some

of the multicore scheduling and load balancing

approaches. Now we briefly describe the self-

organization of multiagents, which plays a vital role

in our multicore scheduling algorithm.

 The Cache-Fair Thread Scheduling [14]

algorithm reduces the effects of unequal cpu cache

sharing that occur on the many core processors and

cause unfair cpu sharing, priority inversion, and

inadequate cpu accounting. The multiprocessor

scheduling to minimize flow time with resource

augmentation algorithm [15] just allocates each

incoming job to a random machine algorithm which

is constant competitive for minimizing flow time

with arbitrarily small resource augmentation. In

parallel task scheduling [16] mechanism, it was

addressed that the opposite issue of whether tasks

can be encouraged to be co-scheduled. For example,

they tried to co-schedule a set of tasks that share a

common working were each 1/2 and perfect

parallelism ensured.

 The effectiveness of multicore scheduling

[17] is analyzed using performance counters and

they proved the impact of scheduling decisions on

dynamic task performance. Performance behavior is

analyzed utilizing support workloads from

SPECWeb 2005 on a multicore hardware platform

with an Apache web server. The real-time

scheduling on multicore platforms [18] is a well-

studied problem in the literature. The scheduling

algorithms developed for these problems are

classified as partitioned (static binding) and global

(dynamic binding) approaches, with each category

having its own merits and de-merits. So far we have

analyzed some of the multicore scheduling

approaches. Now we briefly describe the self-

organization of multiagents, which plays a vital role

in our multicore scheduling algorithm.

The multiaget based paper [19] discusses

several different mechanisms for generating self-

organisation in multi-agent systems [20]. For

several years the SMAC (for Cooperative MAS)

team has studied self-organisation as a means to get

rid of the complexity and openness of computing

applications [21]. A new approach for multiagent

based scheduling [12] for multicore architecture and

load balancing using agent based scheduling [13]

have improved cpu utilization and reduces average

waiting time of the processes.

3 Multicore Architecture with

Multiagent System

Every processor in the multicore architecture (Fig.2)

has an agent called as Processor Agent (PA). The

central Middle Agent (MA) will actually interact

with the scheduler. It is common for all Processor

Agents.

Fig.2. Multicore architecture with multiagent

System

Every PA maintains the following information in

PSIB (Processor Status Information Block). It is

similar to the PCB (Process Control Block) of the

traditional operating system. Processor Status may

Middle Agent

Processor

Processor

Agent

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 249 Issue 8, Volume 10, August 2011

be considered as busy or idle (If it is assigned with

the process then it will be busy otherwise idle)

Process name can be P1or P2 etc., if it is busy. 0 if it

is idle. Process Status could be ready or running or

completed and the burst time is the execution time

of the process.As we are combining the concept of

multiagent system with multicore architecture, the

processor characteristics are mentioned as a function

of Performance measure, Environment, Actuators,

Sensors (PEAS environment), which is described in

table.1 given below. This describes the basic

reflexive model of the agent system.

We know that multiagent system is concerned with

the development and analysis of optimization

problems. The main objective of multiagent system

is to invent some methodologies that make the

developer to build complex systems that can be used

to solve sophisticated problems. This is difficult for

an individual agent to solve. Os scheduler

implements the multiagent concept. Every agent

maintains the linked list of processes.

Table 1. Multicore in PEAS environment

4 Processor Scheduling

Before starting the process execution [25], the

operating system scheduler selects the processes

from the ready queue based on the first come first

served order. Each process in the centralized queue

has a tag indicating its priority (critical or non

critical task) and preferred processor shown in fig.3.

Critical tasks are assigned with priority 1 and non

critical tasks are assigned with priority 0.At

allocation time, each task is allocated to its

processor in preference to others.

 Fig.3. Ready queue process with the tag field

The scheduler after selecting M number of

processes from the ready queue places in the middle

agent. The middle agent is implemented as a queue

data structure shown in fig.4. Middle agent holds M

tasks which is greater than N (Number of processor

cores). Precisely the middle agent is acting as a

storage space for faster scheduling. In fig.4, for

example since CT1 is assigned with hard affinity, it

should not be preempted after the time quantum

expires. Most of the critical tasks are real time tasks

and it is not desirable to context switch.

 HA SA HA SA SA
HA – Hard Affinity SA-Soft affinity

CT-Critical Task NCT-Non Critical Task

Fig.4. Middle agent queue implementation

Critical tasks should not be context switched.

Processor affinity is maintained only for critical

tasks. Actually we employ the basic concept of

round robin scheduling along with that soft affinity

based scheduling has been used. During the context

switching time if it is not a critical task then it can

be allocated to the idle processor to improve the

overall efficiency (no resource contention). But if it

is a critical task it should not be context switched

and it has to be executed for its full burst time. If it

is a critical task then agent will assign the process to

the same processor. Otherwise it will assign the

process to the idle processor.

Age

nt

Typ

e

Performa

nce

Measure

Environ

ment

Actuato

rs

Sensors

Mul

tico

re

Sch

edul

ing

Minimize

the

average

waiting

time of

the

processes

and

reduces

the task

of the

scheduler

Multi

core

architec

ture and

multi

process

or

systems

PA

register

s with

MA,

MA

assigns

process

to the

appropr

iate

process

or via

dispatch

er

Getting

processor

state

information

from PSIB,

Getting task

from

scheduler

CT1

NCT1

CT2

NCT2

NCTn

Process Affinity Burst Priority

TAG

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 250 Issue 8, Volume 10, August 2011

 Processor Agents

 Processors

Fig.5. Process Scheduling by OS scheduler, middle

agent and individual agents

A brief explanation of overall scheduling is shown

in fig.5. Initially all the jobs from the ready queue

are selected by the os scheduler on fcfs basis and

then all the selected processes are placed in the

middle agent. The individual agent of every

processor selects the job from the middle agent

queue and assign it to the processor. This agent

actually eliminates the job of the dispatcher.

4.1. Hard Affinity Based Scheduling for

Critical Tasks

Scheduling processes to specific processors is called

setting a processor affinity mask This affinity mask

contains bits for each processor on the system,

defining which processors a particular process can

use. When the programmer set affinity for a process

to a particular processor, all the processes inherit the

affinity to the same processor.

 In fig.6, Programmer is setting hard affinity for real

time critical tasks meaning that it should not be

preempted from the processor to which it is assigned

with the help of hard affinity. In the diagram, CT

refers to the critical task and NCT refers to the non

critical tasks.

Fig.6. Hard affinity assigned by the programmer /

user

Threads restricted by a hard affinity mask

will not run on processors that are not included in

the affinity mask. Hard affinity used with

Scheduling can improve performance of an

multicore processor system substantially. However,

hard affinity might cause the processors to have

uneven loads. If processes that have had their

affinity set to a specific processor are causing high

CPU utilization on that processor while other

processors on the system have excess processing

capacity, the processes for which a hard affinity has

been set might run slower because they cannot use
the other processors.

In our proposed algorithm the programmer

can prescribe their own affinities and that will be

termed to be hard affinities. The tag field of the

critical tasks consists of high priority and affinity to

the processor. Every processor has a dedicated

processor agent and that is responsible for

maintaining agent control block (ACB). This agent

control block will be useful to identify the free idle

processor for next scheduling. In the case of critical

tasks since it is not preempted it is not mandatory to

establish an agent control block.

Middle Agent

OS

Agent

Scheduling Programmer

 (Hard Affinity)

CT

NCT

CT

NCT

NCT

CT

CT

NCT

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 251 Issue 8, Volume 10, August 2011

4.2. Round Robin based Soft Affinity

Scheduling for Non Critical Tasks

In the case of soft processor affinity, the scheduler

automatically assigns which processor should

service a process (fig.7). The soft affinity for a

process is the last processor on which the process

was run if it is free or the ideal processor of the

process.

Fig.7. Soft affinity assigned by the scheduler

The soft affinity processor scheduling algorithm

enhances performance by improving the locality of

reference. However, if the ideal or previous

processor is busy, soft affinity allows the thread to

run on other processors, allowing all processors to

be used to capacity. Actually the default round robin

scheduler will be used for the remaining set of non

critical tasks.We actually create a linked list of

agent control block (ACB fig.8) for all the non

critical tasks. It plays a vital role during context

switching. The important components of ACB are

process ID, affinity, priority, processor status.

Processor status can be 0 if it is free otherwise it is

set to 1.
After the quantum expires for the non critical tasks,

the processor agent checks the individual agent

control block to identify whether it is a critical task

or not. If it is a critical task then it will not be
preempted. Otherwise it can be preempted and joins

at the end of the middle agent queue. After some

time if the context switched job is ready for

execution then it can be allocated to the same

processor if it is free. Otherwise the process can be

allocated to the idle processor. The middle agent

identifies the idle processor by scanning the agent

control block of every agent starting from agent1.

Fig.8. Agent Control Block (ACB)

5. Static and Dynamic Load Balancing

Algorithms

Most of the dynamic load balancing algorithms

differs from static algorithms in the way the work

load is allocated to the multiprocessors during the

runtime. The master assigns new processes to the

slaves based on the new information collected [23].

Instead of aprior allocation of jobs, dynamic

algorithms allocate processes only when the system

turns into under loaded situation. Central Queue

Algorithm [24] works on the principle of dynamic

distribution. It stores new activities and unfulfilled

requests as a cyclic FIFO queue on the main host.

Each new activity arriving at the queue manager is

inserted into the queue. Then, whenever a request

for an activity is received by the queue manager

[22], it removes the first activity from the queue and

sends it to the requester. If there are no ready

activities in the queue, the request is buffered, until

a new activity is available. If a new activity arrives

at the queue manager while there are unanswered

requests in the queue, the first such request is

removed from the queue and the new activity is

assigned to it. When a processor load falls under the

threshold, the local load manager sends a request for

a new activity to the central load manager. The

central load manager answers the request

immediately if a ready activity is found in the

process-request queue, or queues the request until a

new activity arrives. Main feature of local queue

algorithm [24] is dynamic process migration

support. The basic idea of the local queue algorithm

OS Scheduler (Soft

Affinity)

CT

NCT

CT

NCT

NCT

CT

CT

NCT

Process ID

Affinity

Priority

Processor status

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 252 Issue 8, Volume 10, August 2011

is static allocation of all new processes with process

migration initiated by a host when its load falls

under threshold limit, is a user-defined parameter of

the algorithm. The parameter defines the minimal

number of ready processes the load manager

attempts to provide on each processor. [22] Initially,

new processes created on the main host are allocated

on all under loaded hosts. The number of parallel

activities created by the first parallel construct on

the main host is usually sufficient for allocation on

all remote hosts. From then on, all the processes

created on the main host and all other hosts are

allocated locally. When the host gets under loaded,

the local load manager attempts to get several

processes from remote hosts. It randomly sends

requests with the number of local ready processes to

remote load managers. When a load manager

receives such a request, it compares the local

number of ready processes with the received

number. If the former is greater than the latter, then

some of the running processes are transferred to the

requester and an affirmative confirmation with the

number of processes transferred is returned.

In the traditional multi processor system, the critical

load balancing task is performed through hardware.

In [6] The cooperative load balancing in distributed

systems is achieved through processor interaction.

dynamic load balancing algorithm [7] deals with

many important load estimation issues. In ACO

algorithm [8] for load balancing in distributed

systems will be presented. This algorithm is fully

distributed in which information is dynamically

updated at each ant movement. But in our approach

we involve the concept of agents, which is a

software based approach that reduces the

complexity of the hardware. The significance of this

round robin agent scheduling is to place almost

equal number of processes in every processor and

thus we increase the cpu performance. This is

because no processor will be kept in the idle state.

5.1. Processor Scheduling using Multiple

queues in Multiprocessor System

As we use intelligent multiagent based scheduling

algorithm in the proposed work, every processor in

the multicore system is given with almost the same

amount of processes. We assume that different

queues are used for scheduling different cores

(fig.9). This assumption leads to efficient load

balancing scheme. The scheduler initially allocates

the process based on the above affinity processor

scheduling. Since for the critical tasks the

scheduling is round robin based each task will be

getting the equal share of the processor execution

time.

 P1 P2 Pn

Fig.9. Processor Scheduling using multiple queues

This significant achievement leads to automatic load

balancing and none of the processors will be kept in

the idle state. Actually in the traditional system

although some load balancing algorithm is used, it

leads to complex process transfer, network delay

and hardware intervension.

5.2. Load Balancing using Middle agent and

Affinity Processor Scheduling

During the initial time of scheduling all the critical

tasks and non critical tasks are allocated as per the

affinity processor scheduling. But soon after the

context switching of non critical tasks we do not

look for the affinity if the processor assigned to the

context switched task is highly loaded. The current

load of every processor is obtained by the

corresponding agents of the multicore processors.

Through periodic transfer the middle agent gets the

status information of every processor. After getting

the status information the middle agent knows that

which processor are heavily loaded and which

processor are lightly loaded. The middle agent then

communicates with the scheduler for reallocation of

context switched non critical tasks. The scheduler in

turn transfers the tasks (reschedules) from the highly

loaded processor. We use the threshold based

approach for identifying the loaded processors. If

Shared Memeory

Scheduler

Q1 Qn Q2

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 253 Issue 8, Volume 10, August 2011

the queue length is greater than the threshold we

transfer the tasks. If the queue length is lesser than

the threshold then that processor will be identified

as the lightly loaded processor. Thus load balancing

in this approach is achieved with the help pf middle

agent and affinity processor scheduling

 Periodic Transfer of status information

Fig.10. Load balancing using middle agent

6. Evaluation and Results

6.1. Performance Analysis of Affinity

Processor Scheduling

In this section, we present a performance analysis of

our scheduling algorithm using a gcc compiler and

linux kernal version 2.6.11. Multiagent simulation is

executed with the help of Flame tool accompanied

with MinGW C compiler, Xparser, Libmboard. The

Kernel scheduler API for getting and setting the

affinities are shown below:

int sched_getaffinity(pid_t pid, unsigned int len,

unsigned long * mask);

This system call retrieves the current affinity mask

of process ‘pid’ and stores it into space pointed to

by ‘mask’.‘len’ is the system word size:

sizeof(unsigned int long)

int sched_setaffinity(pid_t pid, unsigned int len,

unsigned long * mask);

This system call sets the current affinity mask of

process ‘pid’ to *mask ,‘len’ is the system word

size: sizeof(unsigned int long)

The results show that there is a linear decrease in the

average waiting time as we increase the number of

cores. Our scheduling algorithm results in keeping

the processor busy and reduces the average waiting

time of the processes in the centralized queue. As an

initial phase, our algorithm partitions every process

into small sub tasks. Suppose a process, Pi,j is being

decomposed into k smaller sub tasks Pi,j,1 Pi,j,2 …… Pi,j

,k, where τijl is the service time for Pijl Each Pijl is

intended to be executed as uninterrupted processing

by the original thread Pi,j , even though a preemptive

scheduler will divide each τijl into time quanta when

it schedules Pijl . Now the total service time for Pi,j
process can be written as

τ(Pi,j)= τI,j,1+ τI,j,2 + ………τi,j,k

In every core we calculate the waiting time of the

process as previous process execution time. The

execution time of the previous process is calculated

as follows:

PET = PBT + αi + βi + δi + γi

Where PET is the execution time of the process, PBT

is the burst time of the process, αi is the scheduler

selection time, βi is the Processor Agent request

time, δi is the Middle Agent response time, γi is the

dispatcher updation time. The average waiting time

of the process is calculated as the sum of all the

process waiting time divided by the number of

processes.

PAWT= Σ(i=1..n) P(i=1..n) / N

Here when we say the process P it indicates the set

of subtasks of the given process. For our simulation

we have taken 1000 processes as a sample that

consists of large number of critical tasks and few

non critical tasks and this sample is tested against

25, 50, 75, 100, 125, 150, 175, 200, 225, 250 cores.

Matlab tools are used for generating the number of

tasks. By Performance analysis, we can see that the

utilization of cpu increases tremendously for

different set of processes keeping the number of

P1 P2 Pn

A1 A2 An

Middle Agent

Scheduler

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 254 Issue 8, Volume 10, August 2011

cores constant. The same simulation was executed

for different number of cores also. We discovered

that the average waiting time decreases slowly with

the increase of the number of cores. The utilization

of the cpu is maximum for our algorithm when

compared to the traditional real time scheduling

algorithms. Our experiment results are varied for the

different loads and different cores. For each set of

parameters, the experiment is repeated 100 times

and the results shown are the averages from the 100

experiments. In fig.10, we explained the number of

cores vs average waiting time for 1000 processes. In

fig.11, we show the performance analysis of our

algorithm against traditional round robin scheduling

algorithm.

In fig.12, we show the performance analysis of our

algorithm against traditional shortest job first

scheduling algorithm. In fig.13, we show the

performance analysis of our algorithm against

traditional EDF scheduling algorithm. Only for EDF

algorithm our math lab tool generates only critical

tasks.

In fig.14, we show the summary of cpu utilization

for all the algorithms. From the results we prove that

the average waiting time of the processes decreases

along with the tremendous increase in cpu

utilization for our affinity based algorithm.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Number of Cores

AWT of 1000 processes(in ps)

Fig.10. Number of cores vs average waiting time
for 1000 processes

performance analysis

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Number of processes

c
p
u
 u
ti
li
z
a
ti
o
n

RR

Affinity

 Fig.11. Performance analysis of Affinity and RR
algorithms

Performance Analysis

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Number of Processes

c
p
u
 u
ti
li
z
a
ti
o
n

SJF

Affinity

 Fig.12. Performance analysis of Affinity and SJF

algorithms

Performance Analysis

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Number of Processes

C
P
U
 u
ti
li
z
a
ti
o
n

EDF

Affinity

Fig.13. Performance analysis of Affinity and EDF

algorithms

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 255 Issue 8, Volume 10, August 2011

Performance Summary

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Number of Processes

C
P
U
 U
ti
li
z
a
ti
o
n RR

Affinity

EDF

SJF

Fig.14. Summary of Performance analysis of all the

scheduling algorithms

6.2. Performance Analysis of Load balancing

using Affinity Processor Scheduling

This section analyses the performance of the agent

based load balancing scheme with the traditional

sender, receiver initiated algorithms. Fig.15 plots

the average response time of tasks vs. the given

system load. Here the system load is assumed to be

homogeneous and contains 500 processors.

Similarly fig.16. shows the load balancing under

heterogeneous load. From this observation we prove

that the agent based load balancing scheme

outperforms the traditional static, sender initiated,

Receiver initiated dynamic algorithms.

Performance Analysis of Agent Based Load Balancing Scheme Under Homogeneous

Load

0

1

2

3

4

5

6

7

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

System Load

A
v
e
ra
g
e
 R
e
s
p
o
n
s
e
 T
im
e

Static

Dynamic(Sender)

Dynamic(Receiver)

Agent based

Fig.15. Performance Analysis of Agent based Load

Balancing Scheme under Homogeneous Load

Performance Analysis of Agent Based Load Balancing Scheme under Heterogeneous Load

0

1

2

3

4

5

6

7

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

System Load

A
v
e
ra
g
e
 R
e
s
p
o
n
s
e
 T
im
e

Static

Dynamic(Sender)

Dynamic(Receiver)

Agent based

Fig.16. Performance Analysis of Agent based Load

Balancing Scheme under Heterogeneous Load

7. Future Enhancements

Although the results from the linux kernal version

2.6.11 analysis in the previous section are

encouraging, there are many open questions. Even

though the improvement (average waiting time

reduction) possible with number of cores, for some

workloads there is a limitation by the following

properties of the hardware: the high off-chip

memory bandwidth, the high cost to migrate a

process, the small aggregate size of on-chip

memory, and the limited ability of the software

(agents) to control hardware caches. We expect

future multicores to adjust some of these properties

in favor of our multiagents based scheduling. Future

multicores will likely have a larger ratio of compute

cycles to off-chip memory bandwidth and can

produce better results with our algorithm. Our

scheduling and load balancing method can be

extended for the actual real-time systems

implemented on multicore platforms that

encourages individual threads of multithreaded real-

time tasks to be scheduled together. When such

threads are cooperative and share a common

working set, this method enables more effective use

of on-chip shared caches and other resources. An

efficient load balancing had been incorporated with

the help of multiagents as they cooperate with each

other and get the status information of every other

processor in the multicore chip. This could also be

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 256 Issue 8, Volume 10, August 2011

extended for the distributed system that may deploy

the multicore environment.

8. Conclusion

This paper has argued that multicore processors

pose unique scheduling and load balancing

problems that require a multiagent based software

approach that utilizes the large number processors

very effectively. We actually eliminated the work of

additional load balancer and this load balancing is

automatically done with the help of processor agents

and middle agent. We discovered that the average

response time decreases slowly with the increase of

the system load and number of cores. As a

conclusion our new agent based approach eliminates

the complexity of the hardware and improved the

CPU utilization to the maximum level and load

balancing in turn is performed automatically

because of round robin scheduling incorporated in

the affinity scheduling.

References:

[1] Sergey Zhuravley, Blagoduroy, Alexandra

Fedorova,2010. “Managing contention for shared

resources on multicore processors”,

Communications of the ACM Volume 53, Pages:

49-57 Issue 2 February.

[2] Sergey Zhuravley, Blagoduroy, Alexandra

Fedorova, 2010. “Addressing shared resource

contention in multicore processors via scheduling”,

Architectural support for Programming Languages

and Operating Systems, Proceedings of the fifteenth

edition of ASPLOS on Architectural support for

programming languages and operating systems

Pages: 129-142.

[3] John M.Calandrino, James H. Anderson, 2009.

“On the Design and Implementation of a Cache-

Aware Multicore Real-Time Scheduler”, 21st

Euromicro Conference on Real-Time Systems July

01-July 03.

[4] Tong LiDan, BaumbergerDAvid A,

KoufatyScott Hahn, 2007.“Efficient operating

system scheduling for performance asymmetric

multi-core architectures”, Conference on High

Performance Networking and Computing

Proceedings of the ACM/IEEE conference on

Supercomputing.

[5] Karthik Lakshmanan, Ragunathan (Raj)

Rajkumar, and John P. Lehoczky,2009. “Partitioned

Fixed-Priority Preemptive Scheduling for Multi-

Core Processors”, Proceedings of the 21st

Euromicro Conference on Real-Time Systems
Pages: 239-248.

[6] D. Grosu, A. T. Chronopoulos, M. Y. Leung,

2008. “Cooperative Load Balancing in Distributed

Systems”, Concurrency and Computation,Practice

and Experience. Vol. 20, No. 16, pp. 1953-1976,

November

[7] Ali M. Alakeel, 2010. “Load Balancing in

Distributed Computer Systems”, International

Journal of Computer Science and Information

Security Vol. 8 No. 4 July.

[8] Dahoud Ali, Mohamed A. Belal and Moh’d

Belal Zoubi, 2010, “Load Balancing of Distributed

Systems Based on Multiple Ant Colonies

Optimization” , American Journal of Applied

Sciences 7 (3): 433-438.

[9] James H. Anderson, John M. Calandrino, and

UmaMaheswari C. Devi, 2006. “Real-Time

Scheduling on Multicore Platforms”, Proceedings

of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium,
Pages: 179 – 190.

[10] Carole Bernon, 2006, “Applications of Self-

Organising Multi-Agent Systems: An Initial

Framework for Comparison”, IRIT, INRIA.

[11] Di Marzo Serugendo G., Gleizes M-P. and

Karageorgos, 2006. “Self-Organisation and

Emergence in MAS: An Overview”, A

INFORMATICA.

[12] G.Muneeswari, A.Sobitha Ahila,

Dr.K.L.Shunmuganathan, 2011. “A Novel

Approach to Multiagent Based Scheduling for

Multicore Architecture”, GSTF journal on

computing, Singapore vol1.No.2.

[13] G.Muneeswari, Dr.K.L.Shunmuganathan,

2011. “Improving CPU Performance and Equalizing

Power Consumption for Multicore Processors in

Agent Based Process Scheduling”, International

conference on power electronics and

instrumentation engineering, Springer-LNCS.

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 257 Issue 8, Volume 10, August 2011

[14] Alexandra Fedorova, Margo Seltzer and

Michael D. Smith, 2006. “Cache-Fair Thread

Scheduling for Multicore Processors”, TR-17-06.

[15] Chandra Chekuri, 2004. “Multiprocessor

Scheduling to Minimize Flow Time with Resource

Augmentation”, STOC’04, June 13–15.

[16] James H. Anderson and John M. Calandrino,

2006. “Parallel Task Scheduling on Multicore

Platforms”, ACM SIGBED.

[17] Stephen Ziemba, Gautam Upadhyaya, and

Vijay S. Pai.,2004. “Analyzing the Effectiveness of

Multicore Scheduling Using Performance

Counters”.

[18] James H. Anderson, John M. Calandrino, and

UmaMaheswari C. Devi, 2006. “Real-Time

Scheduling on Multicore Platforms”, Proceedings of

the 12th IEEE Real-Time and Embedded

Technology and Applications Symposium, Pages:

179 – 190.

[19] Carole Bernon, 2006. “Applications of Self-

Organising Multi-Agent Systems: An Initial

Framework for Comparison”, IRIT, INRIA.

[20] Di Marzo Serugendo G., Gleizes M-P. and

Karageorgos A, 2006, “Self-Organisation and

Emergence in MAS: An Overview”,

INFORMATICA 30 2006 40-54.

[21] Gleizes M.P, Camp, V. and Glize P,1999. “A

Theory of Emergent Computation Based on

Cooperative Self-Organisation for Adaptive

Artificial Systems”, 4th European Congress of

Systems Science, Valencia. 623-630.

[22] Sandeep Sharma, Sarabjit Singh, and

Meenakshi Sharma, 2008 “Performance Analysis of

Load BalancingAlgorithms”IWorld Academy of

Science, Engineering and Technology .

[23] S. Malik, 19 November, 2000 “Dynamic Load

Balancing in a Network of Workstation”, 95.515

Research Report.

[24] William Leinberger, George Karypis, Vipin

Kumar, 2000 "Load Balancing Across Near-

Homogeneous Multi-Resource Servers", 0-7695-

0556-2/00, IEEE.

[25] G.Muneeswari, Dr.K.L.Shunmuganathan,

2011, “A Novel Hard-Soft Processor Affinity

Scheduling for Multicore Architecture using

Multiagents” will be appearing in European Journal

of Scientific Research Volume 55 Issue 3.

[26]http://en.wikipedia.org/wiki/Load_balancig

WSEAS TRANSACTIONS on COMPUTERS G. Muneeswari, K. L. Shunmuganathan

ISSN: 1109-2750 258 Issue 8, Volume 10, August 2011

