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Abstract—the artificial neural network training algorithm is implemented in MATLAB language. This 
implementation is focused on the network parameters in order to get the optimal architecture of the network 
that means (the optimal neural network is the network that can reach the goals in minimum number of training 
iterations and minimum time of training). Many examples were tested and it was shown that using one hidden 
layer with number of neuron equal to the square of the number of inputs will lead to optimal neural network by 
mean of reducing the number of training stages (number of training iterations) and thus the processing time 
needed to train the network. 
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1 Introduction 
Artificial Neural Network (ANN) is a Mathematical 
model designed to train, visualize, and validate 
neural network models [10], [12], [13] and the 
Artificial Neural Network (ANN) is a model-free 
estimator as it does not rely on an assumed form of 
the underlying data [2]. And we can define the 
neural network model is a data structure that can be 
adjusted to produce a mapping from a given set of 
input data to features of or relationships among the 
data. The model is adjusted, or trained, using a 
collection of data from a given source as input, 
typically referred to as the training set. Note that the 
number of inputs to a network is set by the external 
specifications of the problem. If, for instance, you 
want to design a neural network that is to predict 
kite-flying conditions and the inputs are air 
temperature, wind velocity and humidity, then there 
would be three inputs to the network. 
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To experiment with a two-input neuron; use the 
Neural Network Design Demonstration Two-Input 
Neuron (nnd2n2) [3]. 

After successful training, the neural network will 
be able to perform classification, estimation, 
prediction, or simulation on new data from the same 
or similar sources. The Neural Networks package 
supports different types of training or learning 
algorithms. 

More specifically, the Neural Networks model 
uses numerical data to specify and evaluate artificial 
neural network models. Given a set of 
data,{ } 1, =N

ii iyx , from an unknown function, 
y=f(x), this model uses numerical algorithms to 
derive reasonable estimates of the function, f(x). 
This involves three basic steps. First, a neural 
network structure is chosen that is considered 
suitable for the type of data and underlying process 
to be modeled. Second, the neural network is trained 
by using a sufficiently representative set of data. 
Third, the trained network is tested with different 
data, from the same or related sources, to validate 
that the mapping is of acceptable quality. 
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Choosing the proper type of neural network for a 
certain problem can be a critical issue. So it is very 
important to define the following in order to achieve 
a good model: The input sets, the target sets, the 
network architecture, the activation functions, the 
training function, the training rate, the goal, the 
number of iterations used to train the network. 

Neural networks have arisen from analogies with 
models of the way that humans might approach 
pattern recognition tasks, although they have 
developed a long way from the biological roots. 
Great claims have been made for these procedures, 
and although few of these claims have withstood 
careful scrutiny, neural network methods have had 
great impact on pattern recognition practice. A 
theoretical understanding of how they work is still 
under construction, and is attempted here by 
viewing neural networks within a statistical 
framework, together with methods developed in the 
field of machine learning [6]. 

 
 

2 Back-Propagation 
There are many different types of ANN and 
techniques for training them but we are just going to 
focus on the most basic one all of them is classic 
back propagation neural network (BPN) [7].  
Backpropagationis by far the most widely used and 
understood neural network paradigm. Its popularity 
arises from its simple architecture and easy to 
understand learning process, the backpropagation 
scheme consists of two major steps. These are the 
forward activation and the backward error flows. 
The training process begins with the assignment of 
random weights to the connections between the 
nodes of the various layers. The various input 
patterns are then presented to the network, and the 
forward activation flow produces the output 
patterns. These output patterns will not be the same 
as the desired output patterns. The errors in the 
outputs are calculated for the output layer nodes as 
the difference between the desired and actual 
outputs. For the hidden layers, the errors are 
calculated by backpropagating the errors in the 
output layer to the hidden layers. The errors of each 
of the nodes are summed over the whole set of 
training patterns. These errors are used to change the 
weights in the interconnections between the layers. 
The weights connecting to the output layer are 
changed according to the delta rule, whereas for the 
weights in the hidden layers the generalized delta 
rule is used. There are many good references which 
describe the mathematics of the backpropagation 
approach in detail including [17], [18]. 

The neural network is a computerized software 
program, which can be used to develop a non-linear 
statistical model in which there are many 
parameters, called weights. These weights control 
the output of the model given the input. The type of 
network used was a fully connected feed forward 
back propagation multi-layer perceptron (MLP) 
[15]. 

 
Multilayer perceptron & BP (Back-propagation) 

model Standard multilayer perceptron (MLP) 
architecture consists more than 2 layers; A MLP can 
have any number of layers, units per layer, network 
inputs, and network outputs [16]. 
 

In this paper, a Multi Layer Perceptron (MLP) 
network with a Back Propagation (BP) algorithm, a 
network with an optimum learning rate is proposed. 
The MLP consists of neurons that are arranged in 
multiple layers with connections only between 
nodes 
in the adjacent layers by weights. The layer where 
the optimum learning rate in BP Network input 
information is presented is known as the input layer 
and the layer where the processed information is 
retrieved is called the output layer. All layers 
between the input and output layers are known as 
hidden layers. 

For all neurons in the network, except the input 
layer neurons, the total input of each neuron is the 
sum of the weighted outputs of the neurons in the 
previous layer. Each neuron is activated with input 
to the neuron and by the activation function of the 
neuron [18]. 

The input and output of the neuron, i, (except for 
the input layer) in a MLP mode, according to the BP 
algorithm [19], are: 
 
Input     ijiji bowx += ∑          (1) 
  
Output   )( ii xfo =             (2) 
 
where Wij is the weight of the connection from 
neuron i to node j, bi is the numerical value and f is 
the activation function. 
The sum in Equation 1 is over all neurons, j, in the 
previous layer. The output function is a nonlinear 
function, which allows a network to solve problems 
that a linear network cannot [20]. In this study, the 
tan-sigmoid and linear transfer functions are used to 
determine the output. 
A Back-Propagation (BP) algorithm is designed to 
reduce error between the actual output and the 
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desired output of the network in a gradient descent 
manner.  

Finally the backpropagation algorithm for training 
neural networks has been discussed in many papers 
[1]. The back propagation refers to the fact that any 
mistakes made by the network during training get 
sent backwards through it in an attempt to correct it 
and so teach the network what right and wrong [8]. 
The BPN learns during a training epoch, you will 
probably go through several epochs before the 
network has sufficiently learnt to handle all the data 
you’ve provided it and the end result is satisfactory. 
A training epoch is described below    [7] – [14]: 
 
For each input entry in the training data set: 
• Feed input data in (feed forward). 
• Check output against desired value and feed 

back error (back-propagate).  
Where back-propagation consists of: 
 
Calculate error gradients. 
• Update weights. 

Thus we can summarize the training Back-
propagation algorithm into the following steps: 
Step 1: Input training vector. 
Step 2: Hidden nodes calculate their outputs. 
Step 3: Output nodes calculate their outputs on the 
basis of Step 2. 
Step 4: Calculate the differences between the results 
of Step 3 and targets. 
Step 5: Apply the first part of the training rule using 
the results of Step 4. 
Step 6: For each hidden node, n, calculate d(n). 
Step 7: Apply the second part of the training rule 
using the results of Step 6.  
Steps 1 through 3 are often called the forward pass, 
and steps 4 through 7 are often called the backward 
pass. Hence, the name: back-propagation.  
 
An actual algorithm for a 3-layer network (only one 
hidden layer) [9] – [13]: 
Initialize the weights in the network (often 
randomly) 
 
 
  Do 
         For each example e in the training set 
              O = neural-net-output (network, e); 
forward pass 
              T = teacher output for e 
              Calculate error (T - O) at the output 
units 

Compute delta_wh for all 
weights from hidden layer to        
output layer; backward pass 
Compute delta_wi for all 
weights from input layer to 
hidden layer; backward pass 
continued 

              Update the weights in the network 
   Until all examples classified correctly or                            
stopping criterion satisfied 
Return the network 
 
 
3 Experimental Results 

We used MATLAB because it is already in use in 
many institutions, And it is useful for statistical task 
to see the demeanor of the system, It is used in 
research in academia and industry, MATLAB is 
useful for data analysis, data extraction and data 
processing, we can perform operations from 
MATLAB help command,. It is used to generate 
stimulus for verification of the system. Prototype 
solutions are usually obtained faster in MATLAB 
than solving a problem by using other programming 
languages [11]. 

The artificial neural network back propagation 
algorithm is implemented in Matlab language. This 
implementation is compared with several other 
software packages. 

The effect of reducing the number of iterations in 
the performance of the algorithm is studied. The 
speed of the back propagation program, written in 
Matlab language is compared with the speed of 
several other back propagation programs which are 
written in the C language. The speed of the Matlab 
program is, also compared with the C program 
which is a variant of the back propagation 
algorithm, As the next test shows, MATLAB was 
about 3 times faster than a C++ programming both 
doing a matrix multiply [10]. 

A program in C++ was written to multiply two 
matrices containing double precision numbers. The 
result of the multiplication is assigned into a third 
matrix. Each matrix contained 1000 rows and 1000 
columns. A MATLAB M file was written to do the 
same multiply as C++ program did. Only the 
segment of the code which does the multiplication is 
timed. The test was run on an IBM PC P4 computer, 
the result is shown in Table 1. As the Table shows 
MATLAB is faster than the C++ program. 
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Table 1 
 Speed Comparison of Matrix Multiply In Matlab and a C++ Program 

 

Tools  Execution time in seconds  
1000 X 1000 multiply 

C++ 3.16652

MATLAB 1.204000

As appears from the above table that the MATLAB 
runs 2.63 times faster than the C++ program. 

We can summarize the methodology of the 
experiment: Training, Testing and Validation 
Datasets into: 

• In the ANN methodology, the sample data is 
often subdivided into training, validation, and 
test sets [14].  

• The distinctions among these subsets are 
crucial.  

• defines the following :  

o Training set:   A set of examples used for 
learning that is to fit the parameters [weights] of the 
classifier [14]. 

o Validation set:  A set of examples used to tune 
the parameters of a classifier, for example to choose 
the number of hidden units in a neural network.  

o Test set:  A set of examples used only to assess 
the performance [generalization] of a fully-specified 
classifier [14].    
• A popular Artificial neural network architectures 
chosen are multilayer perceptrons using the 
backpropagation 
algorithm [5]. 
• In overview, a MLP is composed of layers of 
processing units that are interconnected through 
weighted connections:  

o The first layer consists of the input vector.  

o The last layer consists of the output vector 
representing the output class.  

o Intermediate layers called `hidden` layers 
receive the entire input pattern that is modified by 
the passage through the weighted connections. The 
hidden layer provides the internal representation of 
neural pathways.  

• The network is trained using back propagation 
with three major phases.  

o First phase: an input vector is presented to the 
network which leads via the forward pass to the 
activation of the network as a whole. This generates 
a difference (error) between the output of the 
network and the desired output.  

o Second phase: compute the error factor (signal) 
for the output unit and propagates this factor 
successively back through the network (error 
backward pass).  

o Third phase: compute the changes for the 
connection weights by feeding the summed squared 
errors from the output layer back through the hidden 
layers to the input layer.  

• Continue this process until the connection weights 
in the network have been adjusted so that the 
network output has converged, to an acceptable 
level, with the desired output.  

• Assign "unseen" or new data: 

o The trained network is then given the new data 
and processing and flow of information through the 
activated network should lead to the assignment of 
the input data to the output class. 
• For the basic equations relevant to the 
backpropagation model based on generalized delta 
rule, the training algorithm was known [11].  

We have to note the following things while using 
the backpropagation algorithm: 

• Learning rate:  
o Standard backpropagation can be used for 

incremental (on-line) training (in which the weights 
are updated after processing each case) but it does 
not converge to a stationary point of the error 
surface. To obtain convergence, the learning rate 
must be slowly reduced. This methodology is called 
"stochastic approximation."  

o In standard backpropagation, too low a learning 
rate makes the network learn very slowly. Too high 
a learning rate makes the weights and error function 
diverge, so there is no learning at all.  
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o Trying to train a NN using a constant learning 
rate is usually a tedious process requiring much trial 
and error. There are many variations proposed to 
improve the standard backpropagation as well as 
other learning algorithms that don't suffer from these 
limitations [11].  
• Output Representation:  
• Input Data:  

o Normalize or transform the data into [0,1] 
range. This can help for various reasons.  

• Number of Hidden Units:  

o Simply try many networks with different 
numbers of hidden units, estimate the generalization 
error for each one, and choose the network with the 
minimum estimated generalization error.  

• Activation functions:  

o For the hidden units, are needed to introduce 
nonlinearity into the network.  

o Without nonlinearity, hidden units would not 
make nets more powerful than just plain perceptrons 
(which do not have any hidden units, just input and 
output units).  

o The sigmoidal functions such as logistic and 
tanh and the Gaussian function are the most 
common choices [4].  

To get some results we choose the following 
examples: 

Example 1: 

Let us take an XOR operation with 2 inputs and 1 
output and study the implementation of the neural 
model for this operation [9,12]: 

 
Step 1: Generate the training data. 
p= [0 0 1 1; 0 1 0 1]; % input for training 
Step 2: Generate the target output. 
t= [0 1 1 0]; % output for training 
Step 3: Create the neural network and define the 
activation functions and training function. 
net = newff([0 1;0 1],[4 1],{'logsig' 'purelin'}); 
Step 4: Initialize the network.  
net = init(net); 
Step 5: Define the parameters of the network. 

net.trainParam.epochs = 10000; 
% Maximum epochs are 10000 (iteration number of 
optimization) 
net.trainParam.goal = 0.000001; % Error limit is 
0.000001 
%-------------------------------------------------- 
% training the MLP by using a training pattern 
%-------------------------------------------------- 
net.trainParam.lr = 0.05; 
Step 6: Train the network. 
[net tr] = train(net,p,t); 
% training the MLP neural network by using a train 
function 
%-------------------------------------------------- 
% to draw the result making the test pattern 
%-------------------------------------------------- 
Step 7: Find the output of the network. 
Output=sim(net,p);  

The previous steps were implemented using 
different network architecture and the optimal 
performance was achieved using 1 hidden layer with 
4 neurons and 1 output layer with 1 neuron as 
shown in figure 1. 
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The results of implementation the network using 
different network architecture are shown in Table 2. 

 
 
 
 
 

Fig. 1 Optimal solution to reach the goal for 
example1 

 
Table 2 

 Simulation Resells for Example 1 
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Number of neurons in the 
hidden layer 

Average  training 
time in seconds 

Number of training 
iterations 

The goal was met 

1 5.985 592 No 

2 1.407 198 Yes 

3 0.456 3 Yes 

4 0.152 2 Yes 

5 0.172 2 Yes 

6 0.156 2 Yes 

7 0.157 3 Yes 

2X2(2 hidden layers each with 
2 neurons) 

0.578 51 Yes 

 

Example 2: 

Let us now take an XOR operation with 3 inputs and 
1 output and study the implementation of the neural 
model for this operation: 

 
Step 1: Generate the training data. 
p=[0 0 0 0 1 1 1 1;0 0 1 1 0 0 1 1;0 1 0 1 0 1 0 1]; % 
input for training 
 
 
 
Step 2:: Generate the target output. 
t=[0 1 1 0 1 0 0 1]; % output for training 
 
Step 3: Create the neural network and define the 
activation functions and training function. 
net = newff([0 1;0 1;0 1],[9 1],{'logsig' 'purelin'}); 
Step 4: Initialize the network. 
net = init(net); 
Step 5: Define the parameters of the network. 
net.trainParam.epochs = 10000; 
% Maximum epochs is 10000 ( iteration number of 
optimization ) 
net.trainParam.goal = 0.000001; % Error limit is 
0.000001 
%-------------------------------------------------- 
% training the MLP by using a training pattern 
%-------------------------------------------------- 
net.trainParam.lr = 0.05; 
Step 6: Train the network. 
 [net tr] = train(net,p,t); 

% training the MLP neural network by using a train 
function 
%-------------------------------------------------- 
% To draw the result making the test pattern 
%-------------------------------------------------- 
Step 7: Find the output of the network. 
Output=sim(net,p);  
 

The previous steps were implemented using 
different network architecture and the optimal 
performance was achieved using 1 hidden layer with 
9 neurons and 1 output layer with 1 neuron as 
shown in figure 2. 
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Fig. 2 Optimal solution to reach the goal for 
example 2 

 
The results of implementation the network using 

different network architecture are shown in Table 3. 
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Table 3 
Simulation resells for example 2. 

 

Number of neurons in the 
hidden layer 

Average  training time 
in seconds 

Number of training 
iterations 

The goal was met 

1 1.687 233 No 

2 1.297 167 No 

3 4.344 636 Yes 

4 0.437 36 Yes 

5 0.328 27 Yes 

6 0.187 7 Yes 

7 0.172 5 Yes 

8 0.156 4 Yes 

9 0.141 3 Yes 

10 0.172 3 Yes 

11 0.157 3 Yes 

12 0.187 4 Yes 

2 hidden layers(6,3) 0.188 8 Yes 

2 hidden layers(3,6) 0.219 11 Yes 

Example 3: 

Let us now take an XOR operation with 4 inputs and 
1 output and study the implementation of the neural 
model for this operation: 
 
Step 1: Generate the training data. 
p=[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1; 
  0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1;  
  0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1; 
  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]; % input for training 
Step 2:: Generate the target output 
t=[0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0]; % output for 
training 
Step 3: Create the neural network and define the 
activation functions and training function 
net = newff([0 1;0 1;0 1;0 1],[16 1],{'logsig' 
'purelin'}); 
Step 4: Initialize the network  
net = init(net); 
 
Step 5: Define the parameters of the network 
net.trainParam.epochs = 10000; 

% Maximum epochs is 10000 ( iteration number of 
optimization ) 
net.trainParam.goal = 0.000001; % Error limit is 
0.000001 
%-------------------------------------------------- 
% training the MLP by using a training pattern 
%-------------------------------------------------- 
net.trainParam.lr = 0.05; 
Step 6: Train the network 
 [net tr] = train(net,p,t); 
% training the MLP neural network by using a train 
function 
%-------------------------------------------------- 
% To draw the result making the test pattern 
%-------------------------------------------------- 
Step 7: Find the output of the network 
Output=sim(net,p);  
 
The previous steps were implemented using 
different network architecture and the optimal 
performance was achieved using 1 hidden layer with 
9 neurons and 1 output layer with 1 neuron as 
shown in figure 3. 
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 Fig. 3 Optimal solution to reach the goal for 
example 3 

 

The results of implementation the network using 
different network architecture are shown in Table 4. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 4 
Simulation Resells for Example 3. 

 

Number of neurons in the 
hidden layer 

Average  training 
time in seconds 

Number of training 
iterations 

The goal was met 

1 3.937 511 No 

2 223.672 9784 No 

3 2.203 334 No 

4 61.344 4839 No 

5 1.64 240 Yes 

6 0.594 75 Yes 

7 1.5 200 Yes 

8 0.172 12 Yes 
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9 0.141 7 Yes 

10 0.141 7 Yes 

11 0.140 6 Yes 

12 0.140 6 Yes 

13 0.140 4 Yes 

14 0.145 5 Yes 

15 0.140 4 Yes 

16 0.125 3 Yes 

17 0.156 4 Yes 

18 0.142 3 Yes 

19 0.145 4 Yes 

20 0.157 3 Yes 

2 hidden layers(8X8) 0.147 3 Yes 

 
4 Results Discussions 

The optimal neural network is the network that 
can reach the goals in minimum number of training 
iterations and minimum time of training. From the 
experimental results shown in the Tables 2, 3, and 4 
we can see that we can reach the goals by adding a 
hidden layer to the network, and an optimized  

 
solution can be achieved if the number of neurons is 
equal to the power of 2 of the number of inputs. 
Splitting the number of neurons in the hidden layer 
to 2 or more hidden layers make the network not 
optimal by mean of increasing the number of 
training iterations and increasing the training time. 
During the experiments implementations it was seen 
that changing the training rate around 0.05 does not 
much affect the network performance. 

 
 

5 Conclusions 
This paper proves that the efficiency of 

Artificial Neural Networks to attain the optimal 
Neural network and optimal solution. That means 
when we wants to attain the goals in minimum 
training time and minimum number of training 
iterations and that are depends on the network 
architecture. 

Using one hidden layer with number of neurons 
equal to the power of 2 of the number of inputs 
leads to optimal and efficient Artificial Neural 
Networks.  
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