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Abstract: - Grid workflow and its application are one of main focuses of Grid Computing. Due to data or 

control dependencies between tasks and the requirement of no directed circuit, Directed Acyclic Graph (DAG) 

is a natural model for Grid workflow, and has been extensively used in Grid workflow modeling. For some 

workflow applications, there may exist another requirement that each task should be accomplished at an 

expected stage, that is, at a given level. In this paper, we discuss such workflow applications in depth, and 

propose a new DAG model, which we called LDAG. In LDAG, each node possesses a level. Several cases of 

the level of nodes are discussed in detail. For a reasonable one of these cases, we propose the topological 

sorting algorithm. The algorithm consists of two phases, namely Level Adjusting and Topological Sorting. We 

discuss some relevant problems, such as choice of stack or queue, the determination of directed circuit, 

complexity of the algorithm, etc. The experiment and analysis of LDAG and topological sorting algorithm 

show its correctness and efficiency in modeling grid workflow. 
 

Key-Words: - Directed Acyclic Graph (DAG), LDAG; Grid workflow; Level; Topologic sorting; Directed 

circuit 

 

 

1 Introduction 
Grid computing [1] is considered as a cornerstone of 

next generation distributed computing that 

coordinates large-scale resource sharing and 

problem solving in dynamic, multi-institutional 

virtual organizations [2]. Based on Grid, a 

sophisticated job can be decomposed into a great 

amount of atomic tasks and accomplished with 

distributed computing resources, and thus achieve 

minimum job accomplishing time and high resource 

utilization efficiency. 

Grid workflow is defined as the orchestration of 

a set of atomic tasks processed at distributed 

resources in a well-defined order to accomplish a 

large and sophisticated goal [2]. Currently, Directed 

Acyclic Graph (DAG), and other models such as 

UML [3, 4] and Petri Net [5, 6], have been 

extensively used in scientific computational 

workflow modeling, especially in large-scale data-, 

computing - or instrumentation-intensive Grid 

applications, such as high-energy physics, 

geophysics, astronomy, medical image processing, 

and bio-informatics. 

For some workflow applications, besides data or 

control dependencies between atomic tasks, there 

may exist another requirement, expecting each 

atomic task be accomplished at an expected stage. 

For example, a large and sophisticated job needs to 

be partitioned into several stages due to computing 

resources insufficiency or inherently containing 

several stages for the job. Therefore each atomic 

task corresponds to a given stage, which we called 

Level. 

In this paper, we discuss such workflow 

applications in depth and propose a new DAG 

model, which we called LDAG. In LDAG, each task 

possesses a level. The level of a task may be 

inherent stage of the whole job or expected stage to 

be executed. Firstly we analyze several cases of the 

level of tasks. And then based on original 

topological sorting algorithm [7], we propose the 

topological sorting algorithm for a reasonable one of 
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these cases. The algorithm consists of two phases, 

namely Level Adjusting and Topological Sorting. 

The remainder of this paper is organized as 

follows. Section 2 gives an overview of related 

works. Section 3 presents the formal definitions and 

preliminaries of DAG workflow. Section 4 presents 

LDAG, a new DAG model with all vertices 

possessing a level, and discusses several cases of the 

level of vertices. In section 5, we propose the 

topological sorting algorithm for one reasonable 

case of LDAG workflow, and discuss some relevant 

problems. Experiment and analysis of LDAG model 

and the algorithm is given in section 6. Finally, we 

conclude this paper and give some future works in 

section 7. 

 

 

2 Related Work 
The applications of DAG in Grid workflow mainly 

converge in two aspects, that is, workflow modeling 

and workflow scheduling (optimizing inclusively). 

Workflow modeling is the first step before 

further workflow processing, such as scheduling and 

optimizing. Due to inter-task data or control 

dependencies between atomic tasks, and the 

requirement of no directed circuit, DAG is a natural 

model for Grid workflow, in which nodes represent 

atomic computing tasks and directed arcs or edges 

represent inter-task data or control dependencies 

between tasks. For example, in [8] the nodes of 

DAG represent the computing tasks, while the 

dependences between tasks are materialized by file: 

a task produces a file that is necessary for the 

processing of some other task. An e-Protein project 

of the London e-Science Center in [9] presents a 

complex Grid infrastructure of distributed 

computational resources with different databases 

and specialized analysis software that may not be 

deployed on every resource. A protein annotation 

workflow is given, as shown in Fig. 1. In this DAG, 

the nodes represent components of the project, while 

arcs describe the direction of data flow between 

components, that is, data dependencies between 

tasks. 
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Fig. 1  A protein annotation workflow [9] 

Based on DAG, some well-known Grid 

workflow management systems such as DAGMap 

[2], GridAnt [10], DAGMan [11], GridLab [12] and 

PROGRESS [12] have been implemented and 

applied in Globus and Condor projects. 

For DAG model optimizing, the study in [13] 

shows that a set of workflows modeled by DAG can 

be combined and compressed in order to eliminate 

redundancy in workflow and minimize computation. 

Based on DAG, some more sophisticated models 

are studied in order to meet special system 

requirements. For example, Yuan [14] studies 

workflow applications described by DAG with 

deadline constraints, and proposes an effective and 

efficient heuristic called DET. Tian [15] studies 

such workflow applications that each processing of 

a workflow needs to be finished within its deadline, 

and proposes a critical-region based scheduling 

algorithm. 

Except for DAG, UML [3, 4], Petri nets [5, 6], 

and even their combination can also be adopted in 

workflow modeling for special applications. DAG 

only contains sequence and parallel workflow 

patterns. However choice and iteration workflow 

patterns are also required in different fields of 

science such as bio-informatics, meteorology, etc. 

Therefore, a workflow specification model, which 

uses directed graphs and Petri nets, is designed in 

[16], where directed graphs are used at user-level 

and Petri nets are used as underlying workflow 

model. In [12], DAG and Petri nets based 

approaches are compared in GridLab and 

PROGRESS projects. 

DAG workflow job scheduling in a Grid 

environment determines how to map all atomic 

tasks to a bounded number of distributed computing 

resources [17]. Various workflow scheduling 

algorithms are discussed from different points of 

view, such as static vs. dynamic policies, objective 

functions, applications models, quality of service 

(QoS) constraints, strategies dealing with dynamic 

behavior of resources, and so on [15]. The studies in 

[18] give a state-of-the-art taxonomy of grid 

scheduling algorithms. Besides basic scheduling 

algorithms, such as list and group scheduling 

algorithms, some more effective and efficient 

heuristic have been studied for some special 

workflow applications, such as DAGMap [2], DET 

(Deadline Early Tree)[14], etc. 

Some more sophisticated scheduling heuristics 

that adopt more intelligent strategies are studied in 

literatures. In [19], a decentralized scheduling 

algorithm based on genetic algorithms for the 

problem of DAG scheduling is proposed. 
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Almost all the literatures about DAG and its 

applications assume grid workflow being a DAG, 

and discuss such issues as workflow scheduling and 

optimizing based on this assumption. Few literatures 

work on how to model the workflow and determine 

whether the model is a DAG. 

 

 

3 Model and Preliminaries 
To illustrate workflow job modeling problem clearly, 

we present the formal definitions for DAG 

workflow job and topological sorting in this section. 

 

3.1 DAG Grid Workflow 
Definition 1(DAG Grid Workflow)[2]: A DAG 

Grid workflow job can be represented by a directed 

acyclic graph G(T, E), where T = { t1, t2, …, tN } is 

the collection of atomic tasks (N is the total number 

of tasks), and E is the collection of arcs or edges 

indicating the dependency and precedence 

constraint between tasks. 

For example, in the DAG shown in Fig. 2(a), T = 

{A, B, C, D, E}, E = {<A, B>, <A, C>, <A, D>, <B, 

C>, <B, E>, <C, E>, <D, E>}. 

(a)

D

B

A E

(b)

D

B

A EC C

 
Fig. 2  Two workflow models 

Definition 2(job, workflow, vertex, node, task, 

atomic task, activity): In this paper, job and 

workflow mean the whole workflow job. The latter 

5 terms are synonyms, which mean atomic task in 

workflow job. 

Based on grid, a workflow job can be 

decomposed into a great amount of atomic tasks and 

accomplished with distributed computing resources. 

The workflow job shown in Fig. 2(a) is 

decomposed into 4 atomic tasks, that is, A, B, C, D 

and E. 

Definition 3(edge, arc): The directed edge<u, 

v> (from u to v)∈ E in a DAG may represent data or 

control dependencies between task u and v. 

For example, the execution of task v requires 

data or file produced by that of task u. It can also 

represent precedence constraint between task u and 

v, that is, task u should be executed before task v. 

Definition 4(start vertex, end vertex): In a 

DAG, if <u, v>∈ E, then we call vertex u is the start 

vertex of edge <u, v>, while vertex v is the end 

vertex of edge <u, v>. 

Definition 5(predecessor and successor): In a 

DAG, if <u, v>∈ E, then the task u is the direct 

predecessor of task v, and task v is the direct 

successor of task u. If there exists a path from task u 

to task v, that is, <u, u1, u2, …, un, v>, then the task 

u is the predecessor of task v, and task v is the 

successor of task u. 

For example, in a DAG shown in Fig. 2(a), E has 

3 direct predecessors, that is, B, C, and D. A has no 

direct predecessor. A is a predecessor of E. B has 2 

direct successor, that is, C and E, while E has no 

direct successor, etc. 

Notice that, a task can start to be executed only 

that all of its predecessor tasks have been 

accomplished. Similarly, only after the execution of 

a task, all of its successor tasks can start to be 

executed. 

Definition 6(entry task and exit task): In a 

given DAG graph, a task without any predecessors 

is called an entry task, and a task without any 

successors is an exit task. 

For example, in a DAG shown in Fig. 2(a), A is 

an entry task, and E is an exit task. 

Entry tasks are entries of the whole workflow job, 

and exit tasks are exits of the whole workflow job. 

Definition 7(dummy node): If there is more 

than one entry/exit task, a dummy entry/exit task 

can be added. At the same time, the dummy entry 

task should be connected to each original entry task 

with edges. Similarly, each original exit task should 

be connected to the dummy exit task with edges. 

This can ensure that there are only one single-entry 

task (denoted as tentry) and one single-exit task 

(denoted as texit) in a DAG workflow job. 

For example, in Fig. 1, there are 4 entry tasks 

and 1 exit task, so we add a dummy entry task 

(numbered as 1), as shown in Fig. 3. The added 

edges are denoted as dashed lines. Attention: in Fig. 

3, except for the dummy entry task, the i-th task 

corresponds to the (i-1)th task in Fig. 1. 
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Fig. 3  DAG model of the workflow application 

sample in Fig 1. 

 

3.2 Topological sorting 
After modeling a workflow into a DAG, the 

foremost job is to judge whether there exists a 
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directed circuit, that is, whether the DAG is 

reasonable. 

Definition 8(directed circuit): In a given DAG 

graph, if a directed path, <u, u1, u2, …, un, v>, 

starts from and ends in a same vertex, that is, u = v, 

then we call this path a directed circuit. 

A DAG is an unreasonable one if there exists a 

directed circuit, which means one task is a 

predecessor of itself. If there exists a circuit in a 

DAG workflow, then it cannot be scheduled and 

executed in Grid environment. 

For example, in Fig. 2(b), A is the predecessor of 

D, D is the predecessor of C, C is the predecessor of 

A, and then we get a conclusion that A is the 

predecessor of A, which is not reasonable. 

The method of determining directed circuit in a 

DAG is to construct its topological sorting sequence 

(topological sequence for short). 

Definition 9(topological sequence): A 

topological sequence of a DAG is a linear ordered 

sequence of all vertices that satisfy all the 

predecessor and successor relations in the DAG. 

Definition 10(topological sorting): The 

topological sorting operation of a DAG is to arrange 

all vertices into a linear ordered sequence and 

satisfy all the precedence relations. 

For example, one of the topological sorting 

sequences of Fig. 2(a) is ADBCE, which satisfies 

the condition that an arc always leads form an 

anterior node to a posterior node. Another 

topological sequence is ABCDE, while ACBDE is 

not a topological sequence because the precedence 

relation of <B, C> is not satisfied in this sequence. 

The original topological sorting algorithm 

described in section 5.1 can solve topological 

sorting problem for a DAG. 

 

 

4 LDAG: each vertex possessing a 

level 
 

4.1 Level 
For some real workflow applications, besides data 

or control dependencies between tasks, there may 

exist another requirement, expecting each task be 

accomplished at an expected stage. For example, 

due to computing resources insufficiency, a large 

job and sophisticated has to be executed in several 

stages. Or the job inherently contains several stages. 

In such cases, the workflow has to be partitioned 

into several stages, and each task corresponds to a 

given stage, that is, Level. 

Definition 11(Level): In some workflows, each 

vertex possesses a weight, which we called Level. 

Level can be the expected stage for each task. 

Definition 12(LDAG): In a given DAG, if each 

vertex possesses a Level, the model is called LDAG 

in this paper. 

For example, A LDAG is shown in Fig. 4, the 

number beside each vertex represents its Level, that 

is, the expected stage for each task. 

C D

F

B E

A1
3 2

3

2 3

 
Fig. 4  A LDAG model. 

LDAG can be widely used in grid workflow 

modeling. Consequently, it is important to study this 

DAG model and relevant problems, such as 

topological sorting, scheduling and optimizing. In 

this paper, we focus on the first problem, that is, 

topological sorting of a LADG. 

 

4.2 Several cases of the level of nodes 
There are 3 cases for Level of nodes in LDAG, 

which listed as follows. 

1) The level of each vertex is fixed, that is, the 

stage of each task cannot be advanced and 

postponed. 

2) Due to computing resources and other reasons, 

the stages of all vertices are usually expected to be 

postponed as much as possible under permitting 

conditions; that is, each task has an expected stage, 

and the stage can be delayed, but cannot be 

advanced. 

3) Due to the delivery of each task and the time 

minimization of the whole job, advance of stage is 

allowed, but postponement is prohibited. That is, 

each task has an expected stage, and the stage can 

be advanced but cannot be postponed. At the same 

time, due to computing resources and other reasons, 

it is expected that the stage of each task will not be 

advanced under unnecessary situation. 

In addition, it is necessary to explain that, in the 

same stage, several tasks can be arranged in despite 

of their precedence constraint. These tasks will be 

arranged according to their precedence constraint 

relations. 

For the first case, even if there does not exist a 

directed circuit in a given DAG, it may be 

impossible to schedule the workflow. For example, 

in Fig. 4, task C must be executed in stage 3, while 

task D must be executed in stage 2. It is obviously 

impossible because that task C is a predecessor of 

task D, and should be executed before the 

accomplishment of task D. 
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For the second case, since it is always possible to 

postpone all tasks to the last stage, it is meaningless 

to study this case. For example, in Fig. 4, if the 

stage of a task can be postpone arbitrarily, all the 

tasks can be postponed to stage 3 (all the tasks will 

be executed in turn according to the topological 

sorting order). 

For the third case, it is required that all tasks be 

executed before the given stage of a task (including 

the given stage). For example, in Fig. 4, the level of 

task D is 2, which means task D must be executed 

before stage 2 inclusively. At the same time, due to 

computing resources and other reasons, it is 

expected that all tasks will not be advanced as much 

as possible. The problem now is how to arrange 

execution order of all tasks. The order should satisfy 

not only precedence relations between tasks, but 

also level constraints, that is, all tasks should be 

executed before the given stage (inclusively). 

Because of the precedence constraints between 

tasks, not all the tasks can be executed in its given 

stages. For example, in Fig. 4, task D can be 

executed in stage 2, but task C cannot be executed 

in stage 3. The reason is that task C is the 

predecessor of task D and precedent to D. Thus task 

C has to be advanced to stage 2, that is, its level has 

to be advanced to level 2. Note that, task C and D 

can be arranged in the same stage, and the execution 

of task C is precedent to that of task D. 

For the last case of LDAG, we propose a 

topological sorting algorithm, which can be used to 

judge which tasks will be executed in each stage and 

the execution order of tasks in each stage. 

 

 

5 Topological Sorting Algorithm for 

LDAG 
 

5.1 Original Topological Sorting Algorithm 

for DAG 
For the convenience of discussion, we need to 

introduce another several concepts. 

Definition 13(incoming arc, outgoing arc, 

indegree, outdegree): Incoming arc of vertex u is 

an arc from another vertex to u. Outgoing arc of 

vertex u is an arc from u to another vertex. The 

indegree of vertex u is the number of incoming arcs 

of u. The outdegree of vertex u is the number of 

outgoing arcs of u. 

Definition 14(zero-indegree vertex): If the 

indegree of vertex u is zero, then we call u a zero-

indegree vertex. A zero-indegree vertex is the one 

that has no predecessor. 

For example, the only one zero-indegree vertex 

in Fig. 5(a) is A initially. In the process of 

topological sorting, along with the operation of 

deleting outgoing edges of a zero-indegree vetex, 

more zero-indegree vertices will come into being. 

When topologically sorting a DAG, it is 

necessary to establish a stack S to store zero-

indegree vertices. The stack can be replaced by a 

queue, the detail discussion can be found in section 

5.3. 

The original topological sorting algorithm can be 

found in [7]. The algorithm consists of three parts: 

initialization (lines 1-2), topological sorting process 

(lines 3-12), directed circuit determination (lines 13-

14). 

The initialization process includes establishing a 

stack (line 1) and pushing each zero-indegree vertex 

into S (line 2). 

The topological sorting process is a loop 

procedure. The loop condition is that S is not empty 

(line 3). At each round, pop top vertex (denoted by u) 

out of S (line 4) and output it (line 5) firstly. Then 

check and delete each outgoing edge of u (lines 6-

11). When checking an outing edge, the indegree of 

the end vertex (denoted by v) minus 1 (line 7). If the 

indegree of v drops to zero (line 8), push v into S 

(line 9). After checking, delete the outing edge (line 

10). 

In the last process, if the number of vertices 

having been output is less than n, then a circuit is 

determined. Otherwise, the DAG is reasonable. 

Algorithm 1(original topological sorting 

algorithm): 

1. establish stack S for zero-indegree vertices; 

2. push each zero-indegree vertex into S; 

3. while( S is not empty ) 

4.   pop u(top vertex) out of S; 
5.   ouput u; 
6.   for( each outgoing edge of u ) 
7.     the indegree of v (end vertex) minus 1; 
8.     if( the indegree of v equals to zero) 
9.       push v into S; 
10.     delete the outgoing edge; 
11.   end for 
12. end while 

13. if( the number of vertices having been output<n) 

14.   report: there exist circuit(s) in DAG 
For example, the topological sorting process of 

the DAG in Fig. 5(a) is listed as follows. 1) push A 

into S; 2) pop A out of S, and delete its outgoing 

edges, push B and D into S in turn; 3) pop D out of 

S, and delete its outgoing edge; 4) pop B out of S, 

and delete its outgoing edge, push C into S; 5) pop 
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C out of S, and delete its outgoing edge, push E into 

S; 6) pop E out of S. 

After topological sorting, we get a vertex 

sequence, A→ D→ B→ C→ E, as shown in Fig. 5(b). 

In Fig. 5(b), all the predecessor/successor 

relations (denoted by real line) have been reserved. 

In addition, from vertex D to vertex B, a 

predecessor/successor relation is added artificially, 

as shown a dashed line in Fig. 5(b). 

Undoubtedly, there may exist more than one 

topological sorting sequence in a DAG. For example, 

another two topological sorting sequences of the 

DAG in Fig. 5(a) are A→ B→ C→ D→ E and A→ B

→ D→ C→ E. 

(a)

D

B

A E A D B C

(b)

C E

 
Fig. 5  Topological sorting example 

In algorithm 1, if there are some vertices having 

not been output after topological sorting process 

(the S is empty, that is, there is no zero-in-degree 

vertex), then we can report there exist circuit(s) in 

the DAG. 

 

5.2 Topological Sorting Algorithm for 

LDAG 
For the topological sorting process of the third case 

of LDAG, the critical step is that, when checking 

the incoming edges (can be denoted by <u, v>) of 

each vertex v, if the level of start vertex (denoted by 

u) is higher than that of end vertex (that is, vertex v), 

then it is necessary to advance the level of u to L (L 

is the level of vertex v). It means that the task 

corresponding to vertex u has to be advanced to 

stage L. The reason is that, u is a predecessor of v, 

and u should be executed before v. 

When checking the vertices of level L, a queue Q 

is used to store these vertices. (The queue Q can be 

replaced by a stack. Its detail discussion can be 

found in section 5.3.) When topologically sorting 

the vertices of level L, a stack S is used to store the 

zero-indegree vertices. (The stack S can also be 

replaced by a queue, its detail discussion can also be 

found in section 5.3.) 

The main thread of topological sorting algorithm 

for a LDAG is to check each level from lower to 

higher. The checking process for level L consists of 

two phases: Level Adjusting and Topological 

Sorting. 

The concrete checking process for level L is 

listed below. 

(1) Level Adjusting (lines 2-17): Find out all the 

vertices should be executed in level L, including the 

vertices whose initial level is L, and the vertices 

whose level are advanced to L. The method is listed 

as follows. 

a) For each vertex (denoted by u) whose initial 

level is L, push it into Q (line 4). If the indegree of u 

is zero (line 5), push u into S at the same time (line 

6). 

b) Check each vertex (denoted by v) in the queue 

Q (lines 8-17). It is a while-loop procedure. In each 

round, pop top vertex (that is, v) out of Q (line 9), 

and check each incoming arc of v, if the level of 

start vertex (denoted by w) is higher than L, then 

advance the level of w to L (line 12), and push w 

into Q (line 13). If the indegree of w is zero (line 

14), push w into S at the same time (line 15). 

Note that, if the level of w is lower than L, it 

means that w has been processed in a lower level 

and does not need to be considered in level L. 

The reason of pushing w into Q is that it is 

necessary to check each predecessor (denoted by x) 

of w. And if the level of x is higher than L, it also 

needs to be advanced to L. 

(2) Topological Sorting (lines 18-19): 

Topologically sort all the vertices of level L by 

virtue of stack S using algorithm 1 (section 5.1). 

For all the levels in ascending order, invoke the 

checking process (Level Adjusting and Topological 

Sorting), until all vertices have been output, or a 

circuit is determined (its detail discussion can be 

found in section 5.3). 

The pseudocode of topological sorting algorithm 

for LDAG is listed below. 

Algorithm 2(topological sorting algorithm: 

LDAG): 

1. for( each level in ascending order ) 

2.   //Level Adjusting 
3.   for( vertex u which initial level is L ) //a) 

4.     push u into Q; 
5.     if( indegree of u is zero ) 
6.       push u into S; 
7.   end for 
8.   while( Q is not empty)  //b) 

9.     pop v (top vertex) out of Q; 
10.     for( each incoming arc of v ) 
11.       if( the level of w (start vertex) > L ) 
12.         advance level of w to L; 
13.         push w into Q; 
14.         if( indegree of w is zero ) 
15.           push w into S; 
16.     end for 
17.   end while 
18.   //Topological Sorting 
19.   Topological sort all vertices of level L; 
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20. end for 

In addition, if the levels of vertices do not start 

from 1, or the levels of vertices are not continuous, 

an array is needed to store all the levels in ascending 

order. The total topological sorting process will be 

executed according to the levels stored in the array. 

For example, a LDAG is shown in Fig. 6. It 

consists of 8 atomic tasks and 12 pairs of 

predecessor/successor relations. The topological 

sorting process is listed as follows. 

(1) Firstly, check the vertices of level 1. 

1) Push vertex A and G into queue Q. At the 

same time, push A into stack S. 

2) Pop A out of queue Q. Because A has no 

incoming arc, there is no further process for A. Pop 

G out of queue Q. When checking incoming arcs of 

G, the levels of vertex D and F are advanced to 1, 

and push into queue Q in turn. 

3) Pop D out of queue Q. Pop F out of queue Q, 

advance the level of vertex C to 1, push C into 

queue Q. 

4) Pop C out of queue Q. 

5) Now there is only one vertex, that is, A, in 

stack S. But by virtue of stack S, C, D, F and G will 

be pushed into and popped out of stack in turn. 

Thus the resulting topological sequence of level 

1 is A→ C→ D→ F→ G. 

(2) When checking the vertices of level 2, vertex 

E is push into queue Q. Pop E out of queue Q, and 

push B into queue Q. After topological sorting, we 

get a sequence of level 2, that is, B→ E. 

(3) Check the vertices of level 3, and get the 

resulting topological sequence, that is, H. 

Therefore, after topological sorting the LDAG in 

Fig. 6, the tasks that need to be executed in each 

level are listed below. 

Level 1: A→ C→ D→ F→ G; 

Level 2: B→ E; 

Level 3: H. 

At each level, all tasks will be executed 

according to their topological sorting orders listed 

above. 

C

GD

F H

B E

A1

3 2

2

1

3

3 2

 
Fig. 6  A topological sorting sample of LDAG. 

 

5.3 Further discussion of Algorithm 2 and 

complexity analysis 

 

A. Choice of stack or queue 

The difference between queue and stack lies in 

the pop sequence of vertices in queue (or stack). 

Queue is FIFO (First In and First Out), and stack is 

LIFO (Last In First Out). Therefore, the adoption of 

a queue or a stack during the implementation 

process of an algorithm is determined by whether 

this pop sequence will affect the correctness of the 

algorithm. The discussion of choice of queue or 

stack in algorithm 1 and 2 is listed below. 

Algorithm 1: During the implementation process 

of the algorithm, if there exist more than one zero-

indegree vertex, which vertex should be deleted first 

does not affect the correctness of the algorithm. 

Therefore, in algorithm 1, the stack S can be 

replaced by a queue Q to store zero-indegree 

vertices. 

Algorithm 2: When finding out all the vertices of 

level L, which vertex (and its all incoming arcs) 

should be checked first does not affect the 

correctness of the algorithm. Therefore, the queue Q 

can be replaced by a stack S to store vertices of 

level L. In addition, the stack S in algorithm 2 can 

also be replaced by a queue Q, the reason is same to 

that of Algorithm 1. 

 

B. Determination of directed circuit 

In topological sorting algorithm for a LDAG, the 

determination of directed circuit(s) can be 

implemented by the method in algorithm 1. The 

method can be concreted as: in the step (2), if the 

number of vertices having been output is less than 

the number of vertices of level L, then the directed 

circuit(s) is determined. The algorithm also does not 

need to perform any longer. 

For example, there is a directed circuit in a 

LDAG shown in Fig. 7. The topological sorting 

process of is listed below. 

(1) Firstly, output the only one vertex of level 1, 

that is, vertex A. 

(2) Then find out all the vertices of level 2, that 

is, B, D, C and E (note: the levels of latter two 

vertices are advanced to 2). However, after 

outputting vertex E, there is no zero-indegree vertex 

in S. Therefore, a directed circuit can be determined. 

In this example, the directed circuit is: B→ C→ D→
B. Thus, the algorithm’s execution can be 

terminated. 
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Fig. 7  A LDAG consists of a directed circuit. 

 

C. Complexity analysis of the algorithm 2 

Before analysis, we make an assumption that 

there are n vertices, m directed edges, and L levels 

initially in a LDAG. 

Time complexity: During the topological sorting 

process in algorithm 2, each vertex is pushed into 

queue Q one time, and popped out of Q one time. 

Similarly, each vertex is pushed into and popped out 

of stack S only one time. Therefore, the processing 

time required for queue Q and stack S is O(2n). 

When checking the incoming arcs of each vertex, 

each incoming arc is scanned one time. When 

outputting a vertex, each outgoing arc will be 

deleted. Therefore, the processing time required for 

processing the incoming and outgoing arcs is O(2m). 

Consequently, the total time complexity of 

algorithm 2 is O(2n +2 m). 

Space complexity: When implementing algorithm 

2, adjacency list is used to store a LDAG. Moreover, 

incoming arc list and outgoing arc list should be 

comprised at the same time. The required storage 

space is O(2n +2m). In addition; the indegree of 

each vertex should be stored, the required space is 

O(n). When implementing topological sort 

algorithm 2, in the worst case, the levels of all 

vertices are same, the required storage for queue Q 

to store all the vertices is O(n). And the storage for 

stack S is not more than O(n). In addition, the 

storage for L levels is O(L). Consequently, the total 

space complexity of algorithm 2 is O(5n +2m + L). 

 

 

6 experiment and analysis 
In this section, we will analyze algorithm 2 from 

two aspects: verifying correctness of the algorithm, 

and analyzing advance ratio of initial level of nodes 

during execution of the algorithm. 

 

6.1 verifying correctness of the algorithm 
The verification work can be concreted as: inputting 

a LDAG, and outputting the vertices of each level 

ultimately. When the vertices are output, they 

should be listed according to their topological order. 

If there exists a circuit, then output "directed circuits 

exist". 

A test data set containing 10,000 random test 

data are generated in the verifying work. The format 

of each test data consists of three parts. The first 

part is three integers in one line, N, L and M. 5≤ N

≤ 26, 1≤ L≤ 10, 1≤ M≤ N*(N-1)/2, M ensures the 

ground graph of the LDAG is connected. These 

three integers mean the number of vertices, the 

number of levels (level is 1~L), the number of 

predecessor/successor constraints respectively. The 

N vertices are represented with anterior N uppercase 

letters in alphabet. Their sequence number are 1~N. 

The second part is N integers in one line. The i-th 

integers Li represents the initial level of the i-th 

vertex, 1≤ Li≤ L. The third part contains M lines, 

which describe M pairs of predecessor/successor 

constraints. Each line contains two uppercase letters 

(The range of each uppercase letter is within 

anterior N uppercase letters in alphabet. They are 

denoted by A and B here), which means vertex A is 

predecessor of vertex B. 

For example, the LDAG shown in Fig. 6 can be 

formatted as: 8 3 12; 1 3 3 2 2 2 1 3; AB; AC; AD; 

BE; CE; CF; DF; DG; EH; FG; FH; GH. Each 

component before a semicolon corresponds a line. 

The specification of output content is listed as 

follows. For each test data, output L lines, with the 

i-th line representing vertices of i-th level. In the i-th 

line, firstly output the number of i, indicating the i-

th level. A space, a colon and a space are followed. 

Then if there is no vertex in the i-th level, output 0, 

otherwise output topological order of vertices in the 

i-th level. 

For the test data shown in Fig. 6, one correct 

output should be:  

1: ACDFG 

2: BE 

3: H 

Notice that, the solution of each test data may be 

not unique. Therefore a special judge program is 

written to verify the correctness of the output. We 

use two methods when judging whether the vertices 

sequence of each level is in a topological order. We 

can conclude the output is right only on the 

condition that both methods judging the vertices 

sequence are in a topological order. 

These 2 methods are listed as follows. 

(1) Note the location of each letter in the vertices 

sequence of each level, and store the locations in a 

POS array (POS[1] represents the location of letter 

A, POS[1] represents that of letter B, …). Then 

judge each direct arc in LDAG whether the location 

of start vertex is before that of end vertex. As long 

as there exists one directed arc not satisfying the 

condition, we can conclude the vertices sequence is 

not in a topological order. 

(2) A double loop is used to determine whether a 

wrong predecessor/successor constraint can be 

found in the adjacency matrix of a LDAG. The 

wrong constraint can be represented with <j, i>, 

where i represents the i-th letter in the vertices 
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sequence of each level, and j represents each latter 

letter of i. If there exists one wrong constraint, we 

can conclude the vertices sequence is not in a 

topological order similarly. 

When generating a test data set, we can choose 

whether there exists directed circuit in a LDAG, and 

get two test data sets. Each data set contains 10,000 

random test data. The test result of each data set is 

listed in Tab. 1, which shows the correctness and 

high efficiency of algorithm 2. The configuration of 

the test machine is: Intel Core2 Duo CPU, 2.26GHz; 

3G memory. 

Tab. 1  Test result of algorithm 2. 

 test data set description run time result 

test data 

set 1 
no directed circuit 563 ms 

output is 

correct 

test data 

set 2 

directed circuit is 

permitted 
867 ms 

output is 

correct 

 

6.2 advance ratio of initial level of nodes 
In algorithm 2, when checking each incoming edge 

of vertex v, if the level of start vertex (denoted by u) 

is higher than that of v, then the level of u will be 

advanced to L (L is the level of vertex v). After 

execution of algorithm 2, we can calculate advance 

ratio: the number of vertices which level are 

advanced / total number of vertices. Based on the 

aforementioned two test data sets, the ratios are 

calculated and listed in Tab. 2. 

Tab. 2  change ratio of two test data set. 

 test data set description ratio 

test data set 1 no directed circuit 19.25% 

test data set 2 directed circuit is permitted 23.67% 

Usually the ratio indicates the relation between 

initial level of vertices and predecessor/successor 

constraint density between vertices. If there exist 

two many constraints, the ratio will possibly be high, 

which means many initial levels of vertices will 

have to be advanced. 

 

7 Conclusions and future works 
In this paper, we introduce a new model, LDAG, for 

special workflow applications. The three cases of 

level in LDAG are discussed in detail. For a 

reasonable one of these cases, we propose the 

topological sorting algorithm. The algorithm 

consists of two phases, namely Level Adjusting and 

Topological Sorting. We discuss some relevant 

problems, such as choice of stack or queue, the 

determination of directed circuit, complexity of the 

algorithm, etc. The experiment and analysis of the 

algorithm show its efficiency in grid workflow 

modeling. 

In the future works, we will explore the 

scheduling heuristics based on LDAG for workflow 

applications, such as workflow with timing 

constraints. In addition, optimizing heuristics based 

on LDAG, such as tradeoff between time and cost, 

is also in our future research plan. 
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