
Designing Test Engine for Computer-Aided Software Testing Tools

XUE-YING MA, BIN-KUI SHENG

College of Information Management

Zhejiang University of Finance & Economics

Hangzhou, P. R. China.

hzmaxueying@hotmail.com , shengbk@yahoo.com.cn

Abstract: - With the rapid development of software scale and programming languages, it is impossible to test

software manually. The case for automating the software testing process has been made repeatedly and

convincingly by numerous testing professionals. Automated tests can promote the efficiency of software testing

and then to increase software productivity, improve software quality, and reduce cost in almost all processes of

software engineering. White-box testing is one of the most important software testing strategies that can detect

error even when the software specification is vague or incomplete. This paper gives a detailed description of the

design and implementation of a testing engine. The testing engine, which is the kernel of a developed structured

software-testing tool for the Visual Basic and C/C++ language, mainly consists of three components: program

analyzer, source code instrumentation tool and intermediate database. In the testing engine, a block division

mechanism and a new block-based CFG model are introduced and some block-based test adequacy criteria are

extended. The programs are divided into a sequence of blocks and then instrumented and compiled in the

testing engine, and all the information related to the test is saved in the intermediate database. The testing

engine, acting as an agency, associates the testing automation module with instrumented executable program

rather than the source code, and therefore the testing tool can easily be developed to accommodate new

requirements and different testing adequacy criteria. It is also convenient to build a testing environment for

multi-languages by modifying the program analyzer only, due to the flexibility of the software architecture.

Key-Words: computer-aided software test, testing engine, program instrumentation, Intermediate database,

object-oriented software-testing.

1 Introduction
Software testing is the process of executing software

and comparing the observed behavior to the desired

behavior. The major goal of software testing is to

discover errors in the software[1], with a secondary

goal of building confidence in the proper operation

of the software when testing does not discover

errors. With the rapid development of software scale

and programming languages, it is necessary to

develop a computer-aided software-testing tool for

automating the software testing process. The case

for automating the software testing process has been

made repeatedly and convincingly by numerous

testing professionals. Most people involved in the

testing of software will agree that the automation of

the testing process is not only desirable, but in fact

is a necessity given the demands of the current

market. Since most products require tests to be run

many times, automated testing generally leads to

significant labor cost savings over time. Automated

tests can also help eliminate human error, provides

faster results, and then to increase software

productivity, improve software quality, and reduce

cost in almost all processes of software

engineering[2].

A number of automated testing tools have been

developed for white-box testing, functional

testing(black-box testing), GUI-based application

testing, web application testing, etc., and several of

these are quite good inasmuch as they provide the

user with the basic tools required to automate their

testing process. For example, Parasoft has

developed a series of testing tools, which not only

include some program language products(e.g.,

Parasoft Jtest, C++ Tests, .Test and so on), but also

some QA testing tools that automates web

application testing, message/protocol testing, cloud

testing, security testing, and behavior

virtualization(e.g., SOAtest)[3]. Relational Purify

and other Relational’s software testing products are

the software testing tools for C++, VB and

JAVA[4]. TestComplete of AutomatedQA Corp. is

a full featured automated software testing tool that

can provide unit testing, Java testing, Data-driven

testing, functional testing ,etc[5]. Quick Test

Professional (QTP) is an automated functional

Graphical User Interface (GUI) testing tool that

allows the automation of user actions on a web or

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 135 Issue 5, Volume 10, May 2011

client based computer application, WinRunner is a

Mercury interactive enterprise functional testing

tool which is used to quickly create and run

sophisticated automated tests on your application,

and LoadRunner is an industry-leading performance

and load testing product by Hewlett-Packard, etc[6].

A fundamental strength that all white box testing

strategies share is that the entire software

implementation is taken into account during testing,

which facilitates error detection even when the

software specification is vague or incomplete. But

most white-box testing tools limited to work on unit

testing level(e.g. Parasoft Jtest) because of the

extraordinary difficulty and complexity of the

analysis and representation of the program structure,

the test case design and over budget cost of testing

and so on. Our motivation of developing the tool is

to make the structured testing activities automatic or

semi-automatic. Consequently, we have developed

computer-aided software testing tool for Visual

Basic, Delphi, C++, etc., which is designed for

structured testing. It works on the level of unit

testing and integration testing, and is extended to

support regression testing. It provides auto-

generation of graphs and charts, test coverage

analysis automation, quality measurement

automation, dynamic tracing automation, and testing

execution automation.

Referring to the following Figure 1., the

computer-aided software-testing tool mainly

consists of two modules: Engine and Automation.

The former is the kernel of testing tool. The engine

reads source code (parsing), generates structure

information of the program and saves it in static

analysis database, then instruments the program to

meet the test requirements and links the object files

to produce the executable program. When running

the test running, the engine records the dynamic test

information in dynamic database that is

consequently used in the automation modules.

This paper addresses the issue surrounding the

design and implementation of test engine for

structured software-testing tools[7][9]. The main

contributions of this paper are listed below:

♦ Present the architecture of software-testing

tool that may provide high reusability and flexibility

according to the theory of software

engineering[10][11][12].

♦ Present a description of the structure of the

testing engine. The test engine mainly consists of

three components: a program analyzer used to

divide the program into a sequence of blocks; an

instrumental tool for code instrumentation; and an

Intermediate database that records the test histories.

♦ Propose a block-based division mechanism

and a new block-based control-flow graph(CFG)

model for effectively representing the structure

information of the program to be tested, and then

extend the traditional program-based software test

data adequacy measurement criteria based on the

block-based division mechanism, and empirically

analyze the subsumption relationship between these

measurement criteria.

♦ Present a new technology of code

instrumentation based on Dynamic Link Library.

♦ Give a complete description of the structure of

the Intermediate database and the information that is

stored in the database.

Project File
Project Maker
Parsing

Instrumentation

Compile & Link
Source Code

Static Analysis

Instrumented

 Executable Program

Static Analysis

Dynamic Analysis

Dynamic Tracing
Capture & Replay
Testing Execution

Test Script Files

Database

Dynamic Analysis
Database

 Test Reports

Graphs & Charts

Quality Measurement
Coverage Analysis

Test Case Analysis

Figure 1. Architecture of the Computer-Aided Software-Testing Tool

Testing

Engine

Automation

modules

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 136 Issue 5, Volume 10, May 2011

The remainder of this paper is organized as

follows: Section 2 gives a brief description of the

working flow of the testing engine. Section 3

introduces the program analyzer, which consists of a

block-based division mechanism, a new block-based

CFG model and some block-based coverage criteria

extended based on the traditional CFG model.

Section 4 gives a description of the instrumental tool.

In section 5, we describe the structure of the

Intermediate database. Finally, Section 6 summarizes

our results and discusses some future work.

2 Working Flow of the Engine
A software system generally contains more than one

source code file, which is organized by project file.

Thus the first step of our testing tools is to

understand the project file. As the kernel of the

testing tool, the engine analyzes the project file

(Project Maker) and reads the source code files

according to the information described by the project

file, then parses the source code, and synchronously

performs code instrumentation through static

analysis. Finally the engine compiles the

instrumented code and links the object files to

produce the executable program. Static analysis is to

get necessary structure information of source code.

Then these data are saved into the static analysis

database, which prepares for the auto-generation of

graphs, charts and quality measurement, and guiding

the test. Program instrumentation is to insert our own

code into the specified place of the program in order

to get the dynamic test information during the

process of running instrumented executable program,

and save them in the dynamic analysis database.

In the testing tool, only the static analysis module

is directly associated with the source code. During

the course of testing, the engine acts as agency that

associates the testing automation module with

instrumented executable program rather than the

source code. So the automation modules are

indirectly associated with the source code through

the Intermediate database[13]. It is convenient to

support multi-language for the testing tool via the

engine, because we only need to modify the program

analyzer in the engine without modifying the

consequent automation module by modifying the

grammar rules and designing a general Intermediate

database. Thus we implement the reuse of modules

inside the system to a large extent.

While different languages have the different

grammar structures and writing styles, it is

impossible to parse different languages with a

uniform program analyzer. We use Bison[8] to parse

a language in order to enhance the reusability of

module. In order to be useful, a program must do

more than parse input. We implement the semantic

actions such as program division, and code

instrumentation, etc., through program analyzers and

instrumental tool in the engine.

3 Program Analyzer
As we mentioned above, the tool is designed for

structural testing, especially for path testing. It

requires complete knowledge of the program’s

structure (i.e., source code). Thus the first step of our

testing tools is to understand the project file. The

program analyzer analyzes the project file (Project

Maker) and reads the source code files according to

the information described by the project file, and

then parses the source code.

CFGs describe the logic structure of software

modules. A module corresponds to a single function

or subroutine in typical languages, has a single entry

and exit point, and is able to be used as a design

component via a call/return mechanism. Each flow

graph consists of nodes and edges. Traditionally, the

nodes of CFG represent computational statements or

expressions, and the edges represent transfer of

control between nodes. Each possible execution path

of a software module has a corresponding path from

the entry to the exit node of the module’s CFG. This

correspondence is the foundation for the structured

testing methodology. Furthermore, it is completely

independent of text formatting and is nearly

independent of programming language since the

same fundamental decision structures are available

and uniformly used in all procedural programming

language[16].

In order to describe the structure information of

the source program and evaluate the test adequacy

efficiently, we have presented a block division

mechanism and a new block-based CFG model, and

extended some block-based test adequacy criteria.

Same as the traditional flow graph model, the block-

based CFG model presented in section 3.2 is also

independent of the text-free procedural programming

language.

3.1 Block Division Mechanism
According to the block division mechanism, there is

only one kind of component: block in the program. A

block is a sequence of program statements. Formally,

it is such a sequence of statements that if any one

statement of the block is executed, all statements

thereof are executed. Less formally, a block is a

piece of straight-line code. There exist two kinds of

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 137 Issue 5, Volume 10, May 2011

block named Node and Segment. In the engine, all

the programs to be tested will be divided into a

sequence of segments and nodes, and the information

of the block-based division, which will be used to

guide structured testing, is saved into static database.

3.1.1 Node

There are three types of node, namely decision,

junction and the entry/exit point of program unit.

A decision is a program point at which the control

flow can diverge. Some examples in C++

programming language, as shown in Table 1.,

include IF (condition), SWITCH (expression), FOR

(expression; expression; expression) and WHILE

(condition)(while statement or do…while statement).

A junction is a point in the program where the

control flow can merge. In C++ language, examples

of junctions are “DO” in DO…WHILE statement,

“ELSE” in IF…ELSE statement, “CASE” and

“DEFAULT” in SWITCH statement and statement

labels.

The entry/exit point of program unit is defined

as the begin/end point of a scope, which is the

portion in program within which a declaration

applies. From the point of view of branch body,

although the body’s end point is also a node, the

begin point isn’t an alone node, and it is together

with the above decision or junction node.

Table 1. Decisions in C programming language

Statements Format of statement Descision

If statement; if (condition)

 if body

[else

 Else body]

IF (condition)

Switch statement; switch (expression)

{

 ……

}

switch (expression)

For statement; for (expression; expression; expression)

 loop body

for (expression; expression;

expression)

While statement; while (condition)

loop body

while (condition)

do…while statement; Do

 loop body

while (condition)

while (condition)

3.1.2 Segment

A segment is a sequence of computer statements

between two consecutive branch points. It has one

entry and one exit. Here the branch points include the

above nodes and the position between unconditional

jump statements and its next statement. In C++

language, examples of unconditional jump

statements are GOTO, RETURN, BREAK and

CONTINUE statements.

3.1.3 Invisible Segment

Besides the above segment, there is another special

segment invisible segment, which is designed for

recording the paths that have been executed. For

example, any IF statement lacking ELSE part has an

“IF statement invisible” segment by definition which

is executed when the IF(condition) is not satisfied.

For each repetition statement, there are two invisible

segments. One of them is “low-end loop boundary

invisible segment” which is executed if the repetition

condition is never satisfied, the other is “high-end

loop boundary invisible segment” which is executed

when the repetition condition is no more satisfied.

The “high-end loop boundary invisible” as well as

the “IF statement invisible” are also called base

invisible segment.

3.2 Block-Based control-flow graph(CFG)
CFG is a graphical representation of a program's

control structure, and plays an important role in

debugging, control flow analysis and coverage

analysis. In order to describe the program’s structure

efficiently, we present a new CFG model based on

blocked division mechanism introduced in the testing

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 138 Issue 5, Volume 10, May 2011

engine. According to the new CFG model, the nodes

of the graph represent the blocks but not the

statements or expression of the program and the

edges represent transfer of control between the

blocks. Thus we can reduce the number of nodes of

the graph in some degree and then the complexity of

the flow graph.

As an example, consider the C function in Figure

2., which implements Euclid’s algorithm for finding

greatest common divisors. The traditional nodes of

the program are numbered A0 through A13 and the

corresponding control flow graph is shown in Figure

3., in which each node is numbered 0 through 13 and

edges are shown by lines connecting the nodes.

Otherwise, the visible nodes and segments of this

module are numbered B0 through B9 (as shown in

Figure 4.). Three invisible segments are introduced

for better recording the executed paths based on the

block division mechanism. The first one is the “IF

statement invisible segment” which will be executed

when the decision “if(n/m)”(B1) is not satisfied, the

second is the “low-end loop boundary invisible

segment” which will be executed when the decision

“while(r!=0)”(B5) is never satisfied and the third is

the “high-end loop boundary invisible segment”

which will be executed when the decision

“while(r!=0)” is no more satisfied after the loop has

repeated for several times. The logical view of the

corresponding block-based CFG is shown in Figure

5., in which the nodes are numbered 0 through 12.

By definition, node 0 is the “IF statement invisible”

segment, node 8 is the “low-end loop boundary

invisible segment” and node 9 the “high-end loop

boundary invisible segment”.

The reason why the CFG shown in Figure 5. is

only the logical view of the block-based CFG of

module “euclid” is that, in our testing engine, the

additional constraints were added to block-based

CFG compared to the traditional CFG, and can serve

as reference for the design of integrated circuit.

Different from traditional CFG, the new block-based

CFG model can not only show the sequence of the

source code but also the coverage information, and is

more conveniently to be used to guide testing. A

sample is shown in Figure 6. In the Figure 6, the

CFG is shown in a block-flow form. Different kinds
Figure 2. Source listing for module “euclid”

A0 int euclid(int m, int n)
{ /* Assuming m and n both greater than 0,

Return their greatest common diviser.
Enforce m>=n for efficiency.*/

 int r;
A1 if(n>m) {
A2 r=m;
A3 m=n;
A4 n=r;
A5 }
A6 r=m%n;
A7 while (r!=0){
A8 m=n;
A9 n=r;
A10 r=m%n;
A11 }
A12 return n;
A13 }

11

12

13

5

6

7

8

9

10

2

3

4

0

1

Figure 3. Traditional CFG for module “euclid”

B0 int euclid(int m, int n)
{ /* Assuming m and n both greater than 0,

Return their greatest common diviser.
Enforce m>=n for efficiency.*/

 int r;

B1 if(n>m) {

B2 r=m;
 m=n;

 n=r;

B3 }
B4 r=m%n;
B5 while (r!=0){

B6 m=n;
 n=r;
 r=m%n;

B7 }
B8 return n;
B9 }

Figure 4. block division for module “euclid”

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 139 Issue 5, Volume 10, May 2011

of block are identified by different graphical

elements. This model can show not only the blocks

information include the block’s sequence number,

the line number of the source code the block

correspond and the times executed during a test etc.,

but also the source codes about the block. We can get

complete knowledge of the program’s structure

information conveniently, i.e., path information.

It is very convenient to find the corresponding

code from this CFG, and can provide a lot of

information to help programmers to test, debug and

conduct coverage analysis. For example, testers can

easily find which block is not tested and which

condition/decision is not covered during a certain

test. The blocks affected by the modification in new

version program are easy to be identified too.

One other obvious advantage of the block-based

flow graph model is the reduction of the nodes

number, especially in the large scale program.

Furthermore, some block-based test adequacy criteria

are extended which will be discussed in section 3.3.

3.3 Block-Based Test Coverage Criteria
Code coverage is an important type of test

effectiveness measurement. It describes the degree to

which the source code of a program has been tested.

Code coverage is a way of determining which code

statements or paths have been exercised during

testing. With respect to testing, coverage analysis

helps in identifying areas of code not exercised by a

set of test cases. Alternatively, coverage analysis can

also help in identifying redundant test cases that do

not increase coverage. There are various measures

for coverage, such as statement coverage, branch

coverage, path coverage, multiple condition

coverage, and function coverage. Based on the block

division mechanism, we have extended traditional

test coverage criteria.

Figure 6. Block-based CFG

3.3.1 SC0

A set of test cases of a program satisfies SC0 if all

nodes and visible segments of the program have been

executed at least once.

SC0 = (Bexe_segment÷÷÷÷Bsegment)*100% (1)
Here Bsegment is the number of segments in a

program or program module and Bexe_segment is the

number of segments that have been executed at least

once.

Figure 5. Logical view of Block-based CFG for

module “euclid”

10
11
12

0

1

4

5

6

7

2 3

8
9

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 140 Issue 5, Volume 10, May 2011

SC0, as a basic block test coverage, is better than

the statement test coverage. For example, the

following IF statement:

if (Condition) Statement;

When the if(Condition) is not true, the statement

part can not be executed. According to the traditional

statement test coverage, we can’t identify whether

this IF statement is executed or not. However, SC0

can clearly know the statement part is not executed,

because there are two blocks in the above IF

statement based on the block division mechanism,

with one being a node(Condition part of IF

statement) and the other being a segment(Statement

part).

SC0 covers the statement test coverage. The one

that satisfies SC0 must also satisfie the statement test

coverage criteria.

3.3.2 SC1

A set of test cases of a program satisfies SC1 if it

satisfies SC0 and all basic invisible segments of the

program have been executed at least once. Basic

invisible blocks consist of IF, DO-WHILE,

SWITCH, and high-end loop boundary invisible

blocks.

SC1 = (Bexe_segment+ Bexe_binvisiblesegment)÷÷÷÷ ((((Bsegment +
Bbinvisiblesegment)*100% (2)

Here Bbinvisiblesegment is the number of base invisible

segments in a program or program module and Bexe-

binvisiblesegment is the number of base invisible segments

that have been executed at least once.

SC1, a standard block test coverage, is similar to

the branch test coverage but better than the branch

test coverage. Consider the following statements:

 Statement1;

 goto 50;

 Statement2;

 50: Statement3;

Apparently, Statement2 is a dead statement and

will never be executed, but this situation can’t be

identified according to the branch test coverage

which is based on the branch statement. Statement2

is also a segment according to the block division

mechanism, so SC1 can find this dead statement.

SC1 covers SC0 and the branch test coverage.

3.3.3 SC1+

A set of test cases of a program satisfies SC1+ if it

satisfies SC1 and the entire low end invisible

segments of the loops in the program have been

executed at least once.

SC1+ = (Bexe_segment+ Bexe_invisiblesegment)÷÷÷÷ ((((Bsegment +
Binvisiblesegment)*100% (3)

Here Binvisiblesegment is the number of all the

invisible segments in a program or program module

and Bexe-invisiblesegment is the number of all the invisible

segments that have been executed at least once.

SC1+ covers SC1.

3.3.4 J-Coverage

J-Coverage is defined as the ratio of the number of

executed visible and invisible blocks plus executed

outcomes of conditions to the number of all visible

and invisible blocks plus all outcomes of conditions

in a program or program module. J-Coverage covers

SC1+.

SC1+ = (Bexe_segment+ Bexe_invisiblesegment+ Bexe_node)÷÷÷÷
((((Bsegment + Binvisiblesegment+ Bnode)*100% (4)

Here Bnode is the number of all outcomes of

conditions in a program or program module and

Bexe_node is the number of all the executed outcomes

of conditions.

It is the strongest test coverage criteria provided

by our testing tool.

4 Source Code Instrumentation
Instrumentation is the process of non-intrusively

inserting code into the specified place of the source

code that is being analyzed and then compiling and

executing the modified (or instrumented) software.

The instrumented executable program is prepared for

coverage analysis automation and dynamic tracing

automation and testing execution automation.

4.1 Instrument based on Dynamic Link

Library
According to the traditional technology of the

instrumentation, we first create a Lib of functions

that are related to some certain operations or codes,

then instrument statements into the source code file

to call these functions, and finally link this Lib when

we compile the instrumented source file. In order to

save the data from memory to disk, we must

instrument the output statement before each

termination in the source code file. A fatal weakness

of this method is that the data in the memory will be

lost when the execution of the instrumented program

don’t terminated normally or interrupted by the user.

In order to avoid the weakness mentioned above,

we introduced the techniques of the Dynamic Link

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 141 Issue 5, Volume 10, May 2011

Library (DLL)[14][15] into our engine to collect and

update the data by creating a DLL file that consists

of some function used to manipulate the dynamic

database. On the other hand, we should instrument

some command in the source code file to call these

function in DLL. When the instrumented program is

executed, the data will not be saved into the memory

of the program itself but of the DLL.

There are two benefits of this method. One is that

the data will not be lost when the execution is

terminated unexpectedly and can accurately locate

where the fault happens which causes the software to

collapse because the DLL is dependent on the

program. The other is that the system such as the

Windows can terminate the use of DLL when the

user interruption or the collapse happens and the

DLL will do some specific operation which the user

has defined to cope with the abnormal termination.

4.2 Work Flow OF the Instrumentation
Step 1: Parsing the project file into source code files;

Step 2: For each source code file,

(1) Parsing the structure and saving the structure

information into DD file, DDH file, DDC

file and DS file;

(2) Parsing the structure and createing a linked

chain named InstrChain which is used to

describe the information of the

instrumentation, shown as following;

struct InsPoint {

int SrcPos; // position that the code instrumented

int Style; // type of the code instrumented

int Rno; // test record point used to get the test

coverage

int Cno; // test record point of the condition test

int Lno; // suffix of the local simulated variables

struct InsPoint *Next;

} *InstrChain;

(3) Replacing the suffix of the local simulated

variables in the linked chain InstrChain.

Some important symbols are listed in the

following.

@R，，，，address of the logic counter of the

source code file ， ordered by the line

number of the instrumented point in the

program. The value of the variable @R in

each point is same;

@C, the sequence number of the decision in

the source code file and ordered by the line

number of the instrumented point in the

program;

@L, the suffix of the local simulated

variables that is defined to remember the

states of the program;

(4) Instrument the source code file according to

the information in the linked chain

InstrChain;

Step 3: Adding the public module to declare the

global variables and the quotes of the function in the

DLL; Updating the project file by adding the public

module.

5 Intermediate Database
Almost all object-oriented languages have the same

object techniques as classes, objects, inheritance,

polymorphism and dynamic binding, etc. In order to

reuse the modules inside the system, we introduced

the intermediate database as the kernel of the engine

based on the theory of the software construction.

There are two databases: one is the static analysis

database and the other is the dynamic analysis

database.

5.1 Static Analysis Database
The information in the static database is used in the

test coverage analysis and quality measurement

automation module, and it is also used to generate

graphs and charts automatically.

We create one data file to save source code

information for each program. In order not to save a

string more than one time and to manage them easily,

we use hash table to save the address (or pointer) of

the string, but not the string itself.

The information in the static database includes

structure information, class definition information,

method definition information and block division

information of the program, etc., as shown in Figure

7.

(1) Structure Information

The structure file_node0 is used to save the

structure information, and includes the name of the

source file, the path the dynamic database file, the

files the programs used, the global static or dynamic

variables defined in the program, the block

sequences of source file and all the other information

about the source file structure. All the structure

nodes of the source files are linked into a chain.

(2) Class Definition Information

The data structure class_def0 shown in Figure 7.

is used to save the information of the classes defined

in the source file. The information includes the name

of the class, the source file this class belongs to, the

method defines this class, the outer class of this

class, the base class and the friend class, the private

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 142 Issue 5, Volume 10, May 2011

and public variables and all the other information about

Figure3. Structure of the static analysis database

^next

STR name

file_ref0

^next

STR name

file_ref0

^next

^host_class

STR host file

ULI lineno

STR type

STR name

var_def0

^next

^host_class

STR host file

ULI lineno

STR type

STR name

var_def0

^next

STR name

class_ref0

^next

STR name

class_ref0

^next

STR type

STR name

dataname0

^next

STR type

STR name

dataname0

^next

^vir_funcs

STR name

funcmem0

^next

^vir_funcs

STR name

funcmem0

^next

STR name

Func_ref0

^next

STR name

Func_ref0

^next

^class

UC vias

Inheri_node0

^next

^class

UC vias

Inheri_node0

^next

I is_template

USI blank_lines

USI partial_lines

USI comment_lines

^base_classes

^friend_funcs

^friend_memfuncs

^private_data

^public_funcs

^protected_funcs

^ctor

^dtor

^private_data

^public_data

^protected_data

^friend_classes

^first_blk

^last_blk

^host_func

^host_class

STR incl_file

STR host_file

ULI last_lineno

ULI first_lineno

STR name

UI id

Class_def0

^next

I is_template

USI blank_lines

USI partial_lines

USI comment_lines

^base_classes

^friend_funcs

^friend_memfuncs

^private_data

^public_funcs

^protected_funcs

^ctor

^dtor

^private_data

^public_data

^protected_data

^friend_classes

^first_blk

^last_blk

^host_func

^host_class

STR incl_file

STR host_file

ULI last_lineno

ULI first_lineno

STR name

UI id

Class_def0

^classes

^blocks

^funcs

^gl_vars

^st_vars

^incl files

UI gid

STR group

UI uid

STR owner

UI last_ntime

UI partial_lines

UI comment_lines

UI blank_lines

UI total_lines

STR dd_path

STR dbs_name

STR name

file_node0

^classes

^blocks

^funcs

^gl_vars

^st_vars

^incl files

UI gid

STR group

UI uid

STR owner

UI last_ntime

UI partial_lines

UI comment_lines

UI blank_lines

UI total_lines

STR dd_path

STR dbs_name

STR name

file_node0

^first_blk

^last_blk

^next

^label

^vars

^callees

I is_template

USI branch_num

USI cond_num

USI invs2_num

USI invs1_num

USI invs0_num

USI vis_num

USI complexity_o

USI complexity_w

USI blank_lines

USI partial_lines

USI comment_lines

ULI last_lineno

ULI first_lineno

STR incl_file

LI base_ddindex

STR host_file

STR ret_type

STR name

UC code

UI id

Func_def0

^first_blk

^last_blk

^next

^label

^vars

^callees

I is_template

USI branch_num

USI cond_num

USI invs2_num

USI invs1_num

USI invs0_num

USI vis_num

USI complexity_o

USI complexity_w

USI blank_lines

USI partial_lines

USI comment_lines

ULI last_lineno

ULI first_lineno

STR incl_file

LI base_ddindex

STR host_file

STR ret_type

STR name

UC code

UI id

Func_def0

^next

^prev

^inact_lines

^hostfile

^jmp_list

ULI cond_len

ULI key_offset

ULI length

ULI offset

ULI first_lineno

LI ddindex

ULI code

UI id

block_node0

^next

^prev

^inact_lines

^hostfile

^jmp_list

ULI cond_len

ULI key_offset

ULI length

ULI offset

ULI first_lineno

LI ddindex

ULI code

UI id

block_node0

^n ex t

^ lin en o _ lis t

S TR n am e

C a ll_ n o d e0

^n ex t

^ lin en o _ lis t

S TR n am e

C a ll_ n o d e0

^n ex t

^ lin en o _ lis

U C u sag e

S TR n am e

v ar_ re f0

^n ex t

^ lin en o _ lis

U C u sag e

S TR n am e

v ar_ re f0

^n ex t

U L I l in en o

l in e_ n od e0

^n ex t

U L I l in en o

l in e_ n od e0

^next

^unresolved_jmps

^current_blk

^goto_list

ULI lineno

STR name

label_node0

^next

^unresolved_jmps

^current_blk

^goto_list

ULI lineno

STR name

label_node0

^next

^chain

^dest

UC reason

ULI lineno

jump_node0

^next

^chain

^dest

UC reason

ULI lineno

jump_node0

^next_lowlevel

^next_samelevel

^fbcb_chain

^first_block

^last_block

I lineno

I in_domain

C status

UI length

UI partial_lines

UI comment_lines

UI blank_lines

UI total_lines

STR name

NestFileInfo0

^next_lowlevel

^next_samelevel

^fbcb_chain

^first_block

^last_block

I lineno

I in_domain

C status

UI length

UI partial_lines

UI comment_lines

UI blank_lines

UI total_lines

STR name

NestFileInfo0

^next

ULI linenum

ULI begin_lineno

inact_line0

^next

ULI linenum

ULI begin_lineno

inact_line0

“str

NOTE
I int
UC unsigned char
UI unsigned
LI long
USI unsigned short
ULI unsigned long
STR EG_STR_INDEX_TYPE_T

Point of the linked chain

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 143 Issue 5, Volume 10, May 2011

each class. In the same way, all the structure nodes

related to the classes are linked together.

(3) Method Definition Information

The data structure func_def0 shown in Figure 7.

is used to save the information about a method

including the name of the method, the data type

returned by the method, the type of the method, the

source file in which the method defined, the

sequence number of the first code block of the

method in the dynamic database file, the first code

block of the method and the last code block of the

method, etc. All the structure nodes of the method

are linked together too. There are 8 kinds of type

about the method: macro function, non-class-member

function, class-member function, virtual function,

inline function, overloading function, static function,

pure virtual function, etc.

Here, some data fields we should fill in with the

name of the function, but sometimes the name of the

function is not the true name of the function, because

of the function overloading. For example, two

overloading functions: int foo() and int foo(int n),

their true name is same, so we should change their

name into foo_v and foo_n to avoid collision when

we save the name of the function in the database.

(4) Block Division Information

In the engine, all the programs to be tested will be

divided into a sequence of segments and nodes. The

block division information includes the type of the

block, the number of the block record point, the

number of the first line of the block in the program,

etc. The information of each block of the program is

assembled as a structure node named block_nod0

(shown in Figure 7.) and all the nodes are linked

together.

5.2 Dynamic Analysis Database
The data in the dynamic database will be used in the

automation module. Because dynamic analysis is

implemented based on the sequence information of

blocks (segment or nodes), which are not associated

with a certain programming languages, but

associated with the logic structure of the source code

file only, the data in the dynamic database is

independent of the language.

The dynamic database saves such information as

the times the segment or the decision have been

executed during one test, the value of each

condition/decision during the process of being

executed, which segment or method or class are

tested when a test case is performed and so on..

There are four kinds of dynamic data file in the

dynamic database such as DDH file, DDC file, DD

file, and DS file. We will introduce the structure of

these files in the following.

(1) DDH File. In the DDH file, there is

information such as the number of the test record

point in the program, the time this execution cost,

whether the program related to the test record point

executed and the time it needed, etc.

(2) DDC File. We use the DDC file to save the

information about the value of each

condition/decision during the execution of the

program. The information includes the number of the

condition, the number of the decision, and their value

during the execution. For a statement “a&&(b || c)”,

we define the whole statement as a decision, and

each sub-statement ‘a’ or ‘b’ or ‘c’ as a condition.

(3) DD File. The DD file is used to save the times

each test record point executed during an execution

of the instrumented program, the cost (i.e., running

time) and other information about the execution. The

data in DD file is saved in the format of the binary

bit map.

(4) DS File. The DS file is used to save the strings

that will be used to display the test coverage. We use

a particular symbol ‘\n’ (0x0A) as the separator

among these strings that are not simply copied from

the source file but generated during the process of

program parsing. For example, a string’s format used

to describe a class declaration statement is that:

‘class’+ the name of the class + the information of

the inheritance.

6 Conclusion
This paper has presented a flexible architecture of

our structure testing tools. The designing of the

testing engine, which is the kernel of the testing tool,

took the reusability of the component into

consideration. The testing engine consists of three

components: program analyzer, instrumental tool and

intermediate database. In the program analyzer, we

presented a new block-based CFG model for

effectively guiding the structured testing and

extended some block-based test adequacy criteria

based on the block-based division mechanism. The

introduction of the DLL technique could also be able

to promote the flexibility of the handling of the

unexpected or user interrupted termination.

Furthermore, the Intermediate database, which acts

as a bridge between the testing engine and the

automation module, improves the reusability of the

software component.

According to the architecture of these software-

testing tools, it is convenient to support multi-

language for the testing tool via the engine, because

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 144 Issue 5, Volume 10, May 2011

we need only modify the program analyzer without

modifying the consequent automation module.

Based on the block-based division mechanism,

we can easily extend the traditional test adequacy

measurement criteria by modifying the adequacy

calculation module.

A new block-based CFG model, which is

different from the traditional CFG model, was

proposed in our testing engine. This model can serve

as reference for the design of integrated circuit, and

show the sequence of the source code as well as its

coverage information.

The Intermediate database saves all the structure

information of the program and the dynamic test

history information includes the test cases and the

test coverage, result and cost information of each test

case, so it is convenient for the testing tools to evolve

to accommodate new requirements such as

automated regression testing, test selection/reduction,

test visualization to make the fault location easier,

etc.

Furthermore, the technology of instrumentation

has little influence upon the execution efficiency of

the instrumented program. We have made an

experiment with an audio-play program, and the

testing tool of the Pure Series developed by Rational

has much more influence than ours when the

instrumented executable program been executed.

Our future work includes extending the test data

adequacy measurement criteria that fit better for the

object-oriented software test, computer aided

regression test and test selection, reduction technique

based on the information stored in Intermediate

database and so on.

7 Acknowledgements
The author thanks Li YAO as well as other members

at the Institute of System Architecture, Zhejiang

University, for their insights and comments.

This paper supported in part by project ‘Study on

Object-Oriented Software Testing Automation’

(60073027) from National Natural Science

Foundation of China. The paper was also partially

supported by project ‘Study on regression test

selection for Object-Oriented Software——test case

minimize techniques’ (Y200804140) from Scientific

Research Fund of Zhejiang Provincial Educational

Department.

References:

[1] Myers, G., The Art of Software Testing,

Wiley,1989.

[2] Renjie Zheng, Computer’s Software Testing

Techniques, the Tsinghua University Press,

Beijing, 1992.

[3] http://www.parasoft.com/jsp/home.jsp?

itemId=0,2010-10

[4] http://www-306.ibm.com/software/rational/,

2010-10

[5] http://www.automatedqa.com/lp/tc-aw-all-

content.asp?gclid=CJiuhtXd06QCFcMDHAod

GhPYJg, 2010-09

[6] http://www.onestoptesting.com, 2010-10

[7] Li YAO, Research On The Object-Oriented
Software testing, The Doctor Degree paper of

Zhejiang University, Hangzhou, 2002.12.

[8] Boris Beizer, Software Testing Techniques, Van
Nostrand Reinhold Company, New York, 1990.

[9] David Kung, Pei Hsia, Jerry Gao. Object-
Oriented Software Testing. IEEE Computer

Society Press, 1998.

[10] Finkelstein, A. Architectural Stability, Some

Preliminary Comments,

http://www.cs.ucl.ac.uk/staff/ a.finkels-tein,

2000.

[11] Kazman, R., Abowd, G., Bass, L. and Webb, M.

SAAM: A Method for Analyzing the Properties

of Software Architectures. In: Proceedings of

the 16th International Conference on Software

Engineering (Sorento, Italy), 1994, pp. 81-90.

[12] Kazman, R., Asundi, J., and Klein, M.,

Quantifying the Costs and Benefits of

Architectural Decisions, In: Proceedings of the

23rd International Conference on Software

Engineering, Toronto, Canada, 2001, pp. 297-

306.

[13] Clements, P. Active Reviews for Intermediate

Designs (CMU/SEI-2000-TN-009), Software

Engineering, Institute, Carnegie Mellon

University, 2000.

[14] Yuan Weihua, Cheng Lan, Yang Zhenghua.

Using DLL for PC/104 Data Acquiring in

LabVIEW Platform. IN: Proceedings of the 8th

International Conference on Electronic

Measurement & Instruments, Xian China, 2007,

Issue 11, Page 57-58,61.

[15] YoungHan Choi, HyoungChun Kim, DoHoon

Lee. An Empirical Study for Security of

Windows DLL Files Using Automated API

Fuzz Testing. In: Proceedings of the 10th

International Conference on Advanced

Communication Technology, Gangwon-Do

Korea , 2008. Vol.2,pp. 1473–1475.

[16] McCabe, T. and A. Watson, Software

Complexity, CrossTalk: The Journal of Defense

Software Engineering December 1994.

WSEAS TRANSACTIONS on COMPUTERS Xue-Ying Ma, Bin-Kui Sheng

ISSN: 1109-2750 145 Issue 5, Volume 10, May 2011

