
An optimization for the design of a simple asynchronous processor

SUN-YEN TAN 1, WEN-TZENG HUANG 2

1 Department of Electronic Engineering
National Taipei University of Technology

No. 1, Sec. 3, Chung-hsiao E. Rd., Taipei,10608, Taiwan, R.O.C.
 sytan@ntut.edu.tw

2 Department of Computer Science and Information Engineering

Mingsin University of Science and Technology
No.1, Xinxing Rd., Xinfeng Hsinchu 30401, Taiwan, R.O.C.

 wthuang@must.edu.tw

Abstract: - The asynchronous circuit style is based on micropipelines, a style used to develop asynchronous
microprocessors at Manchester University. This paper has presented some engineering work on developing a
micropipeline Stump processor. The work presented in this paper demonstrates that VHDL can be used to
describe the behaviour of micropipelined systems. It also shows a comparison of 2-phase and 4-phase
implementations in transistor count, speed, and energy. Though the nature of the work is mainly engineering,
there are some significant new insights gained in the course of the work. The 2-phase circuits have good
performance in speed. This is due to the rising and falling transitions of the 4-phase circuits following the same
routes. Asymmetric delays with fast reset circuit can be applied to improve the performance. The fastest speed is
1.55 MIPS for the two-phase synthesized processor and the lowest power consumption is 362.33 fj for the
synthesized four-phase long hold processor.

Key-Words: - Asynchronous design, Micropipelines, Processor, VHDL, Synthesis

1 Introduction
The design of asynchronous circuits is more difficult
than that of synchronous circuits. Hazards must be
removed from the circuits to ensure that there are no
unexpected transitions. Well structured asynchronous
design styles such as micropipelines reduce the
difficulty. Event-driven logic modules may be
designed by electronic experts. Then designers with
less experience can easily build micropipelined
circuits using such modules. An automatic synthesis
tool is available [1][4]. It converts the behavioural
VHDL into structural VHDL and Verilog based on
micropipelines had been published [1][7][11][14][15].
2-phase and 4-phase VHDL models of event-drive
logic modules and standard logic function elements
were created.

In this paper we demonstrate the design of an
asynchronous processor using the sytnthesizer and
evaluate the experimental results. We also discuss the
return to zero problems for the 4-phase designs. An
optimization method is applied to improve the performance
of the synthesized processors.

Section 2 introduces some asynchronous design
techniques. Section 3 briefly describes nicropipelines and

introduces 2-phase and 4-phase event-driven Logic
modules. The Stump processor design will be presented in
Section 4. Section 5 will present experimental results.
Section 6 will discuss the return to zero problems. Section 7
will demonstrate an optimization method. Finally, Section
8 will give a short conclusion.

2 Asynchronous design
Asynchronous design has potential advantages over
synchronous design [8][9][10], such as no clock skew
problem, low power, average case performance and
good Electro-Magnetic Compatibility (EMC). The
benefits may be most apparent in mobile
communication applications and other portable
systems which use advanced VLSI technologies.

Asynchronous logic circuits have several
important advantages over their counterparts in
clocked logic. An asynchronous logic function is
potentially faster because it works at the average-case
delay rather than the worst-case delay. There is no
global clock on asynchronous circuits so they will not
unnecessarily dissipate power when there is no useful
work to do. Asynchronous logic has the potential for

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 156 Issue 5, Volume 10, May 2011

low power [5]. Asynchronous logic may be used to
implement systems with lower power dissipation.

3 Micropipelines
The design of asynchronous circuits generally follows
a modular approach, where a system is designed as an
interconnection of modules. In the 1988 Turing
Award Lecture, Sutherland expounded a modular
approach to building hardware systems based on
data-driven asynchronous self-timed logic elements
called micropipelines [6]. In the 4-phase handshaking
protocol, only rising transitions or only falling
transitions of either control wire have the meaning;
they represent request events or acknowledge events.

Fig. 1. 4-phase bundled data convention

In this signalling scheme, the operating cycle is (1)
data available (2) change request to active state, (3)
change acknowledge to active state, (4) return request
to inactive state, and (5) return acknowledge to
inactive state. If the active state is logic “1” the the
operating cycle is (1) data available (2) request+, (3)
acknowledge+, (4) request-, and (5) acknowledge-.
Fig. 1 illustrates two kinds of four phase signalling,
the ‘early’ mode and the ‘broad’ mode [2]. The
‘early’ mode (Fig. 1(a)) uses the rising edge of the
Request line to indicate ‘data available’ and the

rising edge of the Acknowledge line to indicate ‘data
latched’. The falling edges are return to zero actions
that carry no meaning. The ‘broad’ mode (Fig. 1(b))
uses the rising edge of the Request line to indicate
‘data available’ and the falling edge of the
Acknowledge line to indicate ‘data latched’. Another
possible protocol is ‘late’ mode which uses the falling
edges as active.

Various event-driven logic modules for
controlling transition signals are shown in Fig. 2.
They were devised for composing to 2-phase control
circuits. Muller C-elements and XOR gates are the
same whether they are used in 2- or 4-phase designs.
However, 4-phase Toggle, Select, Call and Arbiter
modules are different from their 2-phase counterparts.

A Toggle is used to alternately deliver events on

its input to one of two outputs. In the 2-phase protocol
each transition denotes an event. Therefore, the odd
number transitions on the input of a Toggle will be
sent to the dotted output and the even number
transitions on the input of a Toggle will be sent to the
non-dotted output. In the 4-phase protocol each event
consists of a rising transition and a falling transition.
A rising transition and the following falling transition
must be sent to the same output. Therefore, the odd
number rising and falling transitions on the input of a
Toggle will be sent to the dotted output and the even
number rising and falling transitions on the input of a
Toggle will be sent to the non-dotted output.

Fig. 2. Various event-driven logic modules.

Furber and Day developed four kinds of 4-phase
latch control circuits. They are the simple,
semi-decoupled, fully decoupled and long hold
4-phase latch control circuits [3][11]. They use the
4-phase bundled data convention.

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 157 Issue 5, Volume 10, May 2011

4 Stump processor
A simple processor example, Stump [12] is a 16-bit
mini-risc processor which has 8 registers and a 4-bit
condition code register. R0 is always zero and can be
used as a source operand allowing Move instructions
to be synthesized from an Add instruction. R0 may be
written to, but the result is always discarded allowing
Compare instruction to be synthesized from
Subtract instructions. R7 is the program counter. The
4-bit condition code register contains Sign Flag(N),
Zero Flag(Z), Overflow Flag(V) and Carry-Out
Flag(C) shown in Table 1.

Table 1 The Condition code
Bit 3 Bit 2 Bit 1 Bit 0

Sign Flag
(N)

Zero Flag
(Z)

Overflow Flag
 (V)

Carry-Out Flag
(C)

The condition code register is updated to reflect
the result of the ALU operation when arithmetic and
logical instructions are executed. The condition code
register is not changed for Load, Store, and Branch
instructions. The instruction set and its 3 formats are
shown as Tables 2, 3, 4 and 5.

Table 2 Instruction set
Opcode Instruction Explanation
000 ADD 2's complement addition
001 ADC 2's complement addition with carry-in
010 SUB 2's complement subtract
011 SBC 2's complement subtract with borrow
100 AND Bitwise AND of two 16-bit words
101 OR Bitwise OR of two 16-bit words

110 LD/ST
Load Reg. from memory or Store Reg.
to memory

111 Bcc Branch if condition cc is satisfied

Table 3 Instruction format:
Type 1: 2 Source registers

Table 4 Instruction format:
Type 2: 1 Source register, 1 immediate value

Table 5 Instruction format:
Type 3: Conditional Branch

Table 6 shows shift operations. Table 7 shows
conditional branch instructions. The behavioural
VHDL description can be used to describe the
asynchronous operation of the processor. The
following programs are used to test how the
model works.

Table 6 Shift operations

Operation
Instr
Bit 1

Instr
Bit 0

SRC A,
bit 15:=

Carry-out:=

No shift 0 0 A15 0
ASR 0 1 A15 A0
ROR 1 0 A0 A0
RRC 1 1 C in A0

Table 7 Conditional Branch Instructions

Mnemonic
Bits
11:8

Condition Explanation

BAL 0000 Always

BNV 0001 Never

BHI 0010 C + Z = 0

BLS 0011 C + Z = 1

comparison:
unsigned
arithmetic

BCC 0100 C = 0

BCS 0101 C = 1

overflow test:
unsigned
arithmetic

BNE 0110 Z = 0

BEQ 0111 Z = 1
zero test

BVC 1000 V = 0

BVS 1001 V = 1

overflow test:
signed
arithmetic

BPL 1010 N = 0

BMI 1011 N = 1

BGE 1100 N ♁ V = 0

BLT 1101 N ♁ V = 1

BGT 1110 (N ♁ V)+ Z = 0

BLE 1111 (N ♁ V)+ Z = 1

comparison:
signed
arithmetic

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 158 Issue 5, Volume 10, May 2011

 LD R4, 0020H
 LD R1, (0021H)
 LD R2, (0022H)
 ADD R3, R1, R2
 LD (0023H), R3
 LOOP: BAL LOOP

(A)

 LOOP: LD R4, 0020H
 LD R1, (0021H)
 LD R2, (0022H)
 ADD R3, R1, R2
 LD (0023H), R3
 BAL LOOP

 (B)

A test program which contains the machine code of
the above program (A) and some initial memory data
and the behavioural memory model for the program
simulation. The simulation result of the behavioural
asynchronous Stump description is shown in Fig. 3.

Fig. 3 The waveform of the simulation of a
behavioural 2-phase Stump processor

The synthesizer read the behavioural VHDL
description and generated two-phase and 4-phase
Stump processor circuits. The synthesized two-phase
structural Stump processor is shown in Fig. 4. When
the test program was used to simulate the synthesized
two-phase structural Stump processor the correct
result was obtained. Different 4-phase latch control
circuits were used to generate various 4-phase
implementations of the Stump processor from the
same description. Two changes are required for the
4-phase implementations.

The first one is for the start circuit of the processor.

This is shown in Fig. 5. Because a rising transition and
a falling transition have to flow into the r1 input of the
Call module at the top of the circuit in Fig. 4, an XOR
and a two-phase Toggle are required to enable the
rising transition of Reset to pass through the XOR and
into the Call module. Then a corresponding rising

transition is sent to the Rin of the stage labelled ss4.
After the ss4 stage holds data the stage sends a rising
transition to the d input of the Call module.
Immediately there is a rising transition on the output
labelled d1.

Fig. 4 A two-phase structural Stump processor

This rising transition goes through the Toggle and
shows on its dotted output. Then the rising transition
goes through the XOR and becomes a falling

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 159 Issue 5, Volume 10, May 2011

transition. This falling transition goes through the ss4
stage and appears on the output labelled d1. Then the
falling transition flows into the Toggle. A rising
transition is present on the non-dotted output. This
rising transition is used as a control signal of the
multiplexer inside ss4 stage, which is used to switch
the latches connected to the initial values or the
connections from the stage labelled ss16. The
non-dotted output of the Toggle will remain at logic
Hi except when Reset goes Lo.

The second change is to remove the XOR whose
inputs are connected to the signals labelled r2 and d2
of the Call module at the bottom of the circuit shown
in Fig. 4. A wire must be connected between the
signal labelled r2 and the control signal of the
multiplexer inside stage ss16. This change is due to
the 4-phase protocol being used and a rising transition
and a falling transition are present on the r2 input of
the Call module. If this change is not made there will
be two 4-phase events on the output of the XOR. A
4-phase structural Stump processor circuit is shown in
Fig. 6.

Fig. 5 A change is required for the 4-phase
handshaking protocol

Table 8 shows the number of the transistors and
the run time of the 240 instructions, the throughput,
the latency and the energy of the synthesized Stump
processors using different control latch circuits.

Table 8 The performance of the Stump processors

Circuit
Name

Transis-
tors

(piece)

Run
Time
(μs)

Through-
put

(KIPS)

Latency

(ns)

Energy

(fj)

2-p 171166 220.0 1090.7 687.2 1530.57
4-p
Simple

170428 378.9 633.4 1148.4 1329.71

4-p
Semi

170922 411.8 582.8 1249.1 1514.44

4-p
Fully

171028 237.3 1011.3 738.0 1109.13

4-p
Long

171350 240.9 996.1 748.1 1067.50

Fig. 6 A 4-phase structural Stump processor

5 Experimental results
A loop program with twelve instructions were used to
test the synthesized Stump processors shown Figures
4 and 6. Rout of the synthesized Stump processor is
connected to the Aout input directly. Memory data
and a request or acknowledge was sent to the Stump
processor by the test program when the Stump
processor fetches instructions or reads data. The run
time is the time difference between the 321th
request-out signal on Rout and the first request-out
signal on Rout. This is the time for 240 instructions to
be executed. The energy information was obtained
from PowerMill simulation for 12 instructions.

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 160 Issue 5, Volume 10, May 2011

Fig. 7 The performance of the synthesized Stump
processors

As shown in Figures 7, 8 and 9 the fast circuit is
still the 2-phase implementation. The two-phase
circuit also has high throughput and low latency. The
4-phase fully decoupled circuit is the fastest of the
different 4-phase circuits. It also has high throughput.
The 4-phase simple circuit is the cheapest circuit but it
is slow. The synthesized Stump processor using the
4-phase semi-decoupled circuit is slowest and has low
throughput as well as high latency. The 4-phase long
hold circuit has low power consumption but high cost.
However, its speed is not slow.

6 Return to zero problems
There is no Arbiter in the circuit shown in Figure 4
and the simulations ran correctly on the leapfrog
simulator. When 4-phase control circuits are used
within each stage and 4-phase control modules are
also used for the connections between stages it is
necessary to put an Arbiter at the front of the Call
module which is connect to the ss16 stage as shown in
Figure 6.

Because the ss5 stage is connected to both ss6 and
ss16 stages, when the rising transition flows into the
Call module a rising transition is sent to ss6 stage.
When stage ss6 holds data the acknowledge rising
transition is through d and d1 to ss14 and the C gate
which is connected to the Aout of the ss5 stage. The
acknowledge rising transition goes through ss14,
ss13, etc. When the ss5 stage receives the
transition the falling transition is sent out to the ss6

stage and C gate which is connected to the r1 of the
Call module. At this moment another rising transition
may be sent to the r2 input of the Call module.

Fig. 8 The latency and throughput of the synthesized
Stump processors

Fig. 9 The performance of the synthesized Stump
processors

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 161 Issue 5, Volume 10, May 2011

The previous calling sequence for r1 is not

finished yet. The rising transition appears on the r2
input will cause the Call module to go wrong. Each
4-phase event consists of a rising transition and a
falling transition. Both transitions must flow through
the control path. The time from r1 going Hi until d1
going Hi and going Lo may be longer than that in
two-phase counterpart. To avoid such circuit errors an
Arbiter is required to connected to the Call module
at the front of the ss16 stage.

Because only the initial event needs to go through
r1 on the Call module at the front of the ss4 stage, at
the other times only the event sent from the ss16 stage
will go to r2 on that Call module. An Arbiter is not
necessary for that Call module.

A 4-phase Call circuit [13] is shown in Figure 10.
Two 3-input asymmetric C-gates are used to send the
rising transitions and falling transitions of D to D1 or
D2 depending whether the event on the R output was
generated from R1 or R2. A 2-input asymmetric
C-gate is used to send the rising transition and falling
transition of R1 or R2 to the R output. Initially R1
and R2 are low. When a rising transition arrives on
the R1 input a rising transition is sent out from the R
output. After a rising transition is received on the D
input this causes a rising transition to be sent out from
the output of the upper 3-input asymmetric C-gate on
D1. If a rising transition arrives on the R2 input before
R1 falls, R2, R and D will be at logical ‘1’ and
therefore a rising transition is sent out from the D2
output in error. No transition corresponding to that on
R2 is sent out from the R output, and a deadlock may
happen. A 4-phase Arbiter costs about 40 transistors.
The easy way to remove this problem is to connect an
Arbiter at the front of the Call circuit. Alternatively, a
more complex Call circuit can be used.

Fig. 10 A 4-phase call circuit

When the fully decoupled 4-phase control circuit
is applied the simulation of the processor stopped due
to the Select module. The reason is that the Rout of
the ss2 stage sends out a rising transition to the Select
module and the Select module will deliver this rising

transition to one of its two outputs depending on the
boolean value which is produced from the ss2 stage.

If the boolean value is a logic ‘0’ the rising
transition is sent to the output labelled f. Then the
rising transition goes to the r2 input of the Arbiter.
The Arbiter sends the rising transition out from g2
and the rising transition flows into the r2 input of the
Call module. Finally the rising transition arrives at the
Rin input of the ss16 stage.

When the ss16 stage holds data the acknowledge
rising transition will be sent out. It will go through the
d and d2 of the Call module as well as an XOR and a
C gate and arrive on Aout of the ss2 stage.

After the ss2 stage receives a rising transition
from Aout the data in the ss2 stage may be changed.
If the data is changed the boolean value of the Select
module is also changed. Therefore, the falling
transition sent from Rout of the ss2 stage may be
delivered to the wrong place. The simulation shows
that the falling transition which should be sent to the
false path was sent to the true path. This caused the
simulation to fail.

A 4-phase Select module which remembers the
boolean value at the time of sending the rising
transition is required. After using this Select module
the simulations ran successfully.

Due to the fact that there is no return to zero in a
two-phase protocol, a two-phase protocol may be a
better choice than a 4-phase protocol for
communication between stages.

7 Optimization
If two stages only contain assignments, the first is the
only input stage to the second, and the second is the
only output stage from the first, then these two stages
can be merged. If the first one is called stage A and
the second is called stage B, the procedure to merge
the two stages is as follows:

1. Connect the outputs of each latch to the sources
of its inputs inside stage A and remove these
latches as well as redundant connections.

2. Remove the outputs of stage A and the inputs of

stage B from the device list.

3. Remove the control circuits of stage A.

4. Remove the interconnections between stage A
and stage B from the network device list.

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 162 Issue 5, Volume 10, May 2011

However, one more condition must be satisfied if the
simple 4-phase or the semi-decoupled 4-phase control
circuits are applied. This is that if the first stage is an
output stage of the second then the two stages cannot
be merged. The 2-phase Stump processor shown in
Figure 4 can be merged as shown in Figure 11. The
performance of the Stump processors after merge is
shown in Table 9.

Fig. 11 A merged two-phase structural Stump
processor

As shown in Figures 12, 13 and 14 the
performance of the synthesized circuits is
improved. However, the speed of the merged
4-phase fully decoupled and long hold Stump
processors are decreased. The long hold Stump
processors has low power consumption. The
two-phase one is the fastest.

Table 9 The performance of the Stump processors
after merge(1)

Circuit
Name

Transistors

(piece)

Run
Time

(μs)

Throug
hput

(KIPS)

Latency

(ns)

Energy
(fj)

2-phase 137226 159.8 1502.3 499.2 522.37
4-p

Simple
140016 289.8 828.1 878.7 558.77

4-p
Semi 140206 295.9 811.2 898.2 613.95

4-p
Fully 137088 262.2 915.3 801.2 417.46

4-p
Long 137292 266.8 899.5 811.5 404.62

Circuit 2-phase
4-p

simple
4-p

semi
4-p

fully
4-p
long

Energy 522.37 558.77 613.95 417.46 404.62

Fig. 12 The power information of the merged Stump
processors

The synthesized Stump processors using the
4-phase simple control latch circuit and the
4-phase semi-decoupled control circuit have 5
stages. The synthesized Stump processors using
the 4-phase fully decoupled control circuit and
the 4-phase long hold control circuit only have 4
stages. For the comparison Table 10 shows the
performance of the 5-stage fully decoupled
Stump processor and the 5-stage long hold Stump
processor.

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 163 Issue 5, Volume 10, May 2011

Fig. 13 The latency and throughput of the merged
Stump processors

Fig. 14 The run time of the merged Stump processor

As shown in Figures 15 and 16 the speed of the
merged 4-phase Stump processors using the simple
and semi-decoupled control circuits is faster than the
original synthesized Stump processors.

Circuit 4-p
simple

4-p
semi

4-p
fully

4-p
long

4-p
fully

5 stages

4-p
 long

5 staages

Energy 558.7 613.95 417.46 404.62 481.38 442.08

Fig. 15 The power information of the 4-phase merged
Stump processors

Table 10 The performance of the Stump processors
after merge(2)

Circuit
Name

Transistors

(piece)

Run
Time
(μs)

Throughput

(KIPS)
Latency

(ns)
Energy

(fj)

2-p 137226 159.8 1502.3 499.2 522.37

4-p
Simple

140016 289.8 828.1 878.7 558.77

4-p
Semi 140206 295.9 811.2 898.2 613.95

4-p
Fully 137088 262.2 915.3 801.2 417.46

4-p
Long 137292 266.8 899.5 811.5 404.62

4-p
Fully 5 140252 263.2 911.8 801.8 481.38

4-p
Long 5 140466 266.8 899.5 812.0 442.08

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 164 Issue 5, Volume 10, May 2011

Fig. 16 The performance of the 4-phase merged
Stump processors

However, the speed of the merged 4-phase
Stump processors using the fullly decoupled and
long hold control circuits is slower than the speed
of the original synthesized Stump processors.
There is no much difference between the 5-stage
and 4-stage Stump processors using the fully
decoupled and long hold control circuits in speed.

The 5-stage Stump processors using the fully
decoupled and long hold control circuits require
more transistors than the merged 4-phase Stump
processors using the simple and semi-decoupled
control circuits. Anyway the merged 4-phase
Stump processors are cheaper than the original
synthesized Stump processors and have lower
power consumption.

If a modification is made in the behavioural
description the processor can be further merged
as shown in Figure 17. If some statements are
added after the corresponding ELSE of the false
of Select module, the 4-phase Stump processors
using the simple latch control circuit can also be
further merged. The 4-phase Stump processors
using the simple and semi-decoupled latch
control circuits can be further merged as shown in
Figure 18.

Fig. 17 A further merged two-phase structural Stump
processor

Fig. 18 A merged 4-phase structural Stump processor

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 165 Issue 5, Volume 10, May 2011

The run time of the 2-phase Stump processor is
about 155.1 μs. The 4-phase long hold circuit gives
low power consumption.

Table 11 The performance of the Stump processors
after optimization

Circuit
Name

Transistors
(piece)

Run
Time
(μs)

Throughput

(KIPS)
Latency
(ns)

Energy
(fj)

2-phase
before

137226 159.8 1502.3 499.2 522.37

4-p
Simple
before

140016 289.8 828.1 878.7 558.77

4-p Fully
before

137088 262.2 915.3 801.2 417.46

4-p Long
before

137292 266.8 899.5 811.5 404.62

2-phase
after

134286 155.1 1547.9 484.5 461.59

4-p
Simple
after

137128 240.4 998.1 751.4 434.85

4-p Fully
after

134152 244.6 981.1 764.5 365.19

4-p Long
after

134342 248.5 965.6 776.7 362.33

The performance of these further merged Stump
processors are shown in Table 11, Figures 19, 20
and 21.

Circuit
2-p

merged
4-p fully
merged

2-p
modified

4-p simple
modified

4-p fully
Modified

4-p long
modified

Energy 522.37 417.46 461.59 434.85 365.19 362.33

Fig. 19 The power information of the further merged

Stump processors

Fig. 20 The latency and throughput of the further
merged Stump processors

Fig. 21 The run time of the simple Stump processor

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 166 Issue 5, Volume 10, May 2011

8 Conclusion
This paper has presented some engineering work on
developing a micropipeline Stump processor. The
experimental results show that the fastest speed is
1090.7 KIPS for the 2-phase synthesized Stump
processor. The lowest power consumption is 1067.5 fj
for the Stump processor with the long hold 4-phase
latch control circuits. The Stump processor using the
4-phase simple latch control circuit has the lowest the
transistor count.

The 2-phase circuits have good performance in
speed. This is due to the rising and falling transitions
of the 4-phase circuits following the same routes.
Asymmetric delays with fast reset circuit can be
applied to improve the performance.

The fastest speed is 1.55 MIPS for the two-phase
synthesized processor and
the lowest power consumption is 362.33 fj for the
synthesized 4-phase long hold processor.

References:
[1] Tan, S.-Y., Furber, S.B., Yen, W.-F., “The Design

of an Asynchronous VHDL Synthesizer”,
Proceedings of the Design, Automation and Test
in Europe Conference 1998 (DATE98), Paris, Feb.
1998, pp. 44-51.

[2] Furber, S.B., and and Liu, J., “Dynamic Logic in
Four-Phase Micropipelines”, Async'96,
Aizu-Wakamatsu, Japan, Mar 18-21 1996.

[3] Furber, S.B., Day, P., “Four-Phase Micropipeline
Latch Control Circuits”, IEEE Trans. on VLSI
Systems, vol. 4 no. 2, Jun. 1996 pp. 247-253.

[4] Sacker, M., Brown, A.D., Rushton, A.J., Wilson,
P.R., “A Behavioral Synthesis System for
Asynchronous Circuits”, IEEE Trans. on VLSI
Systems, vol. 12 no. 9, Sep. 2004, pp. 978-994.

[5] Furber, S.B., “Computing without Clocks:
Micropipelining the ARM Processor”, in
“Asynchronous Digital Circuit Design” edited by
G. Birtwistle and A. Davis, Springer Verlag,
pp.211-262.

[6] Sutherland, I. E., “Micropipelines", The 1988
Turing Award Lecture, Communications of the
ACM, Vol. 32, No. 6, January 1989, pp. 720-738.

[7] S.-Y. Tan, W.-T. Huang, “The Design of an
Asynchronous Blocksorter”, Proceedings of the
12th International Conference on Networking, VLSI
and Signal Processing (ICNVS '10) (WSEAS
Cooperating Conference), University of Cambridge,
UK, 20-22 February 2010, pp. 73-78.

[8] J. Carlsson, K. Palmkvist, and L. Wanhammar,
“Synchronous Design Flow for Globally
Asynchronous Locally Synchronous Systems”,
Proceedings of the 10th WSEAS International
Conference on CIRCUITS, Vouliagmeni, Athens,

Greece, July 10-12, 2006, pp. 64-69.
[9]A. N. Ismailoglu, M. Askar, “Verification of Delay

Insensitivity in Bit-Level Pipelined Dual-Rail
Threshold Logic Adders”, 7th WSEAS Int. Conf.
on Electronics, Hardware, Wireless and Optical
Communications, Cambridge, UK, February
20-22, 2008

[10]A.Vasilescu, “Algebraic model for the
intercommunicating hardware components
behaviour”, 12th WSEAS International
Conference on COMPUTERS, Heraklion, Greece,
July 23-25, 2008, pp. 241-246.

[11] S.-Y. Tan, W.-T. Huang, “A VHDL-based
design methodology for asynchronous circuits”,
WSEAS TRANSACTIONS on CIRCUITS and
SYSTEMS, Vol. 9, Issue 5, May 2010, pp. 315-324.

[12] P.B. Endecott, S.B. Furber, “Behavioural
Modelling of Asynchronous Systems for Power
and Performance Analysis”, Proceedings of
PATMOS'98, Lyngby, Denmark, 6-9 October
1998.

[13] J. Liu, “Arithmetic and Control Components for
an Asynchronous System”, PhD Thesis, Dept. of
Computer Science, University of Manchester,
1997.

[14] S.-Y. Tan and W.-T. Huang, “The Design of a
simple asynchronous processor”, Proceedings of
the 12th WSEAS International Conference on
Mathematical Methods and Computational
Techniques in Electrical Engineering
(MMACTEE '10), Timisoara, Romania, October
21-23, 2010, pp. 165-170.

[15] S.-Y. Tan and W.-T. Huang, “The Design of
sharing resources for asynchronous systems”,
Proceedings of the 12th WSEAS International
Conference on Mathematical Methods and
Computational Techniques in Electrical
Engineering (MMACTEE '10), Timisoara,
Romania, October 21-23, 2010, pp. 171-176.

WSEAS TRANSACTIONS on COMPUTERS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2750 167 Issue 5, Volume 10, May 2011

