

Performance Evaluation of Artificial Neural Networks for Spatial Data
Analysis

Akram A. Moustafa1*, Ziad A. Alqadi2 and Eyad A. Shahroury3

1Department of Computer Science
Al Al-Bayt University

P.O. Box 922283, Mafraq, Jordan 11192.
hamarchi@yahoo.com

2Faculty of Engineering,
Al-Balqa Applied University

P.O.BOX 185524 Amman, Jordan, 11052
natalia_maw@hotmail.com

3Delmon University for science and technology
Bahrain, Manama

eyadmn73@hotmail.com

Abstract—the artificial neural network training algorithm is implemented in MATLAB language. This
implementation is focused on the network parameters in order to get the optimal architecture of the network
that means (the optimal neural network is the network that can reach the goals in minimum number of training
iterations and minimum time of training). Many examples were tested and it was shown that using one hidden
layer with number of neuron equal to the square of the number of inputs will lead to optimal neural network by
mean of reducing the number of training stages (number of training iterations) and thus the processing time
needed to train the network.

Key-words: - Artificial neural network (ANN), Back-propagation, training rate and training iteration (epochs),
hidden layer, net simulation, multilayer perceptron (MLP).

1 Introduction
Artificial Neural Network (ANN) is a Mathematical
model designed to train, visualize, and validate
neural network models [10], [12], [13] and the
Artificial Neural Network (ANN) is a model-free
estimator as it does not rely on an assumed form of
the underlying data [2]. And we can define the
neural network model is a data structure that can be
adjusted to produce a mapping from a given set of
input data to features of or relationships among the
data. The model is adjusted, or trained, using a
collection of data from a given source as input,
typically referred to as the training set. Note that the
number of inputs to a network is set by the external
specifications of the problem. If, for instance, you
want to design a neural network that is to predict
kite-flying conditions and the inputs are air
temperature, wind velocity and humidity, then there
would be three inputs to the network.

* Corresponding author

To experiment with a two-input neuron; use the
Neural Network Design Demonstration Two-Input
Neuron (nnd2n2) [3].

After successful training, the neural network will
be able to perform classification, estimation,
prediction, or simulation on new data from the same
or similar sources. The Neural Networks package
supports different types of training or learning
algorithms.

More specifically, the Neural Networks model
uses numerical data to specify and evaluate artificial
neural network models. Given a set of
data,{ } 1, =N

ii iyx , from an unknown function,
y=f(x), this model uses numerical algorithms to
derive reasonable estimates of the function, f(x).
This involves three basic steps. First, a neural
network structure is chosen that is considered
suitable for the type of data and underlying process
to be modeled. Second, the neural network is trained
by using a sufficiently representative set of data.
Third, the trained network is tested with different
data, from the same or related sources, to validate
that the mapping is of acceptable quality.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 115 Issue 4, Volume 10, April 2011

Choosing the proper type of neural network for a
certain problem can be a critical issue. So it is very
important to define the following in order to achieve
a good model: The input sets, the target sets, the
network architecture, the activation functions, the
training function, the training rate, the goal, the
number of iterations used to train the network.

Neural networks have arisen from analogies with
models of the way that humans might approach
pattern recognition tasks, although they have
developed a long way from the biological roots.
Great claims have been made for these procedures,
and although few of these claims have withstood
careful scrutiny, neural network methods have had
great impact on pattern recognition practice. A
theoretical understanding of how they work is still
under construction, and is attempted here by
viewing neural networks within a statistical
framework, together with methods developed in the
field of machine learning [6].

2 Back-Propagation
There are many different types of ANN and
techniques for training them but we are just going to
focus on the most basic one all of them is classic
back propagation neural network (BPN) [7].
Backpropagationis by far the most widely used and
understood neural network paradigm. Its popularity
arises from its simple architecture and easy to
understand learning process, the backpropagation
scheme consists of two major steps. These are the
forward activation and the backward error flows.
The training process begins with the assignment of
random weights to the connections between the
nodes of the various layers. The various input
patterns are then presented to the network, and the
forward activation flow produces the output
patterns. These output patterns will not be the same
as the desired output patterns. The errors in the
outputs are calculated for the output layer nodes as
the difference between the desired and actual
outputs. For the hidden layers, the errors are
calculated by backpropagating the errors in the
output layer to the hidden layers. The errors of each
of the nodes are summed over the whole set of
training patterns. These errors are used to change the
weights in the interconnections between the layers.
The weights connecting to the output layer are
changed according to the delta rule, whereas for the
weights in the hidden layers the generalized delta
rule is used. There are many good references which
describe the mathematics of the backpropagation
approach in detail including [17], [18].

The neural network is a computerized software
program, which can be used to develop a non-linear
statistical model in which there are many
parameters, called weights. These weights control
the output of the model given the input. The type of
network used was a fully connected feed forward
back propagation multi-layer perceptron (MLP)
[15].

Multilayer perceptron & BP (Back-propagation)

model Standard multilayer perceptron (MLP)
architecture consists more than 2 layers; A MLP can
have any number of layers, units per layer, network
inputs, and network outputs [16].

In this paper, a Multi Layer Perceptron (MLP)
network with a Back Propagation (BP) algorithm, a
network with an optimum learning rate is proposed.
The MLP consists of neurons that are arranged in
multiple layers with connections only between
nodes
in the adjacent layers by weights. The layer where
the optimum learning rate in BP Network input
information is presented is known as the input layer
and the layer where the processed information is
retrieved is called the output layer. All layers
between the input and output layers are known as
hidden layers.

For all neurons in the network, except the input
layer neurons, the total input of each neuron is the
sum of the weighted outputs of the neurons in the
previous layer. Each neuron is activated with input
to the neuron and by the activation function of the
neuron [18].

The input and output of the neuron, i, (except for
the input layer) in a MLP mode, according to the BP
algorithm [19], are:

Input ijiji bowx += ∑ (1)

Output)(ii xfo = (2)

where Wij is the weight of the connection from
neuron i to node j, bi is the numerical value and f is
the activation function.
The sum in Equation 1 is over all neurons, j, in the
previous layer. The output function is a nonlinear
function, which allows a network to solve problems
that a linear network cannot [20]. In this study, the
tan-sigmoid and linear transfer functions are used to
determine the output.
A Back-Propagation (BP) algorithm is designed to
reduce error between the actual output and the

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 116 Issue 4, Volume 10, April 2011

desired output of the network in a gradient descent
manner.

Finally the backpropagation algorithm for training
neural networks has been discussed in many papers
[1]. The back propagation refers to the fact that any
mistakes made by the network during training get
sent backwards through it in an attempt to correct it
and so teach the network what right and wrong [8].
The BPN learns during a training epoch, you will
probably go through several epochs before the
network has sufficiently learnt to handle all the data
you’ve provided it and the end result is satisfactory.
A training epoch is described below [7] – [14]:

For each input entry in the training data set:
• Feed input data in (feed forward).
• Check output against desired value and feed

back error (back-propagate).
Where back-propagation consists of:

Calculate error gradients.
• Update weights.

Thus we can summarize the training Back-
propagation algorithm into the following steps:
Step 1: Input training vector.
Step 2: Hidden nodes calculate their outputs.
Step 3: Output nodes calculate their outputs on the
basis of Step 2.
Step 4: Calculate the differences between the results
of Step 3 and targets.
Step 5: Apply the first part of the training rule using
the results of Step 4.
Step 6: For each hidden node, n, calculate d(n).
Step 7: Apply the second part of the training rule
using the results of Step 6.
Steps 1 through 3 are often called the forward pass,
and steps 4 through 7 are often called the backward
pass. Hence, the name: back-propagation.

An actual algorithm for a 3-layer network (only one
hidden layer) [9] – [13]:
Initialize the weights in the network (often
randomly)

 Do
 For each example e in the training set
 O = neural-net-output (network, e);
forward pass
 T = teacher output for e
 Calculate error (T - O) at the output
units

Compute delta_wh for all
weights from hidden layer to
output layer; backward pass
Compute delta_wi for all
weights from input layer to
hidden layer; backward pass
continued

 Update the weights in the network
 Until all examples classified correctly or
stopping criterion satisfied
Return the network

3 Experimental Results

We used MATLAB because it is already in use in
many institutions, And it is useful for statistical task
to see the demeanor of the system, It is used in
research in academia and industry, MATLAB is
useful for data analysis, data extraction and data
processing, we can perform operations from
MATLAB help command,. It is used to generate
stimulus for verification of the system. Prototype
solutions are usually obtained faster in MATLAB
than solving a problem by using other programming
languages [11].

The artificial neural network back propagation
algorithm is implemented in Matlab language. This
implementation is compared with several other
software packages.

The effect of reducing the number of iterations in
the performance of the algorithm is studied. The
speed of the back propagation program, written in
Matlab language is compared with the speed of
several other back propagation programs which are
written in the C language. The speed of the Matlab
program is, also compared with the C program
which is a variant of the back propagation
algorithm, As the next test shows, MATLAB was
about 3 times faster than a C++ programming both
doing a matrix multiply [10].

A program in C++ was written to multiply two
matrices containing double precision numbers. The
result of the multiplication is assigned into a third
matrix. Each matrix contained 1000 rows and 1000
columns. A MATLAB M file was written to do the
same multiply as C++ program did. Only the
segment of the code which does the multiplication is
timed. The test was run on an IBM PC P4 computer,
the result is shown in Table 1. As the Table shows
MATLAB is faster than the C++ program.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 117 Issue 4, Volume 10, April 2011

Table 1
 Speed Comparison of Matrix Multiply In Matlab and a C++ Program

Tools Execution time in seconds
1000 X 1000 multiply

C++ 3.16652

MATLAB 1.204000

As appears from the above table that the MATLAB
runs 2.63 times faster than the C++ program.

We can summarize the methodology of the
experiment: Training, Testing and Validation
Datasets into:

• In the ANN methodology, the sample data is
often subdivided into training, validation, and
test sets [14].

• The distinctions among these subsets are
crucial.

• defines the following :

o Training set: A set of examples used for
learning that is to fit the parameters [weights] of the
classifier [14].

o Validation set: A set of examples used to tune
the parameters of a classifier, for example to choose
the number of hidden units in a neural network.

o Test set: A set of examples used only to assess
the performance [generalization] of a fully-specified
classifier [14].
• A popular Artificial neural network architectures
chosen are multilayer perceptrons using the
backpropagation
algorithm [5].
• In overview, a MLP is composed of layers of
processing units that are interconnected through
weighted connections:

o The first layer consists of the input vector.

o The last layer consists of the output vector
representing the output class.

o Intermediate layers called `hidden` layers
receive the entire input pattern that is modified by
the passage through the weighted connections. The
hidden layer provides the internal representation of
neural pathways.

• The network is trained using back propagation
with three major phases.

o First phase: an input vector is presented to the
network which leads via the forward pass to the
activation of the network as a whole. This generates
a difference (error) between the output of the
network and the desired output.

o Second phase: compute the error factor (signal)
for the output unit and propagates this factor
successively back through the network (error
backward pass).

o Third phase: compute the changes for the
connection weights by feeding the summed squared
errors from the output layer back through the hidden
layers to the input layer.

• Continue this process until the connection weights
in the network have been adjusted so that the
network output has converged, to an acceptable
level, with the desired output.

• Assign "unseen" or new data:

o The trained network is then given the new data
and processing and flow of information through the
activated network should lead to the assignment of
the input data to the output class.
• For the basic equations relevant to the
backpropagation model based on generalized delta
rule, the training algorithm was known [11].

We have to note the following things while using
the backpropagation algorithm:

• Learning rate:
o Standard backpropagation can be used for

incremental (on-line) training (in which the weights
are updated after processing each case) but it does
not converge to a stationary point of the error
surface. To obtain convergence, the learning rate
must be slowly reduced. This methodology is called
"stochastic approximation."

o In standard backpropagation, too low a learning
rate makes the network learn very slowly. Too high
a learning rate makes the weights and error function
diverge, so there is no learning at all.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 118 Issue 4, Volume 10, April 2011

o Trying to train a NN using a constant learning
rate is usually a tedious process requiring much trial
and error. There are many variations proposed to
improve the standard backpropagation as well as
other learning algorithms that don't suffer from these
limitations [11].
• Output Representation:
• Input Data:

o Normalize or transform the data into [0,1]
range. This can help for various reasons.

• Number of Hidden Units:

o Simply try many networks with different
numbers of hidden units, estimate the generalization
error for each one, and choose the network with the
minimum estimated generalization error.

• Activation functions:

o For the hidden units, are needed to introduce
nonlinearity into the network.

o Without nonlinearity, hidden units would not
make nets more powerful than just plain perceptrons
(which do not have any hidden units, just input and
output units).

o The sigmoidal functions such as logistic and
tanh and the Gaussian function are the most
common choices [4].

To get some results we choose the following
examples:

Example 1:

Let us take an XOR operation with 2 inputs and 1
output and study the implementation of the neural
model for this operation [9,12]:

Step 1: Generate the training data.
p= [0 0 1 1; 0 1 0 1]; % input for training
Step 2: Generate the target output.
t= [0 1 1 0]; % output for training
Step 3: Create the neural network and define the
activation functions and training function.
net = newff([0 1;0 1],[4 1],{'logsig' 'purelin'});
Step 4: Initialize the network.
net = init(net);
Step 5: Define the parameters of the network.

net.trainParam.epochs = 10000;
% Maximum epochs are 10000 (iteration number of
optimization)
net.trainParam.goal = 0.000001; % Error limit is
0.000001
%--
% training the MLP by using a training pattern
%--
net.trainParam.lr = 0.05;
Step 6: Train the network.
[net tr] = train(net,p,t);
% training the MLP neural network by using a train
function
%--
% to draw the result making the test pattern
%--
Step 7: Find the output of the network.
Output=sim(net,p);

The previous steps were implemented using
different network architecture and the optimal
performance was achieved using 1 hidden layer with
4 neurons and 1 output layer with 1 neuron as
shown in figure 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
-8

10-6

10-4

10-2

10
0

2 Epochs

Tr
ai

ni
ng

-B
lu

e
 G

oa
l-B

la
ck

Performance is 4.43226e-009, Goal is 1e-006

The results of implementation the network using
different network architecture are shown in Table 2.

Fig. 1 Optimal solution to reach the goal for
example1

Table 2

 Simulation Resells for Example 1

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 119 Issue 4, Volume 10, April 2011

Number of neurons in the
hidden layer

Average training
time in seconds

Number of training
iterations

The goal was met

1 5.985 592 No

2 1.407 198 Yes

3 0.456 3 Yes

4 0.152 2 Yes

5 0.172 2 Yes

6 0.156 2 Yes

7 0.157 3 Yes

2X2(2 hidden layers each with
2 neurons)

0.578 51 Yes

Example 2:

Let us now take an XOR operation with 3 inputs and
1 output and study the implementation of the neural
model for this operation:

Step 1: Generate the training data.
p=[0 0 0 0 1 1 1 1;0 0 1 1 0 0 1 1;0 1 0 1 0 1 0 1]; %
input for training

Step 2:: Generate the target output.
t=[0 1 1 0 1 0 0 1]; % output for training

Step 3: Create the neural network and define the
activation functions and training function.
net = newff([0 1;0 1;0 1],[9 1],{'logsig' 'purelin'});
Step 4: Initialize the network.
net = init(net);
Step 5: Define the parameters of the network.
net.trainParam.epochs = 10000;
% Maximum epochs is 10000 (iteration number of
optimization)
net.trainParam.goal = 0.000001; % Error limit is
0.000001
%--
% training the MLP by using a training pattern
%--
net.trainParam.lr = 0.05;
Step 6: Train the network.
 [net tr] = train(net,p,t);

% training the MLP neural network by using a train
function
%--
% To draw the result making the test pattern
%--
Step 7: Find the output of the network.
Output=sim(net,p);

The previous steps were implemented using
different network architecture and the optimal
performance was achieved using 1 hidden layer with
9 neurons and 1 output layer with 1 neuron as
shown in figure 2.

0 0.5 1 1.5 2 2.5 3
10-12

10-10

10-8

10-6

10-4

10-2

100

3 Epochs

Tr
ai

ni
ng

-B
lu

e
 G

oa
l-B

la
ck

Performance is 6.31481e-012, Goal is 1e-006

Fig. 2 Optimal solution to reach the goal for
example 2

The results of implementation the network using

different network architecture are shown in Table 3.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 120 Issue 4, Volume 10, April 2011

Table 3
Simulation resells for example 2.

Number of neurons in the
hidden layer

Average training time
in seconds

Number of training
iterations

The goal was met

1 1.687 233 No

2 1.297 167 No

3 4.344 636 Yes

4 0.437 36 Yes

5 0.328 27 Yes

6 0.187 7 Yes

7 0.172 5 Yes

8 0.156 4 Yes

9 0.141 3 Yes

10 0.172 3 Yes

11 0.157 3 Yes

12 0.187 4 Yes

2 hidden layers(6,3) 0.188 8 Yes

2 hidden layers(3,6) 0.219 11 Yes

Example 3:

Let us now take an XOR operation with 4 inputs and
1 output and study the implementation of the neural
model for this operation:

Step 1: Generate the training data.
p=[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1;
 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1;
 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1;
 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]; % input for training
Step 2:: Generate the target output
t=[0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0]; % output for
training
Step 3: Create the neural network and define the
activation functions and training function
net = newff([0 1;0 1;0 1;0 1],[16 1],{'logsig'
'purelin'});
Step 4: Initialize the network
net = init(net);

Step 5: Define the parameters of the network
net.trainParam.epochs = 10000;

% Maximum epochs is 10000 (iteration number of
optimization)
net.trainParam.goal = 0.000001; % Error limit is
0.000001
%--
% training the MLP by using a training pattern
%--
net.trainParam.lr = 0.05;
Step 6: Train the network
 [net tr] = train(net,p,t);
% training the MLP neural network by using a train
function
%--
% To draw the result making the test pattern
%--
Step 7: Find the output of the network
Output=sim(net,p);

The previous steps were implemented using
different network architecture and the optimal
performance was achieved using 1 hidden layer with
9 neurons and 1 output layer with 1 neuron as
shown in figure 3.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 121 Issue 4, Volume 10, April 2011

0 0.5 1 1.5 2 2.5 3
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

3 Epochs

Tr
ai

ni
ng

-B
lu

e
 G

oa
l-B

la
ck

Performance is 3.54511e-007, Goal is 1e-006

 Fig. 3 Optimal solution to reach the goal for
example 3

The results of implementation the network using
different network architecture are shown in Table 4.

Table 4
Simulation Resells for Example 3.

Number of neurons in the
hidden layer

Average training
time in seconds

Number of training
iterations

The goal was met

1 3.937 511 No

2 223.672 9784 No

3 2.203 334 No

4 61.344 4839 No

5 1.64 240 Yes

6 0.594 75 Yes

7 1.5 200 Yes

8 0.172 12 Yes

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 122 Issue 4, Volume 10, April 2011

9 0.141 7 Yes

10 0.141 7 Yes

11 0.140 6 Yes

12 0.140 6 Yes

13 0.140 4 Yes

14 0.145 5 Yes

15 0.140 4 Yes

16 0.125 3 Yes

17 0.156 4 Yes

18 0.142 3 Yes

19 0.145 4 Yes

20 0.157 3 Yes

2 hidden layers(8X8) 0.147 3 Yes

4 Results Discussions

The optimal neural network is the network that
can reach the goals in minimum number of training
iterations and minimum time of training. From the
experimental results shown in the Tables 2, 3, and 4
we can see that we can reach the goals by adding a
hidden layer to the network, and an optimized

solution can be achieved if the number of neurons is
equal to the power of 2 of the number of inputs.
Splitting the number of neurons in the hidden layer
to 2 or more hidden layers make the network not
optimal by mean of increasing the number of
training iterations and increasing the training time.
During the experiments implementations it was seen
that changing the training rate around 0.05 does not
much affect the network performance.

5 Conclusions
This paper proves that the efficiency of

Artificial Neural Networks to attain the optimal
Neural network and optimal solution. That means
when we wants to attain the goals in minimum
training time and minimum number of training
iterations and that are depends on the network
architecture.

Using one hidden layer with number of neurons
equal to the power of 2 of the number of inputs
leads to optimal and efficient Artificial Neural
Networks.

References:
[1] P.J. Werbos, “Backpropagation through Time:

What It Does and How to Do it" Proceedings of
the IEEE, 78_10_, pp.1550-1560, 1990.

[2] D. H. Chang and S. Islam, "Estimation of Soil
Physical Properties Using Remote Sensing and
Artificial Neural Network," Remote Sensing of
Environment, vol. 74, pp. 534- 544, 2000.

[3] M.Hagan, H. Demuth, M. Beele, Neural
Network Design, University of Colorado
Bookstore, 2002, ISBN: 0- 9717321- 0-8.

[4] Sucharita Gopal. Artificial Neural Networks for
Spatial Data Analysis, NCGIA Core Curriculum
in GIScience, 1998.

[5] Benediktsson, J. A.; Swain, P. H. and Ersoy, O.
K., 1990, “Neural network approaches versus
statistical methods in classification of
multisource remote sensing data”. IEEE Trans.
on Geoscience and Remote Sensing, GE-28, Pp.
540-552.

[6] Ripley, B.D., Pattern Recognition and Neural
Networks, Cambridge: Cambridge University
Press, ISBN 0-521-46086-7 (hardback), (1996),
pp 354 and pp 403.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 123 Issue 4, Volume 10, April 2011

[7] Bishop, C.M. Neural Networks for Pattern
Recognition, Oxford: Oxford University Press.
ISBN 0-19-853849-9 (hardback) or 0-19-
853864-2, (1995), pp.482.

[8] W. Chang, B. Bosworth, G.C. Carter, On using
back propagation neural networks to separate
single echoes from multiple echoes, Acoustics,
Speech, and Signal Processing, ICASSP, IEEE
International Conference on, (27-30 Apr, 1993),
vol. 1, pp.265-268.

[9] Kwan, H.K., simple sigmoid. Like activation
function suitable for digital hardware
implementation, Electronic Letters, vol.28,
no.15, (1992), pp.1379 – 1380.

[10] Jamshid nazari and okan k.ersoy,
implementation of back propagation neural
networks with Matlab, school of electrical
engineering purdue university1992.

[11] The MathWorks Inc. PRO-MATLAB for Sun
Workstations, User's Guide,

January 1990.
[12] Paul T. Baffes. NETS Users's Guide, Version

2.0 of NETS. Technical Report JSC-23366,
NASA, Software Technology Branch, Lyndon
B. Johnson Space Center, September 1989.

[13] E. Fahlman, Scott. An Empirical Study of
Learning Speed in Back Propagation Networks.
Technical Report CMU-CS-88-162, CMU,
CMU, September 1988.

[14] D. C. Silverman, Discussion of The Corrosion
of Nickel 270 In Phosphate Containing
Solutions, Corrosion, vol. 41, no. 4, (1985), pp.
244.

[15] Patterson DW. Artificial Neural Networks,
Theory and Applications. Singapore: Prentice
Hall, 1996 pp.141–179.

[16] Insung Jung, and Gi-Nam Wang, "Pattern
Classification of Back-Propagation Algorithm
Using Exclusive Connecting Network, World
Academy of Science, Engineering and
Technology, vol 36, 2007, pp189-193.

[17] R. Hecht-Nielsen, "Theory of the
Backpropagation Neural Network", IJCNN
International Conference on Neural
Networks, 1, 1989, pp.593-606.

[18] D. E. Rumelhart, J. L.McClell and the PDP
Research Group institute for Cognitive Science,
University of California, SanDiego, and Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, (MIT Press,
Cambridge, Mass. 1986).

[19] Pao, Y.H. Adaptive Pattern Recognition and
Neural Network, Addison-Wesley Publishing
Company, Inc. 1989.

[20] Heermann, P. and Khazenie, N. Classification
of Multi spectral remote sensing data using a
backpropagation neural network", IEEE Trans.
on Geo science and Remote Sensing, 30, pp. 81-
88, 1992.

WSEAS TRANSACTIONS on COMPUTERS Akram A. Moustafa, Ziad A. Alqadi, Eyad A. Shahroury

ISSN: 1109-2750 124 Issue 4, Volume 10, April 2011

