
LDAG: A New Model for Grid Workflow Applications

GUIPING WANG
1
 AND YAN WANG

 2

1
School of Information

Zhejiang University of Finance & Economics

18 Xueyuan Street, Hangzhou, Zhejiang

CHINA 310018

w_guiping@163.com
2
School of Information

Zhejiang University of Finance & Economics

18 Xueyuan Street, Hangzhou, Zhejiang

CHINA 310018

wangyan@zufe.edu.cn

Abstract: - Grid workflow and its application are one of main focuses of Grid Computing. Due to data or

control dependencies between tasks and the requirement of no directed circuit, Directed Acyclic Graph (DAG)

is a natural model for Grid workflow, and has been extensively used in Grid workflow modeling. For some

workflow applications, there may exist another requirement that each task should be accomplished at an

expected stage, that is, at a given level. In this paper, we discuss such workflow applications in depth, and

propose a new DAG model, which we called LDAG. In LDAG, each node possesses a level. Several cases of

the level of nodes are discussed in detail. For a reasonable one of these cases, we propose the topological

sorting algorithm. The algorithm consists of two phases, namely Level Adjusting and Topological Sorting. We

discuss some relevant problems, such as choice of stack or queue, the determination of directed circuit,

complexity of the algorithm, etc. The experiment and analysis of LDAG and topological sorting algorithm

show its correctness and efficiency in modeling grid workflow.

Key-Words: - Directed Acyclic Graph (DAG), LDAG; Grid workflow; Level; Topologic sorting; Directed

circuit

1 Introduction
Grid computing [1] is considered as a cornerstone of

next generation distributed computing that

coordinates large-scale resource sharing and

problem solving in dynamic, multi-institutional

virtual organizations [2]. Based on Grid, a

sophisticated job can be decomposed into a great

amount of atomic tasks and accomplished with

distributed computing resources, and thus achieve

minimum job accomplishing time and high resource

utilization efficiency.

Grid workflow is defined as the orchestration of

a set of atomic tasks processed at distributed

resources in a well-defined order to accomplish a

large and sophisticated goal [2]. Currently, Directed

Acyclic Graph (DAG), and other models such as

UML [3, 4] and Petri Net [5, 6], have been

extensively used in scientific computational

workflow modeling, especially in large-scale data-,

computing - or instrumentation-intensive Grid

applications, such as high-energy physics,

geophysics, astronomy, medical image processing,

and bio-informatics.

For some workflow applications, besides data or

control dependencies between atomic tasks, there

may exist another requirement, expecting each

atomic task be accomplished at an expected stage.

For example, a large and sophisticated job needs to

be partitioned into several stages due to computing

resources insufficiency or inherently containing

several stages for the job. Therefore each atomic

task corresponds to a given stage, which we called

Level.

In this paper, we discuss such workflow

applications in depth and propose a new DAG

model, which we called LDAG. In LDAG, each task

possesses a level. The level of a task may be

inherent stage of the whole job or expected stage to

be executed. Firstly we analyze several cases of the

level of tasks. And then based on original

topological sorting algorithm [7], we propose the

topological sorting algorithm for a reasonable one of

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 179 Issue 6, Volume 10, June 2011

these cases. The algorithm consists of two phases,

namely Level Adjusting and Topological Sorting.

The remainder of this paper is organized as

follows. Section 2 gives an overview of related

works. Section 3 presents the formal definitions and

preliminaries of DAG workflow. Section 4 presents

LDAG, a new DAG model with all vertices

possessing a level, and discusses several cases of the

level of vertices. In section 5, we propose the

topological sorting algorithm for one reasonable

case of LDAG workflow, and discuss some relevant

problems. Experiment and analysis of LDAG model

and the algorithm is given in section 6. Finally, we

conclude this paper and give some future works in

section 7.

2 Related Work
The applications of DAG in Grid workflow mainly

converge in two aspects, that is, workflow modeling

and workflow scheduling (optimizing inclusively).

Workflow modeling is the first step before

further workflow processing, such as scheduling and

optimizing. Due to inter-task data or control

dependencies between atomic tasks, and the

requirement of no directed circuit, DAG is a natural

model for Grid workflow, in which nodes represent

atomic computing tasks and directed arcs or edges

represent inter-task data or control dependencies

between tasks. For example, in [8] the nodes of

DAG represent the computing tasks, while the

dependences between tasks are materialized by file:

a task produces a file that is necessary for the

processing of some other task. An e-Protein project

of the London e-Science Center in [9] presents a

complex Grid infrastructure of distributed

computational resources with different databases

and specialized analysis software that may not be

deployed on every resource. A protein annotation

workflow is given, as shown in Fig. 1. In this DAG,

the nodes represent components of the project, while

arcs describe the direction of data flow between

components, that is, data dependencies between

tasks.

2

1

3
COILS2

SEG

PROSITE

4
SignalP

7

6

Prospero

HMMer

5
TMHMM

9

8

10PSI-BLAST

BLAST

IMPALA

11 PSI-PRED

13

12

3D-PSSM

Summary

15

14

SCOP

Genome
Summary

Fig. 1 A protein annotation workflow [9]

Based on DAG, some well-known Grid

workflow management systems such as DAGMap

[2], GridAnt [10], DAGMan [11], GridLab [12] and

PROGRESS [12] have been implemented and

applied in Globus and Condor projects.

For DAG model optimizing, the study in [13]

shows that a set of workflows modeled by DAG can

be combined and compressed in order to eliminate

redundancy in workflow and minimize computation.

Based on DAG, some more sophisticated models

are studied in order to meet special system

requirements. For example, Yuan [14] studies

workflow applications described by DAG with

deadline constraints, and proposes an effective and

efficient heuristic called DET. Tian [15] studies

such workflow applications that each processing of

a workflow needs to be finished within its deadline,

and proposes a critical-region based scheduling

algorithm.

Except for DAG, UML [3, 4], Petri nets [5, 6],

and even their combination can also be adopted in

workflow modeling for special applications. DAG

only contains sequence and parallel workflow

patterns. However choice and iteration workflow

patterns are also required in different fields of

science such as bio-informatics, meteorology, etc.

Therefore, a workflow specification model, which

uses directed graphs and Petri nets, is designed in

[16], where directed graphs are used at user-level

and Petri nets are used as underlying workflow

model. In [12], DAG and Petri nets based

approaches are compared in GridLab and

PROGRESS projects.

DAG workflow job scheduling in a Grid

environment determines how to map all atomic

tasks to a bounded number of distributed computing

resources [17]. Various workflow scheduling

algorithms are discussed from different points of

view, such as static vs. dynamic policies, objective

functions, applications models, quality of service

(QoS) constraints, strategies dealing with dynamic

behavior of resources, and so on [15]. The studies in

[18] give a state-of-the-art taxonomy of grid

scheduling algorithms. Besides basic scheduling

algorithms, such as list and group scheduling

algorithms, some more effective and efficient

heuristic have been studied for some special

workflow applications, such as DAGMap [2], DET

(Deadline Early Tree)[14], etc.

Some more sophisticated scheduling heuristics

that adopt more intelligent strategies are studied in

literatures. In [19], a decentralized scheduling

algorithm based on genetic algorithms for the

problem of DAG scheduling is proposed.

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 180 Issue 6, Volume 10, June 2011

Almost all the literatures about DAG and its

applications assume grid workflow being a DAG,

and discuss such issues as workflow scheduling and

optimizing based on this assumption. Few literatures

work on how to model the workflow and determine

whether the model is a DAG.

3 Model and Preliminaries
To illustrate workflow job modeling problem clearly,

we present the formal definitions for DAG

workflow job and topological sorting in this section.

3.1 DAG Grid Workflow
Definition 1(DAG Grid Workflow)[2]: A DAG

Grid workflow job can be represented by a directed

acyclic graph G(T, E), where T = { t1, t2, …, tN } is

the collection of atomic tasks (N is the total number

of tasks), and E is the collection of arcs or edges

indicating the dependency and precedence

constraint between tasks.

For example, in the DAG shown in Fig. 2(a), T =

{A, B, C, D, E}, E = {<A, B>, <A, C>, <A, D>, <B,

C>, <B, E>, <C, E>, <D, E>}.

(a)

D

B

A E

(b)

D

B

A EC C

Fig. 2 Two workflow models

Definition 2(job, workflow, vertex, node, task,

atomic task, activity): In this paper, job and

workflow mean the whole workflow job. The latter

5 terms are synonyms, which mean atomic task in

workflow job.

Based on grid, a workflow job can be

decomposed into a great amount of atomic tasks and

accomplished with distributed computing resources.

The workflow job shown in Fig. 2(a) is

decomposed into 4 atomic tasks, that is, A, B, C, D

and E.

Definition 3(edge, arc): The directed edge<u,

v> (from u to v)∈ E in a DAG may represent data or

control dependencies between task u and v.

For example, the execution of task v requires

data or file produced by that of task u. It can also

represent precedence constraint between task u and

v, that is, task u should be executed before task v.

Definition 4(start vertex, end vertex): In a

DAG, if <u, v>∈ E, then we call vertex u is the start

vertex of edge <u, v>, while vertex v is the end

vertex of edge <u, v>.

Definition 5(predecessor and successor): In a

DAG, if <u, v>∈ E, then the task u is the direct

predecessor of task v, and task v is the direct

successor of task u. If there exists a path from task u

to task v, that is, <u, u1, u2, …, un, v>, then the task

u is the predecessor of task v, and task v is the

successor of task u.

For example, in a DAG shown in Fig. 2(a), E has

3 direct predecessors, that is, B, C, and D. A has no

direct predecessor. A is a predecessor of E. B has 2

direct successor, that is, C and E, while E has no

direct successor, etc.

Notice that, a task can start to be executed only

that all of its predecessor tasks have been

accomplished. Similarly, only after the execution of

a task, all of its successor tasks can start to be

executed.

Definition 6(entry task and exit task): In a

given DAG graph, a task without any predecessors

is called an entry task, and a task without any

successors is an exit task.

For example, in a DAG shown in Fig. 2(a), A is

an entry task, and E is an exit task.

Entry tasks are entries of the whole workflow job,

and exit tasks are exits of the whole workflow job.

Definition 7(dummy node): If there is more

than one entry/exit task, a dummy entry/exit task

can be added. At the same time, the dummy entry

task should be connected to each original entry task

with edges. Similarly, each original exit task should

be connected to the dummy exit task with edges.

This can ensure that there are only one single-entry

task (denoted as tentry) and one single-exit task

(denoted as texit) in a DAG workflow job.

For example, in Fig. 1, there are 4 entry tasks

and 1 exit task, so we add a dummy entry task

(numbered as 1), as shown in Fig. 3. The added

edges are denoted as dashed lines. Attention: in Fig.

3, except for the dummy entry task, the i-th task

corresponds to the (i-1)th task in Fig. 1.

3

2

4

5

8

7

6

10

9

11

12

14

13 1615

1

Fig. 3 DAG model of the workflow application

sample in Fig 1.

3.2 Topological sorting
After modeling a workflow into a DAG, the

foremost job is to judge whether there exists a

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 181 Issue 6, Volume 10, June 2011

directed circuit, that is, whether the DAG is

reasonable.

Definition 8(directed circuit): In a given DAG

graph, if a directed path, <u, u1, u2, …, un, v>,

starts from and ends in a same vertex, that is, u = v,

then we call this path a directed circuit.

A DAG is an unreasonable one if there exists a

directed circuit, which means one task is a

predecessor of itself. If there exists a circuit in a

DAG workflow, then it cannot be scheduled and

executed in Grid environment.

For example, in Fig. 2(b), A is the predecessor of

D, D is the predecessor of C, C is the predecessor of

A, and then we get a conclusion that A is the

predecessor of A, which is not reasonable.

The method of determining directed circuit in a

DAG is to construct its topological sorting sequence

(topological sequence for short).

Definition 9(topological sequence): A

topological sequence of a DAG is a linear ordered

sequence of all vertices that satisfy all the

predecessor and successor relations in the DAG.

Definition 10(topological sorting): The

topological sorting operation of a DAG is to arrange

all vertices into a linear ordered sequence and

satisfy all the precedence relations.

For example, one of the topological sorting

sequences of Fig. 2(a) is ADBCE, which satisfies

the condition that an arc always leads form an

anterior node to a posterior node. Another

topological sequence is ABCDE, while ACBDE is

not a topological sequence because the precedence

relation of <B, C> is not satisfied in this sequence.

The original topological sorting algorithm

described in section 5.1 can solve topological

sorting problem for a DAG.

4 LDAG: each vertex possessing a

level

4.1 Level
For some real workflow applications, besides data

or control dependencies between tasks, there may

exist another requirement, expecting each task be

accomplished at an expected stage. For example,

due to computing resources insufficiency, a large

job and sophisticated has to be executed in several

stages. Or the job inherently contains several stages.

In such cases, the workflow has to be partitioned

into several stages, and each task corresponds to a

given stage, that is, Level.

Definition 11(Level): In some workflows, each

vertex possesses a weight, which we called Level.

Level can be the expected stage for each task.

Definition 12(LDAG): In a given DAG, if each

vertex possesses a Level, the model is called LDAG

in this paper.

For example, A LDAG is shown in Fig. 4, the

number beside each vertex represents its Level, that

is, the expected stage for each task.

C D

F

B E

A1
3 2

3

2 3

Fig. 4 A LDAG model.

LDAG can be widely used in grid workflow

modeling. Consequently, it is important to study this

DAG model and relevant problems, such as

topological sorting, scheduling and optimizing. In

this paper, we focus on the first problem, that is,

topological sorting of a LADG.

4.2 Several cases of the level of nodes
There are 3 cases for Level of nodes in LDAG,

which listed as follows.

1) The level of each vertex is fixed, that is, the

stage of each task cannot be advanced and

postponed.

2) Due to computing resources and other reasons,

the stages of all vertices are usually expected to be

postponed as much as possible under permitting

conditions; that is, each task has an expected stage,

and the stage can be delayed, but cannot be

advanced.

3) Due to the delivery of each task and the time

minimization of the whole job, advance of stage is

allowed, but postponement is prohibited. That is,

each task has an expected stage, and the stage can

be advanced but cannot be postponed. At the same

time, due to computing resources and other reasons,

it is expected that the stage of each task will not be

advanced under unnecessary situation.

In addition, it is necessary to explain that, in the

same stage, several tasks can be arranged in despite

of their precedence constraint. These tasks will be

arranged according to their precedence constraint

relations.

For the first case, even if there does not exist a

directed circuit in a given DAG, it may be

impossible to schedule the workflow. For example,

in Fig. 4, task C must be executed in stage 3, while

task D must be executed in stage 2. It is obviously

impossible because that task C is a predecessor of

task D, and should be executed before the

accomplishment of task D.

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 182 Issue 6, Volume 10, June 2011

For the second case, since it is always possible to

postpone all tasks to the last stage, it is meaningless

to study this case. For example, in Fig. 4, if the

stage of a task can be postpone arbitrarily, all the

tasks can be postponed to stage 3 (all the tasks will

be executed in turn according to the topological

sorting order).

For the third case, it is required that all tasks be

executed before the given stage of a task (including

the given stage). For example, in Fig. 4, the level of

task D is 2, which means task D must be executed

before stage 2 inclusively. At the same time, due to

computing resources and other reasons, it is

expected that all tasks will not be advanced as much

as possible. The problem now is how to arrange

execution order of all tasks. The order should satisfy

not only precedence relations between tasks, but

also level constraints, that is, all tasks should be

executed before the given stage (inclusively).

Because of the precedence constraints between

tasks, not all the tasks can be executed in its given

stages. For example, in Fig. 4, task D can be

executed in stage 2, but task C cannot be executed

in stage 3. The reason is that task C is the

predecessor of task D and precedent to D. Thus task

C has to be advanced to stage 2, that is, its level has

to be advanced to level 2. Note that, task C and D

can be arranged in the same stage, and the execution

of task C is precedent to that of task D.

For the last case of LDAG, we propose a

topological sorting algorithm, which can be used to

judge which tasks will be executed in each stage and

the execution order of tasks in each stage.

5 Topological Sorting Algorithm for

LDAG

5.1 Original Topological Sorting Algorithm

for DAG
For the convenience of discussion, we need to

introduce another several concepts.

Definition 13(incoming arc, outgoing arc,

indegree, outdegree): Incoming arc of vertex u is

an arc from another vertex to u. Outgoing arc of

vertex u is an arc from u to another vertex. The

indegree of vertex u is the number of incoming arcs

of u. The outdegree of vertex u is the number of

outgoing arcs of u.

Definition 14(zero-indegree vertex): If the

indegree of vertex u is zero, then we call u a zero-

indegree vertex. A zero-indegree vertex is the one

that has no predecessor.

For example, the only one zero-indegree vertex

in Fig. 5(a) is A initially. In the process of

topological sorting, along with the operation of

deleting outgoing edges of a zero-indegree vetex,

more zero-indegree vertices will come into being.

When topologically sorting a DAG, it is

necessary to establish a stack S to store zero-

indegree vertices. The stack can be replaced by a

queue, the detail discussion can be found in section

5.3.

The original topological sorting algorithm can be

found in [7]. The algorithm consists of three parts:

initialization (lines 1-2), topological sorting process

(lines 3-12), directed circuit determination (lines 13-

14).

The initialization process includes establishing a

stack (line 1) and pushing each zero-indegree vertex

into S (line 2).

The topological sorting process is a loop

procedure. The loop condition is that S is not empty

(line 3). At each round, pop top vertex (denoted by u)

out of S (line 4) and output it (line 5) firstly. Then

check and delete each outgoing edge of u (lines 6-

11). When checking an outing edge, the indegree of

the end vertex (denoted by v) minus 1 (line 7). If the

indegree of v drops to zero (line 8), push v into S

(line 9). After checking, delete the outing edge (line

10).

In the last process, if the number of vertices

having been output is less than n, then a circuit is

determined. Otherwise, the DAG is reasonable.

Algorithm 1(original topological sorting

algorithm):

1. establish stack S for zero-indegree vertices;

2. push each zero-indegree vertex into S;

3. while(S is not empty)

4. pop u(top vertex) out of S;
5. ouput u;
6. for(each outgoing edge of u)
7. the indegree of v (end vertex) minus 1;
8. if(the indegree of v equals to zero)
9. push v into S;
10. delete the outgoing edge;
11. end for
12. end while

13. if(the number of vertices having been output<n)

14. report: there exist circuit(s) in DAG
For example, the topological sorting process of

the DAG in Fig. 5(a) is listed as follows. 1) push A

into S; 2) pop A out of S, and delete its outgoing

edges, push B and D into S in turn; 3) pop D out of

S, and delete its outgoing edge; 4) pop B out of S,

and delete its outgoing edge, push C into S; 5) pop

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 183 Issue 6, Volume 10, June 2011

C out of S, and delete its outgoing edge, push E into

S; 6) pop E out of S.

After topological sorting, we get a vertex

sequence, A→ D→ B→ C→ E, as shown in Fig. 5(b).

In Fig. 5(b), all the predecessor/successor

relations (denoted by real line) have been reserved.

In addition, from vertex D to vertex B, a

predecessor/successor relation is added artificially,

as shown a dashed line in Fig. 5(b).

Undoubtedly, there may exist more than one

topological sorting sequence in a DAG. For example,

another two topological sorting sequences of the

DAG in Fig. 5(a) are A→ B→ C→ D→ E and A→ B

→ D→ C→ E.

(a)

D

B

A E A D B C

(b)

C E

Fig. 5 Topological sorting example

In algorithm 1, if there are some vertices having

not been output after topological sorting process

(the S is empty, that is, there is no zero-in-degree

vertex), then we can report there exist circuit(s) in

the DAG.

5.2 Topological Sorting Algorithm for

LDAG
For the topological sorting process of the third case

of LDAG, the critical step is that, when checking

the incoming edges (can be denoted by <u, v>) of

each vertex v, if the level of start vertex (denoted by

u) is higher than that of end vertex (that is, vertex v),

then it is necessary to advance the level of u to L (L

is the level of vertex v). It means that the task

corresponding to vertex u has to be advanced to

stage L. The reason is that, u is a predecessor of v,

and u should be executed before v.

When checking the vertices of level L, a queue Q

is used to store these vertices. (The queue Q can be

replaced by a stack. Its detail discussion can be

found in section 5.3.) When topologically sorting

the vertices of level L, a stack S is used to store the

zero-indegree vertices. (The stack S can also be

replaced by a queue, its detail discussion can also be

found in section 5.3.)

The main thread of topological sorting algorithm

for a LDAG is to check each level from lower to

higher. The checking process for level L consists of

two phases: Level Adjusting and Topological

Sorting.

The concrete checking process for level L is

listed below.

(1) Level Adjusting (lines 2-17): Find out all the

vertices should be executed in level L, including the

vertices whose initial level is L, and the vertices

whose level are advanced to L. The method is listed

as follows.

a) For each vertex (denoted by u) whose initial

level is L, push it into Q (line 4). If the indegree of u

is zero (line 5), push u into S at the same time (line

6).

b) Check each vertex (denoted by v) in the queue

Q (lines 8-17). It is a while-loop procedure. In each

round, pop top vertex (that is, v) out of Q (line 9),

and check each incoming arc of v, if the level of

start vertex (denoted by w) is higher than L, then

advance the level of w to L (line 12), and push w

into Q (line 13). If the indegree of w is zero (line

14), push w into S at the same time (line 15).

Note that, if the level of w is lower than L, it

means that w has been processed in a lower level

and does not need to be considered in level L.

The reason of pushing w into Q is that it is

necessary to check each predecessor (denoted by x)

of w. And if the level of x is higher than L, it also

needs to be advanced to L.

(2) Topological Sorting (lines 18-19):

Topologically sort all the vertices of level L by

virtue of stack S using algorithm 1 (section 5.1).

For all the levels in ascending order, invoke the

checking process (Level Adjusting and Topological

Sorting), until all vertices have been output, or a

circuit is determined (its detail discussion can be

found in section 5.3).

The pseudocode of topological sorting algorithm

for LDAG is listed below.

Algorithm 2(topological sorting algorithm:

LDAG):

1. for(each level in ascending order)

2. //Level Adjusting
3. for(vertex u which initial level is L) //a)

4. push u into Q;
5. if(indegree of u is zero)
6. push u into S;
7. end for
8. while(Q is not empty) //b)

9. pop v (top vertex) out of Q;
10. for(each incoming arc of v)
11. if(the level of w (start vertex) > L)
12. advance level of w to L;
13. push w into Q;
14. if(indegree of w is zero)
15. push w into S;
16. end for
17. end while
18. //Topological Sorting
19. Topological sort all vertices of level L;

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 184 Issue 6, Volume 10, June 2011

20. end for

In addition, if the levels of vertices do not start

from 1, or the levels of vertices are not continuous,

an array is needed to store all the levels in ascending

order. The total topological sorting process will be

executed according to the levels stored in the array.

For example, a LDAG is shown in Fig. 6. It

consists of 8 atomic tasks and 12 pairs of

predecessor/successor relations. The topological

sorting process is listed as follows.

(1) Firstly, check the vertices of level 1.

1) Push vertex A and G into queue Q. At the

same time, push A into stack S.

2) Pop A out of queue Q. Because A has no

incoming arc, there is no further process for A. Pop

G out of queue Q. When checking incoming arcs of

G, the levels of vertex D and F are advanced to 1,

and push into queue Q in turn.

3) Pop D out of queue Q. Pop F out of queue Q,

advance the level of vertex C to 1, push C into

queue Q.

4) Pop C out of queue Q.

5) Now there is only one vertex, that is, A, in

stack S. But by virtue of stack S, C, D, F and G will

be pushed into and popped out of stack in turn.

Thus the resulting topological sequence of level

1 is A→ C→ D→ F→ G.

(2) When checking the vertices of level 2, vertex

E is push into queue Q. Pop E out of queue Q, and

push B into queue Q. After topological sorting, we

get a sequence of level 2, that is, B→ E.

(3) Check the vertices of level 3, and get the

resulting topological sequence, that is, H.

Therefore, after topological sorting the LDAG in

Fig. 6, the tasks that need to be executed in each

level are listed below.

Level 1: A→ C→ D→ F→ G;

Level 2: B→ E;

Level 3: H.

At each level, all tasks will be executed

according to their topological sorting orders listed

above.

C

GD

F H

B E

A1

3 2

2

1

3

3 2

Fig. 6 A topological sorting sample of LDAG.

5.3 Further discussion of Algorithm 2 and

complexity analysis

A. Choice of stack or queue

The difference between queue and stack lies in

the pop sequence of vertices in queue (or stack).

Queue is FIFO (First In and First Out), and stack is

LIFO (Last In First Out). Therefore, the adoption of

a queue or a stack during the implementation

process of an algorithm is determined by whether

this pop sequence will affect the correctness of the

algorithm. The discussion of choice of queue or

stack in algorithm 1 and 2 is listed below.

Algorithm 1: During the implementation process

of the algorithm, if there exist more than one zero-

indegree vertex, which vertex should be deleted first

does not affect the correctness of the algorithm.

Therefore, in algorithm 1, the stack S can be

replaced by a queue Q to store zero-indegree

vertices.

Algorithm 2: When finding out all the vertices of

level L, which vertex (and its all incoming arcs)

should be checked first does not affect the

correctness of the algorithm. Therefore, the queue Q

can be replaced by a stack S to store vertices of

level L. In addition, the stack S in algorithm 2 can

also be replaced by a queue Q, the reason is same to

that of Algorithm 1.

B. Determination of directed circuit

In topological sorting algorithm for a LDAG, the

determination of directed circuit(s) can be

implemented by the method in algorithm 1. The

method can be concreted as: in the step (2), if the

number of vertices having been output is less than

the number of vertices of level L, then the directed

circuit(s) is determined. The algorithm also does not

need to perform any longer.

For example, there is a directed circuit in a

LDAG shown in Fig. 7. The topological sorting

process of is listed below.

(1) Firstly, output the only one vertex of level 1,

that is, vertex A.

(2) Then find out all the vertices of level 2, that

is, B, D, C and E (note: the levels of latter two

vertices are advanced to 2). However, after

outputting vertex E, there is no zero-indegree vertex

in S. Therefore, a directed circuit can be determined.

In this example, the directed circuit is: B→ C→ D→
B. Thus, the algorithm’s execution can be

terminated.

C D

FB

E

A1

3 2

3
2

3

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 185 Issue 6, Volume 10, June 2011

Fig. 7 A LDAG consists of a directed circuit.

C. Complexity analysis of the algorithm 2

Before analysis, we make an assumption that

there are n vertices, m directed edges, and L levels

initially in a LDAG.

Time complexity: During the topological sorting

process in algorithm 2, each vertex is pushed into

queue Q one time, and popped out of Q one time.

Similarly, each vertex is pushed into and popped out

of stack S only one time. Therefore, the processing

time required for queue Q and stack S is O(2n).

When checking the incoming arcs of each vertex,

each incoming arc is scanned one time. When

outputting a vertex, each outgoing arc will be

deleted. Therefore, the processing time required for

processing the incoming and outgoing arcs is O(2m).

Consequently, the total time complexity of

algorithm 2 is O(2n +2 m).

Space complexity: When implementing algorithm

2, adjacency list is used to store a LDAG. Moreover,

incoming arc list and outgoing arc list should be

comprised at the same time. The required storage

space is O(2n +2m). In addition; the indegree of

each vertex should be stored, the required space is

O(n). When implementing topological sort

algorithm 2, in the worst case, the levels of all

vertices are same, the required storage for queue Q

to store all the vertices is O(n). And the storage for

stack S is not more than O(n). In addition, the

storage for L levels is O(L). Consequently, the total

space complexity of algorithm 2 is O(5n +2m + L).

6 experiment and analysis
In this section, we will analyze algorithm 2 from

two aspects: verifying correctness of the algorithm,

and analyzing advance ratio of initial level of nodes

during execution of the algorithm.

6.1 verifying correctness of the algorithm
The verification work can be concreted as: inputting

a LDAG, and outputting the vertices of each level

ultimately. When the vertices are output, they

should be listed according to their topological order.

If there exists a circuit, then output "directed circuits

exist".

A test data set containing 10,000 random test

data are generated in the verifying work. The format

of each test data consists of three parts. The first

part is three integers in one line, N, L and M. 5≤ N

≤ 26, 1≤ L≤ 10, 1≤ M≤ N*(N-1)/2, M ensures the

ground graph of the LDAG is connected. These

three integers mean the number of vertices, the

number of levels (level is 1~L), the number of

predecessor/successor constraints respectively. The

N vertices are represented with anterior N uppercase

letters in alphabet. Their sequence number are 1~N.

The second part is N integers in one line. The i-th

integers Li represents the initial level of the i-th

vertex, 1≤ Li≤ L. The third part contains M lines,

which describe M pairs of predecessor/successor

constraints. Each line contains two uppercase letters

(The range of each uppercase letter is within

anterior N uppercase letters in alphabet. They are

denoted by A and B here), which means vertex A is

predecessor of vertex B.

For example, the LDAG shown in Fig. 6 can be

formatted as: 8 3 12; 1 3 3 2 2 2 1 3; AB; AC; AD;

BE; CE; CF; DF; DG; EH; FG; FH; GH. Each

component before a semicolon corresponds a line.

The specification of output content is listed as

follows. For each test data, output L lines, with the

i-th line representing vertices of i-th level. In the i-th

line, firstly output the number of i, indicating the i-

th level. A space, a colon and a space are followed.

Then if there is no vertex in the i-th level, output 0,

otherwise output topological order of vertices in the

i-th level.

For the test data shown in Fig. 6, one correct

output should be:

1: ACDFG

2: BE

3: H

Notice that, the solution of each test data may be

not unique. Therefore a special judge program is

written to verify the correctness of the output. We

use two methods when judging whether the vertices

sequence of each level is in a topological order. We

can conclude the output is right only on the

condition that both methods judging the vertices

sequence are in a topological order.

These 2 methods are listed as follows.

(1) Note the location of each letter in the vertices

sequence of each level, and store the locations in a

POS array (POS[1] represents the location of letter

A, POS[1] represents that of letter B, …). Then

judge each direct arc in LDAG whether the location

of start vertex is before that of end vertex. As long

as there exists one directed arc not satisfying the

condition, we can conclude the vertices sequence is

not in a topological order.

(2) A double loop is used to determine whether a

wrong predecessor/successor constraint can be

found in the adjacency matrix of a LDAG. The

wrong constraint can be represented with <j, i>,

where i represents the i-th letter in the vertices

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 186 Issue 6, Volume 10, June 2011

sequence of each level, and j represents each latter

letter of i. If there exists one wrong constraint, we

can conclude the vertices sequence is not in a

topological order similarly.

When generating a test data set, we can choose

whether there exists directed circuit in a LDAG, and

get two test data sets. Each data set contains 10,000

random test data. The test result of each data set is

listed in Tab. 1, which shows the correctness and

high efficiency of algorithm 2. The configuration of

the test machine is: Intel Core2 Duo CPU, 2.26GHz;

3G memory.

Tab. 1 Test result of algorithm 2.

 test data set description run time result

test data

set 1
no directed circuit 563 ms

output is

correct

test data

set 2

directed circuit is

permitted
867 ms

output is

correct

6.2 advance ratio of initial level of nodes
In algorithm 2, when checking each incoming edge

of vertex v, if the level of start vertex (denoted by u)

is higher than that of v, then the level of u will be

advanced to L (L is the level of vertex v). After

execution of algorithm 2, we can calculate advance

ratio: the number of vertices which level are

advanced / total number of vertices. Based on the

aforementioned two test data sets, the ratios are

calculated and listed in Tab. 2.

Tab. 2 change ratio of two test data set.

 test data set description ratio

test data set 1 no directed circuit 19.25%

test data set 2 directed circuit is permitted 23.67%

Usually the ratio indicates the relation between

initial level of vertices and predecessor/successor

constraint density between vertices. If there exist

two many constraints, the ratio will possibly be high,

which means many initial levels of vertices will

have to be advanced.

7 Conclusions and future works
In this paper, we introduce a new model, LDAG, for

special workflow applications. The three cases of

level in LDAG are discussed in detail. For a

reasonable one of these cases, we propose the

topological sorting algorithm. The algorithm

consists of two phases, namely Level Adjusting and

Topological Sorting. We discuss some relevant

problems, such as choice of stack or queue, the

determination of directed circuit, complexity of the

algorithm, etc. The experiment and analysis of the

algorithm show its efficiency in grid workflow

modeling.

In the future works, we will explore the

scheduling heuristics based on LDAG for workflow

applications, such as workflow with timing

constraints. In addition, optimizing heuristics based

on LDAG, such as tradeoff between time and cost,

is also in our future research plan.

Acknowledgement
The work has been supported by China National Natural

Science Foundation (No. 50975250), Zhejiang Natural Science

Foundation of China (No. Y1100177) and Zhejiang Science &

Technology Plan of China (No. 2010C31092).

References:

[1] Foster, I. and Kesselman, C., The Grid:

Blueprint for a New Computing Infrastructure

(Second Edition). Elsevier Inc. 2004.

[2] Cao H. J., Jin H., Wu X. X., Wu S., Shi X. H.,

DAGMap: efficient and dependable scheduling

of DAG workflow job in Grid. The Journal of

Supercomputing. 2010(51): pp. 201-223.

[3] Yousra B. H. and Leila J. B:, Extended UML

activity diagram for composing Grid services

workflows. Third International Conference on

Risks and Security of Internet and

System(CRiSIS ’2008). pp. 207-212.

[4] Rafe V., Rahmani A. T., Formal Analysis of

Workflows Using UML 2.0 Activities and

Graph Transformation Systems, In: Proceeding

of 5th International Colloquium on Theoretical

Aspects of Computing (ICTAC), 2008, pp. 305-

318.

[5] Cao H. J., Jin H., Wu S., and Tao Y. C.,

PGWFT: A Petri Net Based Grid Workflow

Verification and Optimization Toolkit, In:

Proceeding of the 3rd International Conference

on Grid and Pervasive Computing(GPC), 2008,

pp. 48-58.

[6] Alt M., Hoheisel A., Pohl H. W., Gorlatch S.,

A Grid Workflow Language Using High-Level

Petri Nets. In: Proceedings of PPAM, 2005, pp.

715-722.

[7] Cormen T. H., Leiserson C. E., Rivest R. L.,

Stein C., Introduction to Algorithms (Second

Edition). The MIT Press. 2001.

[8] Gallet M., Marchal L., Vivien F., Allocating

Series of Workflows on Computing Grids, In:

Proceedings of the 14th International

Conference on Parallel and Distributed

Systems, 2008, pp. 48-55.

[9] O’Brien A., Newhouse S., Darlington J.,

Mapping of scientific workflow within the e-

Protein project to distributed resources, In:

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 187 Issue 6, Volume 10, June 2011

Proceedings of UK e-Science All Hands

Meeting, 2004, pp. 404-409.

[10] Laszweski G. V., Amin K, Hategan M.,

Zaluzec N. J., Hampto S., Rossi A., GridAnt: a

client-controllable grid workflow system, In:

Proceddings of 37th Hawaii International

Conference on System Science, 2004.

[11] Malewicz G., Foster I., Rosenberg A. L., Wilde

M. A tool for prioritizing DAGMan jobs and its

evaluation, The Journal of Grid Computing,

5(2), pp. 197-212.

[12] Kosiedowski M., Kurowski K., Mazurek C.,

Nabrzyski J., and Pukaski J., Workflow

applications in GridLab and PROGRESS

projects. The Journal of Concurrency

Computation Practice and Experience, 18(10),

p1141-1154.

[13] Saha D., Samanta A., Sarangi S. R., Theoretical

Framework for Eliminating Redundancy in

Workflows. In: IEEE International Conference

on Services Computing, 2009, pp. 41-48.

[14] Yuan Y. C., Li X. P., Wang Q., Zhu X.,

Deadline division-based heuristic for cost

optimization in workflow scheduling. The

Journal of Information Science, 2009(179), pp.

2562-2575.

[15] Tian G. Z., Yu J., He J. S., Towards critical

region reliability support for grid workflows.

The Journal of Parallel and Distributed

Computing, 2009(69), pp. 989-995.

[16] Sumit W. S., Sanjeev K. A., Song J., Melvin K.,

Simon S., Modeling and Verifying Non-DAG

Workflow for Computational Grids, IEEE

Congress on Services. 2007.

[17] You S. Y., Kim H. Y., Hwang D. H., Kim S. C.,

Task scheduling algorithm in GRID

considering heterogeneous environment. In:

Proceedings of the International Conference on

Parallel and Distributed Processing

Techniques and Applications, 2004, pp 240-

245.

[18] Dong F., Akl S. G., Scheduling algorithms for

grid computing: state of the art and open

problems, Technical Report, No. 2006-504,

School of Computing, Queens University

Kingston, Ontario.

[19] Pop F., Dobre C., Cristea V., Genetic algorithm

for DAG scheduling in Grid environments. In:

Proceedings of IEEE 5th International

Conference on Intelligent Computer

Communication and Processing, 2009, pp. 299-

305.

WSEAS TRANSACTIONS on COMPUTERS Guiping Wang, Yan Wang

ISSN: 1109-2750 188 Issue 6, Volume 10, June 2011

