
Cryptanalysis of Simplified-DES using Computational Intelligence

VIMALATHITHAN.R
1
, M.L.VALARMATHI

2

1
Department of ECE, Sri Krishna College of Engineering and Technology

2
Department of CSE, Government College of Technology

Coimbatore

INDIA

athivimal@gmail.com
1
, drmlv@gct.ac.in

2

Abstract: - Cryptanalysis with Computational Intelligence has gained much interest in recent years. This paper

presents an approach for breaking the key used in Simplified-Data Encryption Standard (S-DES) using Genetic

algorithm (GA), Particle Swarm Optimization (PSO) and a novel approach called Genetic Swarm Optimization

(GSO) obtained by combining the effectiveness of GA and PSO. Ciphertext-only attack is embraced here and

an optimum key is produced based on Letter Frequency analysis as Cost function. The key is optimized using

the capabilities of Computational Intelligence and the experimental results indicate GSO is an effective tool

which runs through less time to break the key used in S-DES and reduces the search space nearly by a factor of

6.

Key-Words: - Cryptanalysis, ciphertext-only attack, Genetic Algorithm, Particle Swarm Optimization , Genetic

Swarm Optimization , cost, plaintext and ciphertext.

1. Introduction
Cryptography is the transformation (encryption)

of a given message into another message which

appears meaningful only to the intended recipient

through the process of decryption. The message that

undergoes encryption is called the plaintext and the

transformed message is called ciphertext. A

cryptographic algorithm is a mathematical function

employed for the encryption and decryption of

messages. Cryptanalysis refers to the process of

discovering the plaintext from the ciphertext without

knowing the decryption key. Cryptography is the art

of making cipher text while Cryptanalysis is the art

of breaking ciphertext [1].

Cryptanalysis is a challenging task in

Cryptology. There are several types of attacks that a

cryptanalyser may use to break a cipher, depending

upon how much information is available to the

attacker. The goal is to derive the key so that the

ciphertext can be easily recovered. An attack on

cipher text may be of various types. One type of

attack is ciphertext-only attack which is a baffling

problem in attacking ciphers and considered in this

paper. In this type of attack, the encryption

algorithm used and the cipher text to be decoded are

known to cryptanalyst. A Brute-force attack is used

for ciphertext-only attack where the cryptanalyser

tries every possible combination of key until the

correct key is identified [2, 3]. The key search space

is large for lengthy keys but using a network of

computers and combining their computational

strength and their cumulative power, Brute-force

attack is feasible at increased cost. Instead, using

Computational intelligence (CI) the problem can be

solved without searching the entire key space. CI

has been successfully applied in numerous scientific

fields [4, 5]. Here we have applied in the field of

cryptanalysis and successful.

CI can be considered as the study of adaptive

mechanisms that enable intelligent behaviour of a

system in complex and changing environments like

Genetic Algorithms (GA) and Particle Swarm

Optimization (PSO) [4]. GA and PSO is a

population based optimization which could be

applied to solve optimization problems. Unlike GA,

PSO has no evolution operations like crossover and

mutation. The strength of PSO is its fast

convergence, which compares favourably with

global optimization algorithm like GA. Both GA

and PSO share common elements and initialize a

population in a similar manner and evaluate a cost

function. At last both are generational. By

combining the effectiveness of GA and PSO, a new

hybrid evolutionary technique called Genetic

Swarm Optimization (GSO) is used here, which

strongly integrates the vantage characteristics of GA

and PSO. The hybrid GSO algorithm is developed

in order to overcome the problem of premature

convergence.

Several solutions have been proposed in this

area. In 1993, for the first time, the paper by

Spillman presented a genetic algorithm based

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 210 Issue 7, Volume 10, July 2011

approach for the cryptanalysis of substitution cipher

[6]. This paper has explored the possibility of

random type search to discover the key (or key

space) for a simple substitution cipher.

In 2009, Garg breaks S-DES via Evolutionary

Computation, where the Memetic algorithm, GA

and Simulated Annealing were used and the results

are compared [7]. In the same year, Garg [8]

explored the use of Memetic algorithm to break a

simplified data encryption standard algorithm and

compared the result with GA.

In 2007 Nalini used efficient heuristics to attack

S-DES and Modified DES [9]. In 2006, Nalini [10]

used optimization heuristics such as GA, Tabu

search and Simulated Annealing techniques to break

S-DES and compared their performance.

In 2009 Vimalathithan used GA to attack S-DES,

by properly tuning the GA parameters; the attack

was successful [11]. In 2010, Vimalathithan used

PSO to attack S-DES and the result shows PSO

performs better than GA [12].

In this paper we propose a novel approach called

GSO (by combining the effectiveness of GA and

PSO) to break the key used in S-DES using

ciphertext-only attack, since it is the most difficult

attack among the classes of attacks encountered in

cryptanalysis and hence we consider this type of

attack. Though S-DES is a much simplified version

of DES, cryptanalysis of S-DES will give a better

insight into the attack of DES and other block

ciphers.

The rest of the paper is organized as follows: In

Section 2 we present a brief overview of S-DES and

background of CI. In section 3 we describe the Cost

function and how CI is used to attack S-DES.

Experimental results are presented in Section 4.

Finally, section 5 concludes our paper.

2. Overview of Basics
In this section we briefly discuss the basics of S-

DES and Computational intelligence.

2.1 Basics of S-DES Algorithm

 This section briefly gives the overview of S-DES

Algorithm. The SDES encryption algorithm takes

an 8-bit block of plaintext and a 10-bit key as input

and produces an 8-bit block of ciphertext as output.

The decryption algorithm takes an 8-bit block of

ciphertext and the same 10-bit key used for

encryption as input and produces the original 8-bit

block of plaintext as output. The key generation

algorithm and Encryption/Decryption algorithms

were discussed below.

2.1.1 Key Generation

 For key generation, a 10-bit key is considered

from which two 8-bit sub keys are generated. In this

case, the key is first subjected to a permutation P10=

[3 5 2 7 4 10 1 98 6], then a shift operation is

performed. The numbers in the array represent the

value of that bit in the original 10-bit key. The

output of the shift operation then passes through a

permutation function that produces an 8-bit output

P8 = [6 3 74 8 5 10 9] for the first sub key (K1). The

output of the shift operation also feeds into another

shift operation and another instance of Permutation

P8 to produce the second sub key K2. In all bit

strings, the leftmost position corresponds to the first

bit. The key generation algorithm is shown in Figure

1.

2.1.2 Encryption Algorithm

The block schematic of the S-DES encryption

algorithm is shown in Figure 1.

The Encryption process involves the sequential

application of five functions:

1. Initial and final permutation (IP):

The input to the algorithm is an 8-bit block of

plaintext, which is first permuted using the Initial

Permutation function IP = [2 6 3 1 4 8 5 7]. Here

the bits are mixed according to the IP. At the end of

the algorithm, the inverse permutation is applied;

the inverse permutation is done by applying,

IP
-1

 = [4 1 3 5 7 2 8 6]

2. Function fK:

The function fk, which is the complex component

of S-DES, consists of a combination of permutation

and substitution functions. The functions are given

as follows:

fK (L, R) = (L XOR f(R, key), R)

Where L, R be the left 4-bits and right 4-bits of the

input, XOR is the exclusive-OR operation and key

is a sub -key.

Computation of f(R, key) is done as follows.

i. Apply expansion/permutation

 E/P= [4 1 2 3 2 3 4 1] to input 4-bits.

ii. Add the 8-bit key (XOR).

iii. Pass the left 4-bits through S-Box S0 and

 the right 4-bits through S-Box S1.

iv. Apply permutation P4 = [2 4 3 1].

 The two S-boxes are defined as follows:

 S0 S1

 1 0 3 2 0 1 2 3

 3 2 1 0 2 0 1 3

 0 2 1 3 3 0 1 0

 3 1 3 2 2 1 0 3

The S-boxes operate as follows: The first and fourth

input bits are treated as 2-bit numbers that specify a

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 211 Issue 7, Volume 10, July 2011

row of the S-box and the second and third input bits

specify a column of the S box. The entry in that row

and column in base 2 is the 2-bit output.

3. The Switch Function (SW):

Since the function fK allows only the leftmost 4-

bits of the input, the switch function (SW)

interchanges the left and right 4-bits so that the

second instance of fK operates on different 4-bits. In

this second instance, the E/P, S0, S1 and P4

functions are the same as above but the key input is

K2.

Fig 1: S-DES Encryption Key Generation and

Decryption Algorithm

2.1.3 Decryption Algorithm

The decryption is the reverse process of

encryption. It takes 8 bit ciphertext, 10 bit key and

generates 8 bit plaintext. The sequence of blocks

used in decryption is shown in Figure 1. The

functions of these blocks are same as that used in

encryption side. The order of the key used at the

decryption side is reversed i.e., Key K2 is used first

then key K1 is used. The computational time

required for decryption is same as that of

encryption. The more details about S-DES

encryption, key generation and decryption algorithm

can be found detail in [2, 3].

2.2 Basics of Computational Intelligence
This section briefly explains GA, PSO and GSO.

2.2.1 Genetic Algorithm

GA provides robust searches in complex spaces.

These algorithms are computationally simple. A

simple genetic algorithm that yields good results in

many practical problems is composed of three

operators: Selection (Reproduction), Crossover and

Mutation [17-20]. Selection strategies determine

which chromosome will take part in the evolution

process. The different Selection strategies are

Population Decimation, Proportionate selection and

Tournament Selection [20].

After the selection, the next operation is mating

scheme. Selection Strategies are involved with

selecting which individuals will take part in the

evolution process, the mating scheme will select

which two parent chromosomes will mate with one

another. The mating scheme that exists includes

Best-Mates Worst, Adjacent fitness Pairing and

Emperor Selective Mating. In Best-Mates worst

mating, as the name indicates the chromosome with

the highest fitness mates with the chromosome with

the lowest fitness which is the preferred mating

technique.

The next operation is Crossover, which selects

genes from parent chromosome and creates a new

offspring. This operator randomly selects some

crossover point and everything before this point

copy from a first parent and everything after this

point copy from the second parent. The two newly

generated chromosomes may be better than their

parent chromosome and the evolution process may

continue. Crossover is continued by Mutation. This

operator randomly changes one or more bits in the

Chromosome. The purpose of this operator is to

prevent the population to escape from minimum

value. The mutation is carried out according to the

mutation probability Pmutation. Mutation rate must

be low. A best mutation rate is 0.015(i.e., 1.5%).

2.2.2 Particle Swarm Optimization

Swarm Intelligence is an innovative paradigm

used for solving the complicated problems. PSO is a

population based optimization tool which could be

implemented and applied to solve various

optimization problems [4].

The Canonical PSO model consists of a swarm

of particles, which are initialized with a population

of random candidate solutions [4]. They move

iteratively through the d-dimension problem space

to search the new solutions, where the cost Ck , can

be calculated as the certain quality measure. Each

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 212 Issue 7, Volume 10, July 2011

particle has a position represented by a position-

vector xi (i is the index of the particle), and a

velocity represented by a velocity-vector vi. Each

particle remembers its own best position so far in

the vector xi # (pbest), and its j-th dimensional value

is xij#. The best position-vector among the swarm so

far is then stored in a vector x*(gbest), and its j-th

dimensional value is xj*. During the iteration time t,

previous velocity (vij(t)) is updated to the new

velocity (vij j(t+1)), determined by Eq.(1). The new

position is then determined by the sum of the

previous position and the new velocity, as given by

Eq(2).

vij(t + 1) = w.vij(t) + c1r1(xij
(t) − xij(t)) + c2r2(x j

∗(t) − xij(t)).

 (1)

xij(t + 1) = xij(t) + vij(t + 1). (2)

Where „w‟ is called as the inertia factor, r1 and r2

are the random numbers, which are used to maintain

the diversity of the population and are uniformly

distributed in the interval [0,1] for the j-th

dimension of the i-th particle. c1 is a positive

constant, called as coefficient of the self-recognition

component, c2 is a positive constant, called as co-

efficient of the social component. From Eq. (1), a

particle decides where to move next, considering its

own experience, which is the memory of its best

past position, and the experience of its most

successful particle in the swarm.

2.2.2.1 Binary PSO

The canonical PSO is basically developed for

continuous optimization problems. In our case, the

cryptanalysis problem deals with binary

information. Hence the canonical PSO cannot be

applied directly. In our problem, the variable xij

represents the key in binary form, hence xij (t)

should take 0 or 1, but from the equation (1), we

can see that the results of vij (t+1) may not be an

integral, and from equation (2) we can see xij (t+1)

may take numerical other than 0,1 after iteration.

The equations have to be adjusted in such a way that

the velocity and position are to be in binary form. In

the binary PSO, we can define a particle‟s position

and velocity in terms of changes of probabilities that

will be in one state or the other [15, 16]. At each

time step, each particle updates its velocity and

moves to a new position according to the Eq.(3) and

(4):

vij(t + 1) = w.vij(t) + c1r1(xij
(t) − xij(t)) + c2r2(x j

*(t) − xij(t))

 (3)

 xi(t + 1) = 1 if ρ ≤ s(vi(t)),

 0 otherwise. (4)

Where „ρ‟ is a random function in the closed

interval [0, 1]. The Velocity update equation is

similar to that of canonical PSO. The only

difference is in the position update as given in the

equation (4).

2.2.3 Genetic Swarm Optimization

Genetic Swarm Optimization is a hybrid

evolutionary technique that combines the

effectiveness of GA and PSO and overcome the

problem of premature convergence.

Fig 2: A GSO Cycle for cryptanalysis

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 213 Issue 7, Volume 10, July 2011

Fig 3: Evolutionary process in GSO

GSO have strong co-operation of GA and PSO,

since it maintains the integration of these two

techniques for the entire run. In fact, this kind of

updating technique yields a particular evolutionary

process where individuals not only improve their

score for natural selection of the Cost or for good-

knowledge sharing, but for both of them at the same

time. The basics of GSO are discussed in [13]. The

working principle of GSO is given below:

In each iteration, the population is randomly

divided into two parts. Each part is taken as the

population for GA and PSO respectively and cost is

computed for the new set of population. The

populations were recombined in the updated

population which is again divided into two parts in

the next iteration for the next run of GA or PSO.

This process continues until the Cost value is

converged. These processes were combined to form

GSO cycle and shown in Figure 2.

An important parameter called hybridization

coefficient hcoeff drives the GSO algorithm where

hcoeff is expressed in terms of percentage of the

population. In each iteration hcoeff percentage of

the total population is processed by GA and the

remaining (1- hcoeff) percentage of the total

population is processed by PSO. For example, if

hcoeff = 0, then the whole population is processed by

PSO operators, i.e., the algorithm becomes purely

PSO and if hcoeff =1, then the whole population is

processed by GA operators, i.e., the algorithm

becomes purely GA. While 0< hcoeff <1 means the

corresponding percentage of hcoeff population is

processed by GA and the remaining population is

processed by PSO. The population evolution using

GSO algorithm is shown in Figure 3.

The effectiveness of GSO depends upon the

parameters selected in GA and PSO and also the

hybridization coefficient, which can be static or

dynamic. In case of static hybridization, hcoeff is

fixed (say 0.2) , whereas for dynamic hybridization,

hcoeff is taken randomly for each iteration as shown

in Table 1.

Table 1 : Hybridization Coefficient during iterations

Static Hybridization

hcoeff (k)

 0.2 for all k

Dynamic Hybridization

hcoeff (k)

Rand() k=1

Rand() k=2

….

….

….

…..

Rand() k=iteration

 Number

3. Problem Formulation
In this section, we describe the Cost function used

and our proposed approach to illustrate the

effectiveness of our algorithm. The goal of the

problem is to minimize the cost function.

3.1 Cost Function

The main task in formulating the cryptanalysis

problem using CI is to find out the effective cost

function. Finding the appropriate cost function is a

difficult task. Once the effective cost function is

defined, then the problem becomes facile. The Cost

function used for the considered problem is given by

the equation (5), which represents the ngram[1]

statistics of the decrypted message and the language

is assumed to be known.

Cost Ck = α Σ(i ε Ã) |K (i)u – D(i)u | +

 β Σ(i, j ε Ã)| K (i, j)b – D (i, j)b| +

 γ Σ(i, j, k ε Ã)|K (i, j, k) t – D(i, j, k)t | (5)

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 214 Issue 7, Volume 10, July 2011

where Ã denotes the language alphabet {a,

b…z, _} for English (where _ represents the

space symbol); K and D are the known language

statistics and decrypted message statistics

respectively; u, b, and t denote the unigram,

digram and trigram statistics, respectively. For

example the known statistics for the frequency

of occurrence of the letter „e‟ in an English

text is 12.7% while for „t‟ it is 9.1%, the digram

frequency for „th‟ is 3.21% while „he‟ it is

3.05%. The frequency statistics for other

digrams and trigrams are found in [14]. The

statistics „u‟ can be computed by counting the

number of occurrence of each character and

divide it by the total number of characters. In

the same way, the two letter combination and

three letter combination were counted and

divided by total number of characters that gives

„b‟ and „t‟ respectively. In view of the

computational complexity of n-gram statistics,

all unigrams were useful and very few digrams

and trigrams were useful. Among the possible

27^1 unigrams, 27^2 digrams and 27^3trigrams,

the considered unigrams, digrams and trigrams

are reported in table 2.

Finally α, β and γ are the weights used for

assigning different priorities to each of the three

statistics and α+ β + γ = 1. The values of α, β

and γ are 0.2, 0.4 and 0.4. Since very few

digrams and trigrams are considered, more

weight is assigned to β and γ.

Table 2: Useful Unigrams, digrams and

trigrams

Unigrams a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,

x,y,z, _(space).

Digrams th, he, in, er, an, re, ed, on, es, at, to, nt,

 nd, ha, ea, ou, is, it, ti, et, ar, te, se, hi,

 of, as, or

Trigrams the, ing, her, ere, and, tha, was, for, ion,

 has, men, nce.

The objective of the problem is to minimize

the cost function. To set the minimum cost value

(costmin), a standard English text file from novels

and cryptography book were taken with different

sizes. The cost value is computed for those standard

files and the average of the cost value is taken which

gives costmin.

3.2 Attacking the key using GA

In this sub section, we describe how GA can be

used to break the key used in SDES. Before that we

relate some important terms used in GA that makes

some sense in cryptanalysis is shown in table 3.

Table 3:Parameters that relate GA and Cryptanalysis

Parameter GA GA

 in

Cryptanalysis

Gene A single bit in

chromosome

A single bit in

key

Chromosome Any Possible

Solution

Any Possible key

Population Group of

Chromosomes

Group of keys

Cost Value A function to

evaluate the

performance

Letter Frequency

Analysis

Generations Number of

generation

Number of

Iterations

After relating the parameters in GA and

cryptanalysis, the following operations were

performed to carry out the cryptanalysis of S-DES

using GA in order to break the key.

1. Initial keys were generated randomly. The

number of keys considered initially represents

the population size. The results show that it is

better to consider low population size and

increase the number of generations. So that the

crossover rate will be high.

2. Using the randomly generated keys, decrypt the

known ciphertext to generate the plaintext, and

compute the cost Ck using the equation (5).

3. The computed cost value is compared with the

predefined minimum cost costmin. If the

computed cost is less than or equal to the costmin,

we can conclude that the corresponding key with

the minimum cost is the optimum key and go to

step 11.

4. If the condition in step 3 is not met, then apply

GA parameters.

5. Select the parent keys to generate a new set of

children keys using the selection strategies.

6. Do the mating among parent keys.

7. Do the crossover. Random point crossover is

preferred.

8. Perform the mutation operation to the current

population and generate a new set of keys.

9. For the newly generated keys, compute the Cost

function and go to step 3.

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 215 Issue 7, Volume 10, July 2011

10. Repeat the step 2 to 9 until the Cost is

minimized or the maximum number of

generation is reached. If the maximum number of

generation is reached then the key with the

maximum Cost in the final generation

corresponds to the optimum key.

11. Display the Optimum Key and terminate the

process.

These processes were combined to form a GA

cycle and shown in figure 4.

Fig 4: A genetic Algorithm Cycle for

 Cryptanalysis.

 3.3 Attacking the key using PSO

In this section, we describe our proposed

approach and illustrate how PSO can be applied to

break the key in the field of cryptanalysis. In a

swarm of particles, each particle represents a key,

which is a 10 bit binary key. Initialize the swarm

Particles Xi. Using the generated particles, decrypt

the known cipher text to obtain the plaintext and

evaluate the cost function from the obtained plain

text by computing the letter frequency analysis i.e.,

by equation (5). The best position is associated with

the minimum cost value i.e., Cost (Pibest) of the

particle Pibest and Global best (Pgbest) is the best

position among all particles in the swarm which is

achieved so far. The global position is associated

with the global cost value, Cost (Pgbest) of the

particle Pgbest

Velocity and Particle‟s position are updated

according to the equation (3) and (4).The cost is

computed from the updated particle‟s position in

order to update the position of Pibest and Pgbest.

The process is continued until the cost function is

minimized or maximum number of iteration is

reached. If there is no improvement in the cost for

some iteration continuously then the algorithm is

stopped. Algorithm for finding the key using PSO

is shown in Table 4.

Table 4: Algorithm for Cryptanalysis of S-DES using PSO
1. Set

 i)Number of iterations

 (ii) Minimum cost -Costmin .

2. Initialize the swarm Particles

3. Decrypt known Cipher text using generated

particles.

4. Compute Cost Value Ck.

5. Update the Velocity and Particle‟s position

according to the equations (3) and (4)

6. Update the position of gbests and pbests.

If Cost (Xi(t)) < Cost(Pibest) then Pibest= Xi(t)

if Cost (Xi(t)) < Cost(Pgbest) then Pgbest= Xi(t)

7. Check for Stopping Criteria. Repeat steps 3-6

until the stopping criteria are satisfied.

8. Display Key found: Key = Pgbest.

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 216 Issue 7, Volume 10, July 2011

3.4 Genetic Swarm Optimization

In this section, the proposed novel approach

GSO to attack DES is explained. Initialize the

population randomly and select the hybridization

coefficient. Take the known ciphertext file and

decrypt it using initial population (keys) and

compute the cost value using the equation (5) for the

entire population and check for the minimum cost

value. If the computed cost is less than costmin then

the key with the corresponding cost is the actual

key. Continue the evolution process using GSO

algorithm (as explained in section 2.2.3) until the

stopping criteria are met. The algorithm for GSO for

cryptanalysis is shown in table 5. For GSO, we take

the hybridization coefficient as static and dynamic,

as already described in table 1. For static case, two

different values 0.2 and 0.3 were taken and

processed. For example hcoeff (k) = 0.3; i.e., 30% of

the population were processed by GA and the

remaining 70% of the population were processed by

PSO to generate new population.

Table 5: Algorithm for Cryptanalysis of S-DES using GSO

1. Initialize POPGSO Randomly

2. Select hcoeff : i.e., Static or Dynamic

If Static: Case i) hcoeff(k)= 0.2 for all k

 Case ii) hcoeff(k) =0.3. for all k

If dynamic : hcoeff(k) = rand()

POPGA =hcoeff(k) * PGSO individuals for GA

POPPSO =(1-hcoeff (k))* POPGSO individuals for PSO

Where „k‟ is the generation number

3. For POPGA : Generate new population by Applying

GA

For POPPSO : Generate new population by applying

PSO

4. Update New population

POPGSO= POPGA + POPPSO

5. Compute the cost for POPGSO

6. Check for stopping criteria. Repeat steps 2-5 until

stopping criteria is satisfied.

7. If stopping criteria are met then Key =Keyoptimum.

4. Experimental Set up and

Results:

The proposed algorithm was implemented

using Matlab on an Intel Core
i3
 processor. Our

objective is to analyse the performances of GA,

PSO and GSO in attacking the ciphertext. Different

ciphertext files of various sizes were considered.

The ciphertexts were constructed from Standard

English novels and Cryptography book for technical

text using SDES encryption.

The total number of generation depends

upon the initial population size. The initial

population and generation is taken in such a way

that the total key search space is set to 300 , in order

to keep the search space less compared to Brute-

force search space atleast by a factor of 3. For

instance, if the initial population size is taken as 10

then the number of generations is 30.

The parameters used for the GA based

cryptanalysis and PSO based cryptanalysis is shown

in table 6 and table 7 respectively. For GSO, the GA

parameters and PSO parameters were taken from the

table 6 and 7 respectively. In table 8, the

hybridization coefficients used for GSO based

cryptanalysis is shown. Instead of analysing GA and

PSO separately, we consider both of them as a

special case of GSO with appropriate hybridization

coefficient as already explained in section 2.2.3.

That is, if hcoeff (k) = 1 then GSO is equivalent to GA

and if hcoeff(k)= 0 then GSO is equivalent to PSO.

Table 8 shows the different values for hcoeff(k) and

the results show that GSO performs better when

compared to GA and PSO.

Table 6: GA Parameters

Population Size - 10

Number of generations - 30

Mating Scheme – Best Mate Worst

Crossover Type - Random

Mutation Rate - 0.015

Table 7: Parameters for PSO

Self-Recognition Parameter c1 1

 Social Parameter c2 4-c1

Constriction parameter C 1

Inertia weight (w) 0.99 < w < 0

Initial Population 10

Number of Iterations 30

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 217 Issue 7, Volume 10, July 2011

Table 8: Comparison results for GA, PSO and GSO

Initially the random keys are generated and

the known ciphertext are decrypted using these

random keys. The cost value is computed for all the

keys using equation 5. In case of GA i.e., GSO with

hcoeff(k)=1, the key is recovered in 24 generations.

The average number of keys searched is 240 and

the search space is reduced by the factor of 4.3

when compared to Brute-force attack (where the

average number of keys searched is 1024). This can

be observed in Table 8.

When hcoeff(k)= 0 i.e., in case of PSO , the

average key search is 210 and the search space is

reduced by a factor of 4.8 when compared to Brute-

force attack and when compared to GA, the average

key search is reduced by the factor of 1.1.

Figure 5: Cost Vs Number of Iterations

If hcoeff(k) is set to 0.2 then the average number

of keys searched is 201 and hcoeff(k) is set to 0.3 then

the average number of keys searched is 191 The

performance of GSO is improved if hcoeff(k) is

dynamic In this case the average key search is 182

where the key search space is reduced by a factor of

5.63 which is estimable reduction factor in

cryptanalysis.

If S-DES decryption is done in 1 second, the

average time required to attack the ciphers using

GSO is nearly 180 seconds (3minutes), whereas in

case of PSO and GA the time required for

convergence of the algorithm is 210 seconds and

240 seconds respectively.

Figure 5 illustrates for varying hybridization

coefficient, how the cost value converges when the

input file size is 1000 ciphertext characters. If the

hybridization coefficient is dynamic then the

convergence rate is very high thereby reducing the

key search space.

 The experimental results show that GSO

algorithm is independent of the initial keys

considered i.e., initial seed. Additionally, the

convergence of the algorithm depends on the size of

the considered cipher text. If the size of the

ciphertext is small, the decrypted plain text contains

little information about the letter frequency and

when the size of the ciphertext is large, the

algorithm converges fastly since more letter

frequency information is available and the key is

recovered fastly with less number of generations.

This can be observed in table9.

Key Used

(10 bits)

Key

Found

Key Search Space (Number of Ciphertext =1000 characters)

GSO

hcoeff (k)=1

 (GA)

GSO

hcoeff (k)=0

(PSO)

GSO

hcoeff (k)=0.2

GSO

hcoeff(k)= 0.3

GSO

hcoeff(k)=rand()

02DE 02DE 247 202 212 198 189

01BF 01BF 237 209 196 184 177

0037 0037 242 217 204 196 183

00AF 00AF 234 212 192 186 179

Average Key Search 240 210 201 191 182

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 218 Issue 7, Volume 10, July 2011

Table 9: Effect of Key search space with size of Ciphertexts

Number of

Ciphertexts

Average Key Search Space

GSO

hcoeff (k)=1

 (GA)

GSO

hcoeff (k)=0

(PSO)

GSO

hcoeff (k)=0.2

GSO

hcoeff(k)= 0.3

GSO

hcoeff(k)=rand(k)

100 272 258 242 235 221

500 265 232 228 205 197

1000 240 210 201 191 182

5. Conclusion
In this paper, a novel approach GSO by

combining the effectiveness of GA and PSO is

proposed to attack Simplified-DES. From the results

and analysis, it is observed that GSO reduces the

key search space by the factor of 5.6 and runs

through less time. Implementing our approach in

high speed computers further reduces the time

consumption. This shows that the GSO can be

effectively used in the field of cryptanalysis and this

approach has been reported for the first time to

attack the ciphers. Though SDES is simpler than

DES, this gives a better idea to attack DES and

other complex block ciphers like AES .

References:
[1] Neal Koblitz, A course in Number Theory and

Cryptography, Springer International Edition, 2008.

[2] William Stallings, Cryptography and Network Security

Principles and Practices, Pearson Education, 2004.

[3] Behrouz A. Forouzan, Cryptography and Network

Security, Tata McGraw hill Education, 2nd edition 2008.

[4] Nadia Nedjah, Ajith Abraham, Luzia de Macedo
Mourelle, Swarm Intelligent systems, Studies in
Computational Intelligence, Vol.26,2006.

[5] Nadia Nedjah, Ajith Abraham, Luzia de Macedo
Mourelle, Computational Intelligence in Information
Assurance and Security, Studies in Computational
Intellige nce, Vol. 57,2007.

[6] Spillman R,Janssen M, Nelson B and Kepner N, “Use of
Genetic Algorithm in Cryptanalysis of Simple
Substitution Cipher” Cryptologia, Vol.17, No.4, pp.
367-377, 1993.

[7] Garg Poonam, A Comparison between Memetic
algorithm and Genetic algorithm for the cryptanalysis of
Simplified Data Encryption Standard algorithm,
International Journal of Network Security & Its
Applications (IJNSA), Vol.1, No 1, April 2009 pp-34-
42.

[8] Garg Poonam , Cryptanalysis of SDES via Evolutionary
Computation Techniques, International Journal of
Computer Science and Information Security, Vol. 1, No.
1, May 2009. Pp 117-123.

[9] Nalini, Attacks of simple block ciphers via efficient
heuristics, Information Sciences, pp 2553-2569.

[10] Nalini, Cryptanalysis of Simplified data encryption
standard via Optimization heuristics, International
Journal of Computer Sciences and network security,
vol 6, No 1B, Jan 2006.

[11] Vimalathithan.R, M.L.Valarmathi, “Cryptanalysis of S-
DES Using Genetic Algorithm”, International Journal of
Recent Trends in Engineering, Vol2, No.4, November
2009, pp.76-79.

[12] Vimalathithan.R, M.L.Valarmathi, “Cryptanalysis of S-
DES Using Particle Swarm Optimization”, 10th National
Workshop on Cryptology, Coimbatore, India, Sep 2010.

[13] A. Gandelli, F. Grimaccia, M. Mussetta, P. Pirinoli,
R.E. Zich, “Development and Validation of Different
Hybridization Strategies between GA and PSO”, Proc.
of the 2007 IEEE Congress on Evolutionary
Computation, Sept. 2007, Singapore, pp. 2782–2787.

[14] A Menezes,P.Vanoorschoot,S.Vanstone Handbook of
Applied Cryptography,CRC Press,1996.

[15] J,kennedy, R.Eberhart, “A discrete Binary version of the
Particle Swarm Algorithm,” International Conference
on Neural network, Vol. IV,pp:4104-4108,
Australia,1997.

[16] J,kennedy, R.Eberhart, “Particle Swarm Optimization,”
IEEE international Conference on Neural
Networks,pp:1942-1948,Australia,1995

[17] Collin R.Reeves, J,E Rowe, Genetic Algorithms-
Principles and Perspectives, A guide to GA theory,
Kluwer Academic Publishers.

[18] Haupt R.L, Haupt S.E. , Practical Genetic Algorithms,
2nd ed., Wiley, 2004.

[19] M.Mitchell, An Introduction to Genetic Algorithms,
First MIT press paperback edition, 1998.

[20] Goldberg D.E., “Genetic Algorithm in Search,
Optimization and Machine Learning”, Boston, Addison-
Wesley, 1999.

WSEAS TRANSACTIONS on COMPUTERS Vimalathithan R., M. L. Valarmathi

ISSN: 1109-2750 219 Issue 7, Volume 10, July 2011

