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Abstract: - In this paper, we address the problem of probability estimation of decision trees. This problem has 

received considerable attention in the areas of machine learning and data mining, and techniques to use tree 

models as probability estimators have been suggested. We make a comparative study of six well-known class 

probability estimation methods, measured by classification accuracy, AUC and Conditional Log Likelihood 

(CLL). Comments on the properties of each method are empirically supported. Our experiments on UCI data 

sets and our liver disease data sets show that the PETs algorithms outperform traditional decision trees and 

naïve Bayes significantly in classification accuracy, AUC and CLL respectively. Finally, a unifying 

pseudocode of algorithm is summarized in this paper.  
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1 Introduction 
Decision trees, as the classification algorithm, have 

been studied in detail both in the areas of machine 

learning and data mining. Several factors contribute 

to its popularity. They are praised for 

comprehensibility of their knowledge representation 

and inference procedures, in contrast to neural 

networks. They are also non-parametric, which have 

facilitated their wide use in the comparison of 

different learning algorithm [1]. They can treat 

comparatively well with large scale applications [2].  

As they have been used in most research and 

applications, decision trees are a way to represent 

rules underlying data with hierarchical, sequential 

structures that recursively divide-and-conquer 

partition the data. Various algorithms have been 

developed for learning decision trees. Among them, 

the C4.5 algorithm of Quinlan is often used, which 

evolve from an algorithm, called ID3 [3]. The C4.5 

algorithm uses a greedy search, and searches 

through the attributes of the training instances and 

extracts the attribute that best separates the given 

samples, and results in crisp decisions at leaf nodes, 

and the aim is for high classification accuracy.  

However, crisp decisions that decision trees 

usually output may not be adequate or desirable in 

some practical applications, such as medical 

diagnosis, the value of predicting class probability 

of diagnosis may be important for patients. For 

example, suppose we are estimate the probability of 

heart disease given blood pressure. Surely we 

should predict a higher probability of heart disease 

for the patient with blood pressure of 250 than for 

the patient with 160. 

From this view, it is clear that ranking samples 

by the class probability are more essential than class 

predictions. Many methods have been proposed for 

building probability estimation trees (PETs), the 

best known assigning a probability distribution for 

all classes at the leaf nodes.  
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There are three main problems in building class 

probability trees. Firstly, the greedy top-down 

construction is the most commonly used method for 

tree growing today. Existing probability estimation 

tree algorithms estimate probability separately in 

each leaf, similar to a traditional decision tree, so 

building a probability estimation trees is a greedy 

and recursive process.  

The second of which concerns how to represent 

accurate probabilities but also to be easily learnable 

from limited data in practice. Traditional decision 

trees, such as C4.5, have been observed to produce 

poor probability estimation, even though to produce 

the better classification accuracies [4]. Provost and 

Domingos [5] point out that the reason behind the 

poor estimates of decision trees is not the decision 

tree representation, but the inductive algorithm. 

The third problem, which Han Liang et al. [6] 

deem more important, concerns the evaluation 

metrics. According to [25], the ACC can not provide 

solid evidence by itself for probability estimation 

models. In this paper, we will apply three different 

ways to evaluate the probability estimation of a 

learning model: ACC, AUC and CLL. 

� ACC is the classification accuracy, and 

calculated as the percentage of the correctly 

classified testing samples over all the test samples. 

� AUC is the area under the Receiver 

Operating Characteristic curve, and is a relative 

evaluation standard, and has been recently proposed 

as an alternative single-number measure for 

evaluating the predictive ability of learning 

algorithms. It can be easily calculated for a binary-

class problem as follows: 

0 0 0

0 1

( 1)S n n
AUC

n n

− +
=                        (1) 

Where 0n and 1n are the numbers of the positive and 

negative test samples respectively, and 0S  is the sum 

of the ranks of the positive test samples. For a multi-

class problem, AUC is calculated by M-measure in 

[7]: 

2
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where cn  is the number of class. 

� CLL is the Conditional Log Likelihood, and 

is a more straightforward measurement to evaluate 

learning models with respect to probability 

estimation, and describes the reliability of 

probability estimation. The formal CLL definition is 

given as follows[6, 8]: 

1

log ( | )
n

t

t

CLL P C s
=

=∑
⌢

                        (3) 

where ( | )tP C s
⌢

 is the conditional probability of C  

given a test sample ts . 

In general, the PET methods count the 

proportions from each class which are present at the 

leaf nodes, based on the training data, and generate 

a local maximum likelihood estimate or perhaps a 

smoothed variant of posterior class probabilities [9]. 

Their beneficial effects have seen increasing use in 

many applications [10, 11, 12], and their attractive 

properties have attracted the attention of many 

researchers, who have proposed a number of 

methods. 

The main objective of this paper is to make a 

comparative study of some of the well known PET 

methods with the aim of understanding their 

theoretical foundations, their strengths and the 

weakness. Naïve Bayes classifiers are generally 

easy to understand when the log probabilities were 

presented as evidence that adds up in favor of 

different class. Therefore, in this paper, we compare 

C4.5 tree algorithm, Naïve Bayes algorithm with 

other four popular PETs with respect to class 

probability estimation, measured by ACC, AUC and 

CLL,and the results are showed in Section 3. Those 

four algorithms include C4.4, NBTree, CITree and 

CLLTree. In Section 2, we are devoted to a critical 

review of four PETs algorithms which have 

achieved wide-spread popularity, while Section 3 

provides empirical support for some comments by 

examined on ten real-world datasets. Finally, in 

Section 4, we conclude with discussion and some 

directions for future research. 

 

 

2 A Critical Review of PET 

We denote a vector of attributes by an upper-case 

letter A , ( )1 2, , , nA A A A= ⋯ , and an assignment of 

value to each attribute in A  by a corresponding 

lower-case letter a . We use C  to denote the class 
variable and c to denote its value. Therefore, a 

training sample ( ),s a c= , where ( )1 2, , , na a a a= ⋯  , 

and ia  is the value of attribute iA . 

In PETs, the class probability ( )|p c s
⌢

denotes 

that a sample s  is classified into the class c  with 

the class probability ( )|p c s
⌢

, and which is estimated 

by the fraction of the samples of the class c  in the 

leaf into which s  falls. 
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In the following subsections, we will review the 

existing work on augmenting decision trees to 

estimate precise class probabilities. And we will 

briefly outline these methods according to their 

construction methodologies and use them, and 

comment the strengths and weaknesses of each 

method. 

 

 

2.1 C4.5 and C4.4 
 

2.1.1 Description  

The C4.5 method (with pruning), proposed by 

Quilan [3], has been found to provide poor 

probability estimates. There are two obstacles in 

building an accurate probability estimate of the C4.5 

tree. One of which is the class probabilities of all the 

test samples in the same leaf are equal, which 

prevents accurate probability estimation. The other 

obstacle is that C4.5 is biased towards building 

small trees with fewer leaves because of post-

pruning [5]. Provost and Domingos [5, 13] therefore 

develop a C4.4 algorithm to improve probability 

estimation of C4.5 decision trees. 

The C4.4 can be built by modified the C4.5 in 

two ways: 

� Turn off the pruning and collapsing. The 

pruning and collapsing can remove those 

branches which may be useful for 

probability estimations but not improving 

resultant accuracy on a test samples. It 

means that pruning damages the probability 

estimation of traditional decision trees. Thus, 

to build accurate PETs it should not to prune 

and collapse at all. 

� Smooth probability estimates by the Laplace 

correction. To avoid producing probabilities 

of extreme values (e.g., 100% or 0%), they 

use the Laplace correction to smooth the 

estimation and make it less extreme. 

Assume there are  samples that have the 

class label  at a leaf,   total samples, and  

class values in a sample set. Thus the 

Laplace estimation calculates the estimated 

probability as follows: 

1
( | ) kn

p k s
N C

+
=

+

⌢

                       (4) 

 
2.1.2 Comments 

The Laplace correction and turning off pruning and 

collapsing result in generating larger trees to give 

more precise probability estimation. As we will see 

later, the better performance of C4.4 can be showed 

by our experiments.  

However, the large tree may overfit the training 

samples so that the probabilities estimated may not 

be accurate. In addition, when the depth of the tree 

is large, there is very small number of training 

samples with each leaf node. Thus, the probability 

estimates are less reliable [14]. This problem is also 

particularly noticeable. Moreover, there are still 

many duplicate class probability values, which can 

substantially decrease the quality of ranking test 

samples based on their class probabilities. 

 

 

2.2 Naïve Bayes Tree (NBTree) 

 
2.2.1 Description 

The NBTree, proposed by Ron Kohavi [15], is a 

hybrid approach that utilizes the advantages of both 

decision trees and Naïve-Bayes.  

In building NBTree, the algorithm similar 

regular decision trees (e.g. C4.5) to recursively 

partition the sample space according to the best 

attribute, except that after a tree is grown, a Naïve 

Bayes classifier is constructed at the leaves using 

the samples associated with those leaves. The split 

score function of selecting the best split attribute is 

classification accuracy.  

According to the Bayes theorem which requires 

making strong independence assumptions the 

NBTree uses the method of maximum posterior 

class probability to denote probability estimation, 

( )|j tp c s  as bellows: 

( )
( ( ) | ) ( )

| ( )
( ( ))

p

p

p

P A L C P C
p C A L

P A L
=

⌢ ⌢

⌢

⌢            (5) 

Since ( ( ))pP A L
⌢

 is a constant independent of C , 

then the test sample ts  is classified into class c  can 

be get from the following equation. 

lnb argmax ( ( ) | ) ( )pC P A L C P C=
⌢ ⌢

            (6) 

where ( )pA L  are the attributes that occur in the path 

from the root to a leaf L . 

 

2.2.2 Comments 

In building NBTree, Kohavi validated a split by 

estimating the reduction in error, which is gained by 

the split and comparing it to a predefined threshold 

of 5%. At the same time, he limits at least 30 

samples at the current node. The reason is that 

splitting a node with only a few training samples 

will seriously affect the final accuracy and will lead, 

on the other hand, to a complex and less 

comprehensible decision tree.  

According to the simple restrictive conditions 

that after growing a NBTree, then the number of 
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nodes induced by the NBTree is in most cases 

smaller than that of C4.5. However, when testing 

the significance of a split in a node, the inner v-fold 

cross-validations accuracy procedure is used. Due to 

the cross-validation estimations, the NBTree 

becomes computationally expensive for methods 

that are more time-consuming than naive Bayes, 

although the NBTree applies a Naive Bayes 

classifier to decision tree leaf nodes, and it 

outperforms C4.5 and naïve Bayes [16]. 

 

 

2.3 Conditional Independence Tree (CITree) 
 

2.3.1 Description 

Harry Zhang and Jiang Su [17, 18] extended 

decision trees to represent a joint distribution and 

conditional independence, called conditional 

independence trees (CITree). This approach 

attempts to iteratively explore and represent 

conditional attribute independencies at each step in 

constructing a decision tree, and thus in learning a 

CITree, they want to select the attribute that make 

local conditional independence among other 

attributes true as much as possible at each step, and 

means that the attribute given all other attributes has 

the maximum conditional independence. For this 

reason, unlike the NBTree, after growing a CITree, 

given the attributes that occur on the path from the 

root to a leaf, all the other leaf attributes are 

independent. So the probability estimates in a leaf 

can be given by 

( ) ( ) ( ), | ( ) ( ) | ( ),p l pp A C p C A L p A L A L C=
⌢ ⌢ ⌢

     (7) 

Where ( )pA L  are the attributes that occur in the 

path from the root to a leaf L , and ( )lA L  are all the 

attributes not in ( )pA L . 

� ( )| ( )pp C A L
⌢

 represents the conditional 

independence distribution at a leaf L . 

� ( )( ) | ( ),l pp A L A L C
⌢

 is local conditional 

distribution which is the conditional 

probability distribution over the leaf 

attributes at each leaf. 

From the conditional independence assumption 

of naïve Bayes, the following equation stands: 

( ) ( ) ( )
1

, | ( ) ( ) | ( ),
m

p li p

i

p A C p C A L p A L A L C
=

= ∏
⌢ ⌢ ⌢

  (8) 

Where m  is the number of attributes at a leaf node. 

 

2.3.2 Comments 

Buiding a CITree is also a greedy and recursive 

process. The split score function of selecting the 

best split attribute is also classification accuracy. 

The difference of C4.4, NBTree and CITree is that 

the formers represent the conditional probability 

distribution of the path attributes, while the CITree 

represents a joint distribution over all the attributes. 

According to their experiments in [17, 18, 19], 

CITrees demonstrate good performance in both 

classification and ranking. However, learning a 

CITree tends to have relatively higher 

computational complexity compared with learning a 

traditional decision tree.  
In addition, Harry Zhang and Jiang Su also 

discuss that the average size of CITrees is much 

smaller than that of C4.4 and NBTree over most of 

data sets [17, 20]. 

 

 

2.4 Conditional Log Likelihood Tree 

(CLLTree) 
 

2.4.1 Description 

Similar to the NBTree, in each step of expanding the 

decision tree, the Conditional Log Likelihood (CLL) 

[21] is used as the splitting criterion or score 

function to select the best attribute to split. The 

splitting process ends when two conditions are met. 

One of conditions is at least 30 training samples at 

the current leaf. The other is the relative reduction in 

CLL is greater 5% when comparing two alternatives 

in terms of CLL value, which are calculated by a 

cross-validation procedure. Finally, for the samples 

at leaves, naive Bayesian models are generated, 

which optimizes the estimation of class posterior 

probability.  

The conditional probability of a sample in the 

CLLTree method can be represented as follows [21, 

22]: 

( ) ( ),log ( | ) log ( | )l pp C A p C A A=
⌢ ⌢

            (9) 

( ) ( ) ( )log ( | ) log ( | , ) log ( | )p l p l pp C A p A C A p A A= + −
⌢ ⌢ ⌢

  

Then the CLL of a CLLTree is 

( ) ( )
1

| log |
n

i

CLL S P C AΓ
=

Γ =∑
⌢

              (10) 

where Γ   is a learning model (e.g., CLLTree), and 
S  is a (sub) sample set with n  samples. 
 

2.4.2 Comments 

The positive property of this method is that it 

intends to choose the attributes that maximum the 

posterior class probabilities among the training 

samples at the leaf as much as possible. Thus, even 

though there may exist a high impurity at its leaves, 

it could still be a good CLLTree.  

Another positive property of this method is that 

the CLLTree algorithm outperforms or competitive 

WSEAS TRANSACTIONS on COMPUTERS

ISSN: 1109-2750 74 Issue 3, Volume 10, March 2011



 

 

with the state-of-the-art other above PETs learning 

algorithms in both classification and ranking 

according to the author’s experiments. On the other 

hand, the CLLTree algorithm is also a greedy and 

recursive algorithm, and the time-complexity is 

equivalent to the NBTree.  

 

 

3 Empirical Comparisons 
 

 

3.1 The Design of the Experiment 
In this section, we present the results of an empirical 

comparison of the methods (C4.4, NBTree, CITree 

and CLLTree) presented above with C4.5 with 

Laplace correction (C4.5-L) and Naïve Bayes (NB).  

The main characteristics of the data sets 

considered in our experiments are reported in Table 

1. Our experiments are conducted on the basis of 8 

UCI data sets which are all publicly available at the 

UCI Machine Learning Repository [23], and 2 

Traditional Chinese Medicine (TCM) data sets 

which are obtained from Shanghai University of 

Traditional Chinese Medicine and Institute of Liver 

Diseases, Shanghai, China. The two hepatitis 

sample sets is actually the union of five data sets on 

hepatitis, with the same number of attributes but 

collected in five distinct hospital(Shuguang, 

Longhua, Yueyang and Putuo Central hospitals, as 

well as Infectious diseases hospital, Shanghai, 

China). The hepatitisS sample set involves 

posthepatitc cirrhosis patient’s 67 TCM symptoms, 

one TCM syndrome which were pre-classified into 

four classes, blood stasis-heat accumulation (88 

cases), internal accumulation of damp-heat (101 

cases), liver-kidney yin deficiency (41 cases) and 

liver stagnation and spleen asthenia (38 cases). The 

hepatitisW sample set describes cirrhosis disease. 

Moreover, samples have been assigned to two 

distinct classes: compensated (188 cases) and 

decompensated (252 cases) given 63 TCM 

symptoms. 

In Table 1, the column head “real” concerns the 

number of attributes that are treated as real-value 

attributes. Those real-value attributes are discretized 

by the supervised MDLP [24] discretization method. 

In the column “Missing”, we simply report the 

presence of missing values in at least one attribute 

of any observation. The missing values of real-value 

attributes are replaced by the mean value, and the 

missing values of categorical attributes are replaced 

by the nodes. 

In our experiments, each data set is randomly 

divided into ten times into 90 percent of the samples 

for training and 10 percent for testing according to 

ten-fold cross validation. We run C4.5-L, Naive 

Bayes, C4.4, NBTree, CITree and CLLTree on the 

same training sets and test them on the same testing 

sets to obtain the ACC, AUC and CLL scores. The 

experiment results presented are averages of these 

10 runs. 

To study the performance of PETs methods, we 

compare the classification accuracy (ACC), AUC 

and CLL values of PETs methods with those of the 

corresponding traditional decision tress, such as the 

C4.5 with Laplace correction. In addition, we also 

compare the sizes of trees among them. 

 

Table 1. Description of data sets used in our experiments. 

Datasets above the horizontal line are from UCI and those below are from TCM. 

Data Set Classes  Size Attribute Real Missing 

Breast 2 699 10 0 Y 

Breast(W) 2 569 31 30 N 

Chess 2 3169 36 0 N 

Dermatology 6 366 34 1 Y 

Heart 2 270 14 5 N 

Mushroom 2 8124 23 0 Y 

SPLICE 3 3190 62 0 N 

Vote 2 435 17 0 Y 

HepatitisS 4 268 68 0 N 

HepatitisW 2 440 63 0 N 

 

 

3.2 Experimental Results 
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In this section, the results of different experiments 

of PETs methods on various data sets are 

summarized and discussed. 

Table 2, Table 3 and Table 4 show the 

experimental results in terms of ACC, AUC and 

CLL respectively on ten datasets. 

The first factor that we analyze in this section is 

the classification accuracy. The performance of a 

traditional decision trees is a usually measured by its 

classification accuracy on testing samples. The 

experiment (see Table 2) have been conducted and 

published on comparing, in terms of accuracy, C4.5 

with pruning and Laplace correction, Naïve Bayes 

and several PETs models presented above. 

According to the average classification accuracy 

(see Table 2), the C4.4 achieves the highest ACC 

among all learning models. However, as we can see 

from the Table 5, the C4.4 sacrifices its tree size to 

improve the classification accuracy. The reason is 

that a larger tree easy to yield better fits a smaller 

tree. In addition, we notice that the classification 

accuracies of the NBTree, CITree and CITree 

models are all better than that of C4.5-L. Therefore, 

it is verify empirically that the details of the 

growing phase are less critical to obtaining good 

PETs than the choice of pruning mechanism [5]. 

However, from the outcomes of tests in term of 

AUC reported in Table 3, it is worthwhile noting, 

for most datasets, that the C4.4 outperforms the 

C4.5-L but worse than other PETs models in term of 

AUC. This is because that the accuracy measure 

does not consider the probability of the prediction. 

Thus ACC is not enough for the performance of 

evaluation of PETs models. Moreover, the C4.4 

produces a large amount of repeated class 

probabilities at leaves, which greatly degrades its 

class probability-based ranking quality. 

In addition, as a combination of a decision tree 

and naïve Bayes, NBTree and CLLTree are bettern 

than C4.5-L and NB in AUC and ACC, and CITree 

is second to NB in AUC. Since PETs models have 

explored the conditional independence among 

attributes in building trees. Thus, the class 

probability estimates of the PETs models are 

expected to be more accurate than those of naïve 

Bayes in AUC.  

Thirdly, as two aspects of probability estimation, 

CLL and AUC represent the reliability and 

resolution of PETs learning models respectively [5]. 

In our experiments, Table 4 shows the experimental 

results in terms of CLL. In terms of the average 

CLL, CLLTree achieves the highest CLL among all 

algorithms. 

As an extension of NBTree, the CLLTree 

outperforms NBTree in terms of CLL and AUC 

significantly, and also slightly better in ACC. This 

verifies results of previous publications [21, 22]. 

Similarly, the NBTree outperforms NB in terms of 

CLL, AUC as well as ACC. The CLLTree and 

NBTree define a probability density estimator at 

leaves. Obviously, such an estimate can improve the 

quality of probability estimation. 

Finally, as expected, the average sizes of the 

grown trees induced by PETs except C4.4 are 

smaller than that of C4.5. It verifies that the PETs is 

often much more compact than a traditional decision 

tree. Among PETs, The sizes of CLLTrees are 

significantly smaller than the sizes of other trees 

over all the datasets. The size of CITree is second to 

the size of CLLTree. The size of NBTree is the 

larger than that of CLLTree and CITree. Therefore, 

we conclude that a full join distribution at a leaf is 

more compact than conditional probability 

distribution at a leaf. Here the size of a tree is the 

number of leaves. 

 

   

Table 2. Experimental results for several PETs models: ACC & standard deviation 

Data Set C4.5-L NB C4.4 NBTree CITree CLLTree 

Breast 92.70±1.06 97.28±0.75 94.27±0.06 96.70±0.07 96.15±0.08 95.08±0.08 

Breast(W) 95.78±0.02 95.60±0.04 95.95±0.02 96.13±0.03 93.69±0.03 94.00±0.07 

Chess 98.31±0.37 87.85±1.91 99.41±0.06 94.92±2.05 96.86±0.87 98.93±0.65 

Derma. 93.71±0.06 97.54±0.05 94.26±0.04 97.26±0.04 97.86±0.03 93.33±0.09 

Heart 77.77±2.42 83.07±2.70 78.88±2.86 81.85±2.50 84.81±2.71 84.07±2.23 

Mushroom 100±0.00 95.15±0.78 100±0.00 100±0.00 93.76±0.50 100±0.00 
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Table 2. (Continued) 

Data Set C4.5-L NB C4.4 NBTree CITree CLLTree 

SPLICE 94.35±0.07 95.33±0.14 92.66±0.04 95.33±0.02 95.16±0.02 94.92±0.05 

Vote 96.32±0.02 90.11±0.05 94.94±0.03 94.29±0.03 90.00±0.07 92.71±0.07 

HepatitisS 65.28±0.17 63.77±0.13 80.32±0.13 62.58±0.06 83.69±0.03 68.29±0.09 

HepatitisW 73.63±0.15 75.45±0.44 85.68±0.09 72.50±0.10 60.91±0.12 77.36±0.10 

average 88.78 88.11 91.81 89.16 89.29 89.56 

 

 

Table 3. Experimental results for several PETs models: AUC & standard deviation 

Data Set C4.5-L NB C4.4 NBTree CITree  CLLTree 

Breast 97.40±0.7 99.3±0.82 97.8±0.16 99.1±0.11 97.36±0.13 98.64±0.12 

Breast(W) 94.6±0.42 99.1±0.51 98.1±0.39 98.8±0.33 95.83±0.30 96.46±0.32 

Chess 95.64±0.16 95.2±1.19 99.9±0.14 99.6±0.13 94.75±0.14 99.82±0.20 

Dermat. 77.7±0.11 79.9±0.24 78.9±0.09 85.69±0.10 82.95±0.10 86.29±0.11 

Heart 83.7±0.61 91.00±0.25 88.20±0.16 88.6±0.11 86.47±0.12 94.49±0.13 

Mushroom 100±0.00 99.70±0.07 100±0.00 100±0.00 100±0.00 100±0.00 

SPLICE 97.7±0.1 99.30±0.27 98.1±0.1 99.3±0.31 99.36±0.1 99.45±0.27 

Vote 96.3±0.16 96.10±0.39 96.9±0.13 98.6±0.16 98.06±0.15 98.96±0.20 

HepatitisS 76.20±0.07 85.20±0.10 81.70±0.06 89.30±0.06 89.83±0.30 88.27±0.06 

HepatitisW 70.00±0.28 78.40±0.95 73.40±0.23 77.6±0.25 80.35±0.28 82.51±0.29 

average 88.92 92.32 91.30 93.65 92.12 94.49 

 

 

Table 4. Experimental results for several PETs models: CLL & standard deviation 

Data Set C4.5-L NB C4.4 NBTree CITree  CLLTree 

Breast -12.10±4.64 -18.28±14.16 -11.17±3.39 -12.84±9.33 -14.94±8.57 -11.43±6.38 

Breast(W) -9.40±4.89 -28.57±8.03 -22.08±6.77 -12.96±0.81 -12.54±8.89 -10.35±2.89 

Chess -62.82±18.01 -93.48±7.65 -14.08±9.46 -54.66±27.15 -58.54±22.98 -44.09±16.62 

Derma. -32.65±20.69 -180.36±60.53 -28.93±16.01 -23.64±11.71 -18.98±10.53 -13.07±6.94 

Heart -13.09±3.49 -12.25±4.96 -14.38±6.25 -14.41±5.78 -11.23±8.03 -10.32±3.2 

Mushroom -2.10±0.19 -105.77±23.25 -2.10±0.19 -0.14±0.14 -2.52±0.23 0.00±0.01 

SPLICE -85.73±49.98 -46.53±12.85 -112.46±67.16 -57.33±24.50 -60.98±33.70 -54.66±27.15 
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Table 4. (Continued) 

Data Set C4.5-L NB C4.4 NBTree CITree  CLLTree 

Vote -6.09±3.41 -27.25±13.85 -5.81±4.58 -7.35±5.41 -5.29±3.90 -7.16±4.68 

HepatitisS -171.13±58.85 -180.24±44.34 -160.20±63.97 -77.30±46.28 -72.54±48.90 -34.73±16.08 

HepatitisW -162.52±53.30 -163.69±69.00 -68.05±38.37 -59.09±27.01 -23.69±9.55 -11.58±7.83 

average -55.76 -85.64 -43.93 -31.97 -28.13 -19.74 

 

 

Table 5. Experimental results for several PETs models: sizes of trees 

Data Set C4.5-L C4.4 NBTree CITree  CLLTree 

Breast 55 136 8 7 1 

Breast(W) 12 31 22 8 3 

Chess 35 55 34 26 1 

Dermatology 30 33 4 2 1 

Heart 19 134 7 1 1 

Mushroom 24 24 115 1 1 

SPLICE 184 214 50 2 34 

Vote 6 13 11 7 1 

HepatitisS 64 108 10 8 2 

HepatitisW 27 147 13 24 2 

average 45.6 89.5 27.4 8.6 4.7 

 

 

4 Conclusion 
In this paper, a comparative study of six well-known 

probability estimation methods has been presented. 

Each method has been critically reviewed, and its 

behavior tested on several datasets. Some objective 

evaluations of performance to accurate class 

probability estimation are given by each method. 

To sum up, we have shown that: 

� Building PETs are greedy and recursive 

process, similar to building traditional 

decision trees. In this paper, we conclude a 

framework for PETs algorithms in Figure 1. 

� Our results present an important caveat: 

although larger trees may not be more 

accurate, that does not mean that they are 

not better models. As shown by the results, 

C4.4 fairly outperforms a traditional 

decision tree represented by C4.5-L. 

Moreover, C4.4 also outperforms other 

PETs presented in this paper in terms of 

ACC. 

� Another significant observation is that PETs 

(NBTree, CITree and CLLTree), as a 

combination of a decision tree and a naïve 

Bayes, can yield more accurate probability 

estimates than naïve Bayes and traditional 

decision trees. 

� The representation of Joint distribution at 

leaves, such as CITree and CLLTree, is 

more reliable and accurate, and outperforms 

class probability estimation of NBTree. 
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Figure 1. A framework for PETs algorithms 

 

This paper on PETs is manifestly incomplete. 

Several other PETs methods presented in the 

literature are neglected by us. Padhraic Smyth et al. 

[9] proposed a novel method for combining decision 

trees and kernel density estimators. Dragos and 

Thomas [26] introduced a B-LOTs algorithm. In 

addition, many researchers specifically discussed a 

resemble decision tree induction with bagging. They 

conclude that bagging is not a good choice if we aim 

to calibrate class probabilities of decision trees. 

Although these PETS presented in this paper can 

produce accurate probability estimations, they are a 

greedy process in building trees. In our future 

research, we will devote ourselves to optimize the 

algorithms, and reduce computation. In addition, we 

will also extend PETs to work on data with higher 

dimensionality. 
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