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Abstract: - The asynchronous circuit style is based on micropipelines, a style used to develop asynchronous 
microprocessors at Manchester University. This paper has presented some engineering work on developing a 
micropipeline Stump processor. The work presented in this paper demonstrates that VHDL can be used to 
describe the behaviour of micropipelined systems. It also shows a comparison of 2-phase and 4-phase 
implementations in transistor count, speed, and energy. Though the nature of the work is mainly engineering, 
there are some significant new insights gained in the course of the work. The 2-phase circuits have good 
performance in speed. This is due to the rising and falling transitions of the 4-phase circuits following the same 
routes. Asymmetric delays with fast reset circuit can be applied to improve the performance. The fastest speed is 
1.55 MIPS for the two-phase synthesized processor and the lowest power consumption is 362.33 fj for the 
synthesized four-phase long hold processor. 
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1 Introduction 
The design of asynchronous circuits is more difficult 
than that of synchronous circuits. Hazards must be 
removed from the circuits to ensure that there are no 
unexpected transitions. Well structured asynchronous 
design styles such as micropipelines reduce the 
difficulty. Event-driven logic modules may be 
designed by electronic experts. Then designers with 
less experience can easily build micropipelined 
circuits using such modules. An automatic synthesis 
tool is available [1][4]. It converts the behavioural 
VHDL into structural VHDL and Verilog based on 
micropipelines had been published [1][7][11][14][15]. 
2-phase and 4-phase VHDL models of event-drive 
logic modules and standard logic function elements 
were created. 

In this paper we demonstrate the design of an 
asynchronous processor using the sytnthesizer and 
evaluate the experimental results. We also discuss the 
return to zero problems for the 4-phase designs. An 
optimization method is applied to improve the performance 
of the synthesized processors. 

Section 2 introduces some asynchronous design 
techniques. Section 3 briefly describes nicropipelines and  

introduces 2-phase and 4-phase event-driven Logic 
modules. The Stump processor design will be presented in 
Section 4. Section 5 will present experimental results. 
Section 6 will discuss the return to zero problems. Section 7 
will demonstrate an optimization method. Finally, Section 
8 will give a short conclusion. 
 
 

2 Asynchronous design 
Asynchronous design has potential advantages over 
synchronous design [8][9][10], such as no clock skew 
problem, low power, average case performance and 
good Electro-Magnetic Compatibility (EMC). The 
benefits may be most apparent in mobile 
communication applications and other portable 
systems which use advanced VLSI technologies.  

Asynchronous logic circuits have several 
important advantages over their counterparts in 
clocked logic. An asynchronous logic function is 
potentially faster because it works at the average-case 
delay rather than the worst-case delay. There is no 
global clock on asynchronous circuits so they will not 
unnecessarily dissipate power when there is no useful 
work to do. Asynchronous logic has the potential for 
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low power [5]. Asynchronous logic may be used to 
implement systems with lower power dissipation. 
 
 

3  Micropipelines 
The design of asynchronous circuits generally follows 
a modular approach, where a system is designed as an 
interconnection of modules. In the 1988 Turing 
Award Lecture, Sutherland expounded a modular 
approach to building hardware systems based on 
data-driven asynchronous self-timed logic elements 
called micropipelines [6].  In the 4-phase handshaking 
protocol, only rising transitions or only falling 
transitions of either control wire have the meaning; 
they represent request events or acknowledge events.  
 
 

 
 

Fig. 1. 4-phase bundled data convention 
 
 

In this signalling scheme, the operating cycle is (1) 
data available (2) change request to active state, (3) 
change acknowledge to active state, (4) return request 
to inactive state, and (5) return acknowledge to 
inactive state. If the active state is logic “1” the the 
operating cycle is (1) data available (2) request+, (3) 
acknowledge+, (4) request-, and (5)  acknowledge-. 
Fig. 1 illustrates two kinds of four phase signalling, 
the ‘early’ mode and the ‘broad’ mode [2]. The 
‘early’ mode (Fig. 1(a)) uses the rising edge of the 
Request line to indicate ‘data available’ and the 

rising edge of the Acknowledge line to indicate ‘data 
latched’. The falling edges are return to zero actions 
that carry no meaning. The ‘broad’ mode (Fig. 1(b)) 
uses the rising edge of the Request line to indicate 
‘data available’ and the falling edge of the 
Acknowledge line to indicate ‘data latched’. Another 
possible protocol is ‘late’ mode which uses the falling 
edges as active. 
 

Various event-driven logic modules for 
controlling transition signals are shown in Fig. 2. 
They were devised for composing to 2-phase control 
circuits. Muller C-elements and XOR gates are the 
same whether they are used in 2- or 4-phase designs. 
However, 4-phase Toggle, Select, Call and Arbiter 
modules are different from their 2-phase counterparts. 

 
A Toggle is used to alternately deliver events on 

its input to one of two outputs. In the 2-phase protocol 
each transition denotes an event. Therefore, the odd 
number transitions on the input of a Toggle will be 
sent to the dotted output and the even number 
transitions on the input of a Toggle will be sent to the 
non-dotted output. In the 4-phase protocol each event 
consists of a rising transition and a falling transition. 
A rising transition and the following falling transition 
must be sent to the same output. Therefore, the odd 
number rising and falling transitions on the input of a 
Toggle will be sent to the dotted output and the even 
number rising and falling transitions on the input of a 
Toggle will be sent to the non-dotted output. 
 
 

 
 

Fig. 2. Various event-driven logic modules. 
 
 

Furber and Day developed four kinds of 4-phase 
latch control circuits. They are the simple, 
semi-decoupled, fully decoupled and long hold 
4-phase latch control circuits [3][11]. They use the 
4-phase bundled data convention. 
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4  Stump processor 
A simple processor example, Stump [12] is a 16-bit 
mini-risc processor which has 8 registers and a 4-bit 
condition code register. R0 is always zero and can be 
used as a source operand allowing Move instructions 
to be synthesized from an Add instruction. R0 may be 
written to, but the result is always discarded allowing 
Compare instruction to be synthesized from 
Subtract instructions. R7 is the program counter. The 
4-bit condition code register contains Sign Flag(N), 
Zero Flag(Z), Overflow Flag(V)  and Carry-Out 
Flag(C) shown in Table 1. 
 
 

Table 1 The Condition code  
Bit 3 Bit 2 Bit 1 Bit 0 

Sign Flag 
(N) 

Zero Flag 
(Z) 

Overflow Flag 
 (V) 

Carry-Out Flag 
(C) 

 
 

The condition code register is updated to reflect 
the result of the ALU operation when arithmetic and 
logical instructions are executed. The condition code 
register is not changed for Load, Store, and Branch 
instructions. The instruction set and its 3 formats are 
shown as Tables 2, 3, 4 and 5. 
 
 

Table 2 Instruction set 
Opcode Instruction Explanation 
000 ADD 2's complement addition 
001 ADC 2's complement addition with carry-in
010 SUB 2's complement subtract 
011 SBC 2's complement subtract with borrow
100 AND Bitwise AND of two 16-bit words 
101 OR Bitwise OR of two 16-bit words 

110 LD/ST 
Load Reg. from memory or Store Reg. 
to memory 

111 Bcc Branch if condition cc is satisfied 
 
 

Table 3 Instruction format:  
Type 1: 2 Source registers 

 
 
 

Table 4 Instruction format:  
Type 2: 1 Source register, 1 immediate value 

 
 

 
Table 5 Instruction format:  
Type 3: Conditional Branch 

 
 
 

Table 6 shows shift operations. Table 7 shows 
conditional branch instructions. The behavioural 
VHDL description can be used to describe the 
asynchronous operation of the processor. The 
following programs are used to test how the 
model works. 
 
 

Table 6 Shift operations 

Operation
Instr 
Bit 1 

Instr 
Bit 0 

SRC A, 
bit 15:= 

Carry-out:= 

No shift 0 0 A15 0 
ASR 0 1 A15 A0 
ROR 1 0 A0 A0 
RRC 1 1 C in A0 

 

 

Table 7 Conditional Branch Instructions 

Mnemonic
Bits 
11:8

Condition Explanation 

BAL 0000 Always 
 

BNV 0001 Never 
 

BHI 0010 C + Z = 0 

BLS 0011 C + Z = 1 

comparison: 
unsigned 
arithmetic 

BCC 0100 C = 0 

BCS 0101 C = 1 

overflow test:
unsigned 
arithmetic 

BNE 0110 Z = 0 

BEQ 0111 Z = 1 
zero test 

BVC 1000 V = 0 

BVS 1001 V = 1 

overflow test:
signed 
arithmetic 

BPL 1010 N = 0 

BMI 1011 N = 1 

BGE 1100 N ♁ V = 0 

BLT 1101 N ♁ V = 1 

BGT 1110 (N ♁ V)+ Z = 0 

BLE 1111 (N ♁ V)+ Z = 1 

comparison:
signed 
arithmetic 
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                    LD  R4,  0020H 
                    LD  R1,  ( 0021H ) 
                    LD  R2,  ( 0022H ) 
                    ADD  R3,  R1,  R2 
                    LD  ( 0023H ),  R3 
     LOOP:   BAL LOOP 
      

(A) 
 
 
     LOOP:   LD  R4,  0020H 
                     LD  R1,  ( 0021H ) 
                     LD  R2,  ( 0022H ) 
                     ADD  R3,  R1,  R2 
                     LD  ( 0023H ),   R3 
                     BAL  LOOP 
      
                              (B) 

 
 
A test program which contains the machine code of 
the above program (A) and some initial memory data 
and the behavioural memory model for the program 
simulation. The simulation result of the behavioural 
asynchronous Stump description is shown in Fig. 3. 
 

 
 

Fig. 3 The waveform of the simulation of a 
behavioural 2-phase Stump processor 

 
 

The synthesizer read the behavioural VHDL 
description and generated two-phase and 4-phase 
Stump processor circuits. The synthesized two-phase 
structural Stump processor is shown in Fig. 4. When 
the test program was used to simulate the synthesized 
two-phase structural Stump processor the correct 
result was obtained. Different 4-phase latch control 
circuits were used to generate various 4-phase 
implementations of the Stump processor from the 
same description. Two changes are required for the 
4-phase implementations.  

 
The first one is for the start circuit of the processor. 

This is shown in Fig. 5. Because a rising transition and 
a falling transition have to flow into the r1 input of the 
Call module at the top of the circuit in Fig. 4, an XOR 
and a two-phase Toggle are required to enable the 
rising transition of Reset to pass through the XOR and 
into the Call module. Then a corresponding rising 

transition is sent to the Rin of the stage labelled ss4. 
After the ss4 stage holds data the stage sends a rising 
transition to the d input of the Call module. 
Immediately there is a rising transition on the output 
labelled d1. 
 
 

 
 
Fig. 4 A two-phase structural Stump processor 
 
 
 

This rising transition goes through the Toggle and 
shows on its dotted output. Then the rising transition 
goes through the XOR and becomes a falling 
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transition. This falling transition goes through the ss4 
stage and appears on the output labelled d1. Then the 
falling transition flows into the Toggle. A rising 
transition is present on the non-dotted output. This 
rising transition is used as a control signal of the 
multiplexer inside ss4 stage, which is used to switch 
the latches connected to the initial values or the 
connections from the stage labelled ss16. The 
non-dotted output of the Toggle will remain at logic 
Hi except when Reset goes Lo. 
 

The second change is to remove the XOR whose 
inputs are connected to the signals labelled r2 and d2 
of the Call module at the bottom of the circuit shown 
in Fig. 4. A wire must be connected between the 
signal labelled r2 and the control signal of the 
multiplexer inside stage ss16. This change is due to 
the 4-phase protocol being used and a rising transition 
and a falling transition are present on the r2 input of 
the Call module. If this change is not made there will 
be two 4-phase events on the output of the XOR. A 
4-phase structural Stump processor circuit is shown in 
Fig. 6. 
 
 

 
 

Fig. 5 A change is required for the 4-phase 
handshaking protocol 

 
 
 

Table 8 shows the number of the transistors and 
the run time of the 240 instructions, the throughput, 
the latency and the energy of the synthesized Stump 
processors using different control latch circuits. 
 
 

Table 8 The performance of the Stump processors 

Circuit 
Name 

Transis- 
tors 

(piece) 

Run 
Time 
(μs) 

Through-
put 

(KIPS) 

Latency 

(ns) 

Energy 

(fj) 

2-p 171166 220.0 1090.7 687.2 1530.57
4-p 
Simple 

170428 378.9 633.4 1148.4 1329.71

4-p 
Semi 

170922 411.8 582.8 1249.1 1514.44

4-p 
Fully 

171028 237.3 1011.3 738.0 1109.13

4-p 
Long 

171350 240.9 996.1 748.1 1067.50

 
 

Fig. 6 A 4-phase structural Stump processor 
 
 
 

5 Experimental results 
A loop program with twelve instructions were used to 
test the synthesized Stump processors shown Figures 
4 and 6. Rout of the synthesized Stump processor is 
connected to the Aout input directly. Memory data 
and a request or acknowledge was sent to the Stump 
processor by the test program when the Stump 
processor fetches instructions or reads data. The run 
time is the time difference between the 321th 
request-out signal on Rout and the first request-out 
signal on Rout. This is the time for 240 instructions to 
be executed. The energy information was obtained 
from PowerMill simulation for 12 instructions. 
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Fig. 7 The performance of the synthesized Stump 
processors 

 
 

As shown in Figures 7, 8 and 9 the fast circuit is 
still the 2-phase implementation. The two-phase 
circuit also has high throughput and low latency. The 
4-phase fully decoupled circuit is the fastest of the 
different 4-phase circuits. It also has high throughput. 
The 4-phase simple circuit is the cheapest circuit but it 
is slow.  The synthesized Stump processor using the 
4-phase semi-decoupled circuit is slowest and has low 
throughput as well as high latency. The 4-phase long 
hold circuit has low power consumption but high cost. 
However, its speed is not slow. 
 
 

6 Return to zero problems 
There is no Arbiter in the circuit shown in Figure 4 
and the simulations ran correctly on the leapfrog 
simulator. When 4-phase control circuits are used 
within each stage and 4-phase control modules are 
also used for the connections between stages it is 
necessary to put an Arbiter at the front of the Call 
module which is connect to the ss16 stage as shown in 
Figure 6. 

Because the ss5 stage is connected to both ss6 and 
ss16 stages, when the rising transition flows into the 
Call module a rising transition is sent to ss6 stage. 
When stage ss6 holds data the acknowledge rising 
transition is through d and d1 to ss14 and the C gate 
which is connected to the Aout of the ss5 stage. The 
acknowledge rising transition goes through ss14, 
ss13, .... etc. When the ss5 stage receives the 
transition the falling transition is sent out to the ss6 

stage and C gate which is connected to the r1 of the 
Call module. At this moment another rising transition 
may be sent to the r2 input of the Call module. 
 

 
 

Fig. 8 The latency and throughput of the synthesized 
Stump processors 

 
 

 
 

Fig. 9 The performance of the synthesized Stump 
processors 
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The previous calling sequence for r1 is not 

finished yet. The rising transition appears on the r2 
input will cause the Call module to go wrong. Each 
4-phase event consists of a rising transition and a 
falling transition. Both transitions must flow through 
the control path. The time from r1 going Hi until d1 
going Hi and going Lo may be longer than that in 
two-phase counterpart. To avoid such circuit errors an 
Arbiter is required  to connected to the Call module 
at the front of the ss16 stage. 

Because only the initial event needs to go through 
r1 on the Call module at the front of the ss4 stage, at 
the other times only the event sent from the ss16 stage 
will go to r2 on that Call module. An Arbiter is not 
necessary for that Call module. 

A 4-phase Call circuit [13] is shown in Figure 10. 
Two 3-input asymmetric C-gates are used to send the 
rising transitions and falling transitions of D to D1 or 
D2 depending whether the event on the R output was 
generated from R1 or R2.  A 2-input asymmetric 
C-gate is used to send the rising transition and falling 
transition of R1 or R2 to the R output. Initially R1 
and R2 are low. When a rising transition arrives on 
the R1 input a rising transition is sent out from the R 
output. After a rising transition is received on the D 
input this causes a rising transition to be sent out from 
the output of the upper 3-input asymmetric C-gate on 
D1. If a rising transition arrives on the R2 input before 
R1 falls, R2, R and D will be at logical ‘1’ and 
therefore a rising transition is sent out from the D2 
output in error. No transition corresponding to that on 
R2 is sent out from the R output, and a deadlock may 
happen. A 4-phase Arbiter costs about 40 transistors. 
The easy way to remove this problem is to connect an 
Arbiter at the front of the Call circuit. Alternatively, a 
more complex Call circuit can be used. 
 
 

 
 

Fig. 10 A 4-phase call circuit 
 
 

When the fully decoupled 4-phase control circuit 
is applied the simulation of the processor stopped due 
to the Select module. The reason is that the Rout of 
the ss2 stage sends out a rising transition to the Select 
module and the Select module will deliver this rising 

transition to one of its two outputs depending on the 
boolean value which is produced from the ss2 stage. 

If the boolean value is a logic ‘0’ the rising 
transition is sent to the output labelled f. Then the 
rising transition goes to the r2 input of the Arbiter. 
The Arbiter sends the rising transition out from g2 
and the rising transition flows into the r2 input of the 
Call module. Finally the rising transition arrives at the 
Rin input of the ss16 stage. 

When the ss16 stage holds data the acknowledge 
rising transition will be sent out. It will go through the 
d and d2 of the Call module as well as an XOR and a 
C gate and arrive on Aout of the ss2 stage.   

After the ss2 stage receives a rising transition 
from Aout the data in the ss2 stage may be changed. 
If the data is changed the boolean value of the Select 
module is also changed. Therefore, the falling 
transition sent from Rout of the ss2 stage may be 
delivered to the wrong place. The simulation shows 
that the falling transition which should be sent to the 
false path was sent to the true path. This caused the 
simulation to fail. 

A 4-phase Select module which remembers the 
boolean value at the time of sending the rising 
transition is required. After using this Select module 
the simulations ran successfully. 

Due to the fact that there is no return to zero in a 
two-phase protocol, a two-phase protocol may be a 
better choice than a 4-phase protocol for 
communication between stages. 
 
 

7 Optimization 
If two stages only contain assignments, the first is the 
only input stage to the second, and the second is the 
only output stage from the first, then these two stages 
can be merged. If the first one is called stage A and 
the second is called stage B, the procedure to merge 
the two stages is as follows: 
 
 

1. Connect the outputs of each latch to the sources 
of its inputs inside stage A and remove these 
latches as well as redundant connections. 

 
2. Remove the outputs of stage A and the inputs of 

stage B from the device list. 
 

3. Remove the control circuits of stage A. 
 

4. Remove the interconnections between stage A 
and stage B from the network device list. 
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However, one more condition must be satisfied if the 
simple 4-phase or the semi-decoupled 4-phase control 
circuits are applied. This is that if the first stage is an 
output stage of the second then the two stages cannot 
be merged. The 2-phase Stump processor shown in 
Figure 4 can be merged as shown in Figure 11. The 
performance of the Stump processors after merge is 
shown in Table 9. 
 
 

 
 

Fig. 11 A merged two-phase structural Stump 
processor 

 
 
 

As shown in Figures 12, 13 and 14 the 
performance of the synthesized circuits is 
improved. However, the speed of the merged 
4-phase fully decoupled and long hold Stump 
processors are decreased. The long hold Stump 
processors has low power consumption. The 
two-phase one is the fastest. 
 

 
Table 9 The performance of the Stump processors 
after merge(1) 

Circuit 
Name

Transistors 

(piece) 

Run 
Time 

(μs)

Throug
hput 

(KIPS) 

Latency 

(ns) 

Energy 
(fj) 

2-phase 137226 159.8 1502.3 499.2 522.37
4-p 

Simple
140016 289.8 828.1 878.7 558.77

4-p 
Semi 140206 295.9 811.2 898.2 613.95

4-p 
Fully 137088 262.2 915.3 801.2 417.46

4-p 
Long 137292 266.8 899.5 811.5 404.62

 
 
 

Circuit 2-phase
4-p 

simple 
4-p 

semi 
4-p 

fully 
4-p 
long 

Energy 522.37 558.77 613.95 417.46 404.62
 

 
 

Fig. 12 The power information of the merged Stump 
processors 

 
 
 

The synthesized Stump processors using the 
4-phase simple control latch circuit and the 
4-phase semi-decoupled control circuit have 5 
stages. The synthesized Stump processors using 
the 4-phase fully decoupled control circuit and 
the 4-phase long hold control circuit only have 4 
stages. For the comparison Table 10 shows the 
performance of the 5-stage fully decoupled 
Stump processor and the 5-stage long hold Stump 
processor. 
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Fig. 13 The latency and throughput of the merged 
Stump processors 

 
 
 

 
 

Fig. 14 The run time of the merged Stump processor 
 
 
 
 

As shown in Figures 15 and 16 the speed of the 
merged 4-phase Stump processors using the simple 
and semi-decoupled control circuits is faster than the 
original synthesized Stump processors. 
 
 
 

Circuit 4-p 
simple

4-p 
semi 

4-p 
fully 

4-p 
long 

4-p 
fully 

5 stages

4-p 
 long 

5 staages

Energy 558.7 613.95 417.46 404.62 481.38 442.08 

 

 
 

Fig. 15 The power information of the 4-phase merged 
Stump processors 

 
 
 
Table 10 The performance of the Stump processors 
after merge(2) 

Circuit 
Name

Transistors 

(piece)

Run 
Time
(μs)

Throughput 

(KIPS) 
Latency 

(ns) 
Energy 

(fj) 

2-p 137226 159.8 1502.3 499.2 522.37

4-p 
Simple

140016 289.8 828.1 878.7 558.77

4-p 
Semi 140206 295.9 811.2 898.2 613.95

4-p 
Fully 137088 262.2 915.3 801.2 417.46

4-p 
Long 137292 266.8 899.5 811.5 404.62

4-p 
Fully 5 140252 263.2 911.8 801.8 481.38

4-p 
Long 5 140466 266.8 899.5 812.0 442.08
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Fig. 16 The performance of the 4-phase merged 
Stump processors 

 
 

However, the speed of the merged 4-phase 
Stump processors using the fullly decoupled and 
long hold control circuits is slower than the speed 
of the original synthesized Stump processors. 
There is no much difference between the 5-stage 
and 4-stage Stump processors using the fully 
decoupled and long hold control circuits in speed.  

The 5-stage Stump processors using the fully 
decoupled and long hold control circuits require 
more transistors than the merged 4-phase Stump 
processors using the simple and semi-decoupled 
control circuits. Anyway the merged 4-phase 
Stump processors are cheaper than the original 
synthesized Stump processors and have lower 
power consumption. 

If a modification is made in the behavioural 
description the processor can be further merged 
as shown in Figure 17. If some statements are 
added after the corresponding ELSE of the false 
of Select module, the 4-phase Stump processors 
using the simple latch control circuit can also be 
further merged. The 4-phase Stump processors 
using the simple and semi-decoupled latch 
control circuits can be further merged as shown in 
Figure 18.  

 
 

Fig. 17 A further merged two-phase structural Stump 
processor 

 
 

 
 
Fig. 18 A merged 4-phase structural Stump processor 
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The run time of the 2-phase Stump processor is 
about 155.1 μs. The 4-phase long hold circuit gives 
low power consumption. 
 
 
Table 11 The performance of the Stump processors 
after optimization 

Circuit 
Name 

Transistors 
(piece) 

Run 
Time 
(μs) 

Throughput 

(KIPS) 
Latency 
(ns)

Energy 
(fj) 

2-phase 
before 

137226 159.8 1502.3 499.2 522.37

4-p 
Simple 
before 

140016 289.8 828.1 878.7 558.77

4-p Fully 
before 

137088 262.2 915.3 801.2 417.46

4-p Long 
before 

137292 266.8 899.5 811.5 404.62

2-phase 
after 

134286 155.1 1547.9 484.5 461.59

4-p 
Simple 
after 

137128 240.4 998.1 751.4 434.85

4-p Fully 
after 

134152 244.6 981.1 764.5 365.19

4-p Long 
after 

134342 248.5 965.6 776.7 362.33

 
 
The performance of these further merged Stump 
processors are shown in Table 11, Figures 19, 20 
and 21. 
 
 

Circuit 
2-p 

merged 
4-p fully 
merged 

2-p 
modified 

4-p simple 
modified 

4-p fully
Modified

4-p long
modified

Energy 522.37 417.46 461.59 434.85 365.19 362.33 

 

 
 
Fig. 19 The power information of the further merged 

Stump processors 

 

 

 
 

Fig. 20 The latency and throughput of the further 
merged Stump processors 

 
 
 
 

 
 
Fig. 21 The run time of the simple Stump processor 
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8 Conclusion 
This paper has presented some engineering work on 
developing a micropipeline Stump processor. The 
experimental results show that the fastest speed is 
1090.7 KIPS for the 2-phase synthesized Stump 
processor. The lowest power consumption is 1067.5 fj 
for the Stump processor with the long hold 4-phase 
latch control circuits. The Stump processor using the 
4-phase simple latch control circuit has the lowest the 
transistor count.  

The 2-phase circuits have good performance in 
speed. This is due to the rising and falling transitions 
of the 4-phase circuits following the same routes. 
Asymmetric delays with fast reset circuit can be 
applied to improve the performance.  

The fastest speed is 1.55 MIPS for the two-phase 
synthesized processor and  
the lowest power consumption is 362.33 fj for the 
synthesized 4-phase long hold processor. 
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