
Orthogonal Software Architecture Design for Radar Data Processing
System with Object-oriented Component and COM Interface

ZHONGZHI LI, XUEGANG WANG, XUELIAN YU

School of Electronic Engineering
University of Electronic Science and Technology of China

Road JianShe, Chengdu, 610054
PR. CHINA

lizz_uestc@163.com

Abstract: - Large scale software system is usually developed by software engineering method, and it needs
good architecture and reusable components. Radar data processing system is a complex software system; it
needs to complete many tasks such as multi-sensor data fusion, target tracking, data storing and displaying,
remote controlling, etc. Based on orthogonal software architecture and component-based software engineering,
we propose a new method, orthogonal software architecture with object-oriented component and COM
interface in this paper, and we use the proposed method to complete the architecture and components design for
radar data processing software system. By eliminating correlation between components, we can improve the
reusability and maintainability of component. At the same time, we use COM interface to implement mixed
language programming and system integration. After the system development and test, it proves that the new
software architecture is reasonable and applicable.

Key-Words: - Orthogonal software architecture; Component-based software engineering; Object-oriented
component; Component object model (COM); Module; Radar data processing system.

1 Introduction

With enlargement of software scale and software
complexity, the software crisis intensifies day by day.
People realized gradually that the system architecture
design and the specification explanation become an
effective method to improve software productivity
and reduce the development complexity and software
maintainability, and they are more important than
computation algorithm and data structure. The
system architecture design plays a pivotal role on the
final system's success.

Software engineering is a profession dedicated to
designing, implementing, and modifying software so
that it is of higher quality, more affordable,
maintainable, and faster to build. The term software
engineering first appeared in the 1968 NATO
Software Engineering Conference, and was meant to
provoke thought regarding the perceived "software
crisis" at the time [1]. Since the field is still relatively
young compared to its sister fields of engineering,
there is still much debate around what software
engineering actually is, and if it conforms to the
classical definition of engineering. Some people
argue that development of computer software is more
art than science [2], and that attempting to impose
engineering disciplines over a type of art is an

exercise in futility because what represents good
practice in the creation of software is not even
defined [3]. Others, such as Steve McConnell, argue
that engineering's blend of art and science to achieve
practical ends provides a useful model for software
development [4]. The IEEE Computer Society's
Software Engineering Body of Knowledge defines
"software engineering" as the application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of
software, and the study of these approaches; that is,
the application of engineering to software [5].

In this paper, we apply software engineering
thought to design a large-scale software system,
radar data processing system. It is a complex system
and has many tasks such as multi-sensor data fusion,
target tracking, data storing and displaying, remote
controlling, etc. And it is inevitable to face mixed
language programming, requirement variety, large
maintenance, etc. So, we need to consider adequately
the component reusability and maintainability; it is
important to choose good software architecture and
reusable components. We proposed a new method,
orthogonal software architecture with object-oriented
component and COM interface in this paper for radar
data processing system. Firstly, we introduce the
software developing theory, especially orthogonal

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 61 Issue 2, Volume 10, February 2011

mailto:lizz_uestc@163.com

software architecture and component-based software
engineering, then the new software architecture with
object-oriented component and COM interface is
proposed, and then we describe the requirement of
radar data processing system, finally, the software
system architecture design using the proposed
method is given.

2 Software developing theory

In this paper, we use software architecture
(especially orthogonal software architecture) and
component-based software engineering (with COM
interface) technology to develop software system. So,
we describe the related theory firstly.

2.1 Software architecture

Software architecture is originated from the
software organization and structure research by
Dijkstra [6] and Pamas[7] in the 1960s and 1970s; it
is a natural evolution for software design abstract [8].
More and more people recognize the importance of
software architecture, and notice that in-depth
studying the software architecture is a promising way
to improve software productivity and maintenance.
There are three periods during software architecture
improvement: (1) Mainframe structure, which is used
to be suitable with central system. In this structure,
customer’s data and procedures are concentrated in
the host with a few GUI interfaces; meanwhile it is
difficult to support remote database access. With the
widespread use of computer, the structure has been
eliminated. (2) In the middle of 1980s, Client /
Server distributed computing structure comes out.
The applications are shared in the client (PC machine)
and server; requests are usually dealt with relational
database; client PC is used to display and implement
the business logic after it received processed data.
Furthermore, this structure supports modular design
and usually has GUI interfaces, and its flexibility
makes the structure to be widely used. However, in
large-scale software system, the structure is not good
enough for system deployment and extension. (3)
Thereafter, three-layer / multi-layer architecture
appears which is based on Internet and web
applications. In the three-layer architecture, the client
(request for information), procedures (deal with
requests) and data (to be operated) are physically
isolated. Three-layer structure is a more flexible
architecture, it extracts the display logic out of the
business logic, that means business logic is
independent in coding, you do not need to care about
how and where to show them. Business logic layer is

in the middle, so it does not need to concern where
the data come from and how to display, and is
independent with background system. Considering
these, three-layer structure has a better portability,
supports different working platform, and allows user
requests load balanced between several servers. Also
it has a strong security, because the application has
been isolated with the client customer. Application
server is a component of the three-layer / multi-layer
architecture and it is located in the middle layer.

Software architecture is still in development, its
academic definition has not yet unified. Here are
some typical definitions: Garlan &. Shaw model [9]
and CFRP model [10] emphasize that the architecture
is composed of components, connectors and its
constraint (or connection semantic), that is, from the
composition view to look at the software architecture.
Perry &. Wolf model [11] and Vestal model [12]
focus on architecture style, model and rules etc., it
would like to use an overlook view to consider
software architecture. Definitions from IEEE610.12 -
1990 [13] emphasize not only the basic composition,
but also the environment of architecture (the
interaction with the outside world). Boehm model
[14] emphasizes that the software architecture is a set
of concepts and decisions on software system design;
it will help a developing system satisfy an important
function and quality requirement. Bass, Ctements &.
Kazman model [15] [16] ignores the software
architecture details, and pays attention to the abstract
conception of software system and the overall
characteristics (the external visual attributes).
Although from different view points, all the software
architecture models considered the systems structure,
and mentioned the following entities: components,
interaction relationship between the components,
constraint, and topology consisted by connectors and
components, design principles and guidelines.

2.2 Orthogonal software architecture

Orthogonal software architecture is composed of
the organization layers and clues. Layers are
constituted by a group of the same abstract level
components. Clue is a particular case in the
sub-system, it is constituted by components which
are used to complete functions of the different levels
(by calling each other to correlate); each clue
completes part of the system relatively independent
functions. There is no or few correlation between
clues’ implementation. In the same layer,
components are not allowed to call each other [17]. If
the clues are independent, that is, the different
components in different clues do not call each other,
and then the structure is orthogonal. From the above

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 62 Issue 2, Volume 10, February 2011

definition, we can see that the orthogonal software
architecture is a hierarchical structure based on the
vertical components of the clues. Its basic idea is
dividing the application structure into a number of
vertical clues (sub-systems) according to the function
orthogonal correlation. Clues are divided into several
levels, and each clue is composed of several
components with different abstract levels and
functions. The components with the same level have
the same level of abstraction in every clue. Therefore,
we can get orthogonal software architecture main
features: (1) Constituted by n (n>1) clues
(sub-systems); (2) System has m (m>1) different
levels abstraction layer; (3) Clues are independent
(orthogonal); (4) System has a common drive layer
(usually the highest layer) and common data
structures (usually the lowest layer).

Fig.1. Orthogonal software architecture framwork

In a large-scale and complex software system, its
first level sub-clues can be divided into lower level
sub-clues (the second level sub-clues) and formed
the multi-levels orthogonal structure. Fig.1 shows an
orthogonal software architecture framework which is
composed of three level clues and five layer structure.
ABDFK is a clue and ACEJK is another clue. Here,
B and C are in the same level, so they will not allow
to be called by each other. In general, the fifth layer
is a physical database connector or equipment
component, and it will be used by the whole system.

In the evolution process of software, system
requirement are always changing. Because of the
orthogonal, every requirement variety only affects
one clue. By this way, orthogonal software
architecture localizes the variety and influence. Here
are the advantages: (1) Clear structure, easy to
understand. The expression of the orthogonal
software architecture is easier for user to understand.
For clues are independent and can not call each other
in the same layer, the structure is simple and clear.
The position of a component has already told us it’s

abstract and functions. (2) Easy to modify and
maintain. For each clue is independent, one clue’s
variey will not affect others. When system
requirement variety occurs, we can divide them into
sub requirement, then deal with them from the clue
and components view. That means if we need to add
or delete functions in a system, we only need to add
or delete the correlated clues, and the whole system
structure will not be affected. (3) Easy to reuse, and
has strong portability. Because orthogonal software
architecture can be shared by all the applications if
they have the same or similar layers and clues in a
domain.

But in orthogonal software architecture,
components usually have strong correlation in the
same clue, that is, components are hard to be
changed and maintained when the clue changes. In
order to solve this problem, we propose
object-oriented method in this paper to eliminate or
weaken the correlation between components in the
same clue.

2.3 Component-based software engineering

An individual component is a software package or
a module that encapsulates a set of related functions
(or data). All system processes are placed into
separate components so that all of the data and
functions inside each component are semantically
related (just as with the contents of classes). Because
of this principle, it is often said that components are
modular and cohesive. With regard to system-wide
co-ordination, components communicate with each
other via interfaces. When a component offers
services to the rest of the system, it adopts a provided
interface which specifies the services that can be
utilized by other components and how. This interface
can be seen as a signature of the component - the
client does not need to know about the inner
workings of the component (implementation) in
order to make use of it. This principle results in
components referred to as encapsulated. The UML
illustrations within this article represent provided
interfaces by a lollipop-symbol attached to the outer
edge of the component.

However when a component needs to use another
component in order to function, it adopts a used
interface which specifies the services that it needs.
Another important attribute of components is that
they are substitutable, so that a component can
replace another (at design time or run-time), if the
successor component meets the requirements of the
initial component (expressed via the interfaces).
Consequently, components can be replaced with
either an updated version or an alternative for

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 63 Issue 2, Volume 10, February 2011

example, without breaking the system in which the
component operates. As a general rule of thumb for
engineers substituting components, component B can
immediately replace component A, if component B
provides at least what component A provided, and
uses no more than what component A used. Software
components often take the form of objects or
collections of objects (from object-oriented
programming), in some binary or textual form,
adhering to some interface description language (IDL)
so that the component may exist autonomously from
other components in a computer.

When a component is to be accessed or shared
across execution contexts or network links,
techniques such as serialization or marshalling are
often employed to deliver the component to its
destination. Reusability is an important characteristic
of a high-quality software component. A software
component should be designed and implemented so
that it can be reused in many different programs. It
takes significant effort and awareness to write a
software component that is effectively reusable. The
component needs to be:

• fully documented
• thoroughly tested

o robust - with comprehensive
input-validity checking

o able to pass back appropriate error
messages or return codes

• designed with an awareness that it will be put
to unforeseen uses

In the 1960s, programmers built scientific
subroutine libraries that were reusable in a broad
array of engineering and scientific applications.
Though these subroutine libraries reused
well-defined algorithms in an effective manner, they
had a limited domain of application. Commercial
sites routinely created application programs from
reusable modules written in Assembler, COBOL,
PL/1 and other second- and third-generation
languages using both System and user application
libraries. Modern reusable components encapsulate
both data structures and the algorithms that are
applied to the data structures. It builds on prior
theories of software objects, software architectures,
software frameworks and software design patterns,
and the extensive theory of object-oriented
programming and the object oriented design of all
these. It claims that software components, like the
idea of hardware components, used for example in
telecommunications, can ultimately be made
interchangeable and reliable. On the other hand, it is
argued that it is a mistake to focus on independent
components rather than the framework without
which they would not exist.

2.3 COM Technology

Component Object Model (COM) [18] is a
binary-interface standard for software componentry
introduced by Microsoft in 1993. It is used to enable
interprocess communication and dynamic object
creation in a large range of programming languages.
The term COM is often used in the Microsoft
software development industry as an umbrella term
that encompasses the OLE, OLE Automation,
ActiveX, COM+ and DCOM technologies. The
essence of COM is a language-neutral way of
implementing objects that can be used in
environments different from the one in which they
were created, even across machine boundaries. For
well-authored components, COM allows reuse of
objects with no knowledge of their internal
implementation, as it forces component
implementers to provide well-defined interfaces that
are separate from the implementation. The different
allocation semantics of languages are accommodated
by making objects responsible for their own creation
and destruction through reference-counting. Casting
between different interfaces of an object is achieved
through the QueryInterface() function. The preferred
method of inheritance within COM is the creation of
sub-objects to which method calls are delegated.

Although the interface standard has been
implemented on several platforms, COM is primarily
used with Microsoft Windows. For some applications,
COM has been replaced at least to some extent by
the Microsoft .NET framework, and support for Web
Services through the Windows Communication
Foundation (WCF). However, COM objects can be
used with all .NET languages through .NET COM
Interop. Networked DCOM uses binary proprietary
formats, while WCF encourages the use of
XML-based SOAP messaging. COM is very similar
to other component software interface technologies,
such as CORBA and Java Beans, although each has
its own strengths and weaknesses. The characteristics
of COM make it most suitable for the development
and deployment of desktop applications, for which it
was originally designed.

COM programmers build their software using
COM-aware components. Different component types
are identified by class IDs (CLSIDs), which are
Globally Unique Identifiers (GUIDs). Each COM
component exposes its functionality through one or
more interfaces. The different interfaces supported
by a component are distinguished from each other
using interface IDs (IIDs), which are GUIDs too.
COM interfaces have bindings in several languages,
such as C, C++, Visual Basic, Delphi, and several of

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 64 Issue 2, Volume 10, February 2011

the scripting languages implemented on the Windows
platform. All access to components is done through
the methods of the interfaces. This allows techniques
such as inter-process, or even inter-computer
programming (the latter using the support of DCOM).
Component Object Model (COM) specifies
architecture, a binary standard, and a supporting
infrastructure for building, using, and evolving
component-based applications. It extends the benefits
of object-oriented programming such as
encapsulation, polymorphism, and software reuse to
a dynamic and cross-process setting. Distributed
COM (DCOM) is the distributed extension of COM.
It specifies the additional infrastructure that is
required to further extend the benefits to networked
environments.

3 Orthogonal software architecture
with object-oriented component and
COM interface

Based on orthogonal software architecture and
component-based software engineering, we propose
a new method: orthogonal software architecture with
object-oriented component and COM interface.

3.1 Object-oriented component

Fig.2. Object-oriented component

Correlation between components is the biggest
problem in components reusability. We define
correlation as data correlation or logic correlation.
When software requirement occurs (data change or
business logic change), we have to update all
correlated components; that is an annoying thing for
developers. Therefore, we need to eliminate or
reduce correlation between components as much as
possible, i.e. making component to be completely
independent (not correlated with other components in
the same clue). We set the principles as follows:

• Components in the same layer must be
uncorrelated.

• Components (in the same clue) in the different
layers can not correlated directly, if happened,
we generate the new base component by
object-oriented method.

Fig.3. Base class and derivation

In Fig.2, we assume that components B, C in clue
X are correlated. When software requirement variety
occurs (data change or business logic change), we
have to update components B, C simultaneously. In
order to make the components to be independent, we
apply object-oriented ideology to process them.
Usually, correlation exists in data and business logic;
firstly we generate new common components,
common data component and common business logic
interface component from components B, C, then
components B, C inherit from the common
components shown in Fig.3. Components B, C only
implement their private data type and operation, so
they will be independent. The added common
components maybe are a little complex, but the
developing cost of new common components is
always less than original components correlation.

3.2 Component with COM interface

Fig.4. Object-oriented component

The large-scale software system design usually

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 65 Issue 2, Volume 10, February 2011

uses the software engineering modular thought. This
kind of developing method needs the cooperation of
many developers who usually use different
development tools and different programming
languages, and sometimes we also need to integrate
ready-made modules developed by different tools. So,
it needs mixed language programming, and the COM
technology is an effective way to solve the
integration requirement.

In Fig.4, main program (executive program),
radar data processing modules and ready-made
modules are developed with different programming
tools, and they can not communicate each other. So,
we need add COM interface to integrate them. As an
example, in radar data processing software system,

we develop the radar data processing modules with
Visual Studio .Net and develop the main program
with Visual C++6.0, and we give the implementation
of COM interfaces as follows.

(1) COM server creation in .Net
• COM interface definition and implementation
In order to allowing COM to access the properties,

methods and events, we have to define them with
DispId property in the class interface and implement
them in the class. The sequence of these members
defined is their sequence in COM. To open COM,
interfaces must be public in the class. There need a
GUID feature before class name and interface name.
An Example is given as follows:

namespace RadarDataProcessLib
{

public class ComInterface
 {

// COM methods definition
 [ComVisible(true), Guid("6F67D6BD-B902-4fc8-8C19-9B2FD0A61802")]

public interface IComRadarDataProcess
 {

// method 1 definition
 [DispId(1)]

void method_1();
 ……
 }

// COM events definition
 [ComVisible(true), Guid("CA7C94D7-79F6-472f-A9DF-4F7D71881519")]
 [InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]

public interface IComRadarDataProcessEvent
 {

// event 1 definition
 [DispId(1)]

void OnEvent_1();
 ……
 }

 // COM class definition
 [ComVisible(true), Guid("BD9771CC-78D4-49bb-9EFE-2321411BF97F"), ClassInterface(ClassInterfaceType.None)]
 [ComSourceInterfacesAttribute(typeof(IComRadarDataProcessEvent))]

public class ComRadarDataProcessDll : IComRadarDataProcess
 {

// Methods and events implement defined in interface
 ……
 }
 }
}

• Interaction between COM objects and
management application

Before creating COM objects, we must register
them for COM Interop. It set the value of “Register
for COM Interop” as true. For COM objects that can
be called by external objects, libraries must have a
strong portfolio name. It needs to use SN.EXE to
generate a name key, run the command as follow:

(2) COM interface reference in VC++6.0
• Add ATL support to project
• Import component library to project

• implement events receptive object
Use IDispEventImpl template in ATL to

implement event receptive object, and use
SINK_ENTRY_EX micro add event processing
articles in event sink mapping table as follows.

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 66 Issue 2, Volume 10, February 2011

4 Software architecture design for
radar data processing system

In this paper, we design the radar data processing
system’s architecture based on orthogonal software
architecture with object-oriented component and
COM interface. We divide components by clues
(function classification) and implement them with
object-oriented method to keep independence and
reduce correlation in the same clue. At the same time,
we add COM interface to modules for mixed
language programming and system integration. The
proposed method is beneficial to system expansion
and maintenance, and it improves the system
reusability, scalability, and maintainability.

4.1 System requirement

T/R unit Signal
Processor

Main
program

Data processing
modules

Antenna

Other modules

Hardware system

Radar data processing
software system

Fig.5. Systerm topology

Radar data processing software system is a part of
the radar surveillance system and their relationship is
shown in Fig.5. Data processing modules implement
tasks associated with the radar data such as data
communication, target tracking, target identification,
primary and secondary radar data displaying, data
management and replaying, radar control, and so on.
The main program completes the system integration.
Because the system function is complex, we need to
design the system with software engineering modular
thought. The radar data processing software system
discussed in this paper uses two development tools:
Visual Studio .Net and Visual C++6.0. Data
processing modules are developed as dynamic link
library (DLL) by Visual Studio .Net, and the main
program is developed by Visual C++6.0. Except the
data processing modules, there have some other
modules such as electronic maps, statistical analysis,
and so on. (These modules are ready-made or
developed by different tools). Because of the
difference between modules, they cannot interact
directly, and the COM technology is the method for
mixed language programming.

The system deployment is shown in Fig.6. It
works in a distributed network environment, and
includes local controller, remote controller, data
server and surveillance terminal. Their functions are
as follows.

(1) Local controller:
• Communication with signal processor.
• Receive primary and secondary radar data.
• User-defined protocol parsing.
• Primary and secondary radar data displaying.
• Communication with remote controller.

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 67 Issue 2, Volume 10, February 2011

• Radar controlling.
(2) Remote controller:
• Communication with local controller.
• Communication with other interfaces.
• Multi-sensors data fusion.
• Target tracking.
• Track storing and management.
• Primary and secondary radar data displaying.
• Data storing and accessing.
• Target tracking replaying.
• Radar remote controlling.
(3) Surveillance terminal software functions:
• Communication with controller.
• Database accessing ability.
• Track displaying and replaying.
(4) Data server:
• Data storing and accessing interface.

Fig.6. Systerm deployment

4.2 System layers design

Software requirement is usually dynamic. In order
to cope with the influence caused by the possible
variety in the structure and to improve reusability
and maintainability, we use orthogonal architecture
for software design. Firstly, we design the layer
structure of the system as shown in Fig.7, and the
system is divided into five layers: interface layer
provides COM interface for mixed language
programming; application layer provides GUI and
man-machine interaction interfaces; business logic
layer provides kernel algorithms such as original data
pre-processing, clutter processing, track processing
(target points aggregating, track initializing,
maintaining, and discarding), target recognition
according to the number, range, speed of targets; data
layer provides interfaces for accessing the database,
text and the memory data structure; driver layer

provides interfaces to access hardware such as CPCI
cards. Then we divide system to many components
after determination of clues such as track processing,
data storing, signal processor controlling, etc.

Fig.7. Systerm layer structure

4.3 System components design

After determination of system layers and clues,
we design the radar data processing system software
architecture as shown in Fig.8.

As an example, in track processing clue linked by
blue line, we explain how to generate object-oriented
component. CPCI driver module obtains the radar
data from signal processor through CPCI card; the
data is stored in Memory data structure module;
Primary radar data fusion module obtains the data
and complete radar data pre-processing, then Track
processing module complete target tracking, target
identification, etc. At last, Track display module
provides GUI interface for operator. Because all
these modules are correlated with memory data and
business logic task dispatching, it makes the system
difficult to maintain when software requirement
variety occurs. In order to fix this problem, we use
object-oriented method to create a common data
component and common logic component (they
compose the common modules in red color: System
task dispatching and Common data modules), and
then modules in track processing clue inherit from
them. These object-oriented components do not need
to care about different data structure and business
logic, so they are uncorrelated, and easy to reuse.

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 68 Issue 2, Volume 10, February 2011

Track display
(ActiveX)

GUI

CPCI driver
(DLL)

Track processing
(DLL)

TCP/UDP service
(DLL)

Ethernet

Primary radar
data fusion

(DLL)

Point display
(ActiveX)

DBMS

CPCI card

Serial communication
(DLL)

Driver layer

Business
logic layer

Application layer

Data fusion
(DLL)

Configuration
(DLL or ActiveX)

User-defined communication
protocol processing

 (DLL)

Radar operation
and control

(DLL or ActiveX)

RS232/422

Data layer
Database access

(DLL)

Text file access
(DLL)

Memory data structure
(DLL)

Algorithm modules

Common modules

primary
radar data &.
secondary
radar data
……

Common
data componet

COM interface implementation
(DLL or ActiveX)

System task dispatching
 (DLL)

Interface layer

Interface module

Man-machine interaction modules

Common data
 (DLL)

Global data
and function

DB modules

Signal processor

Driver modules

Main Program

Common data
component

Common logic
component

Clue example: track processing clue

Object-oriented component

COM interface component

Object-oriented component generation

Legend

Fig.8. Systerm componets architecture &. object-oriented componet design example

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 69 Issue 2, Volume 10, February 2011

5 Conclusion

In this paper, we analyze the orthogonal software
architecture and the component-based software
engineering. Then we propose the idea of
object-oriented component with COM interface to
eliminate the correlation between the components
and to integrate mixed language programming
modules. According to the proposed method, we
design the radar data processing software system. In
the process of development, software requirement
variety occurs regularly, and we confine the variety
into common modules by object-oriented component.
Therefore, the system is easy to maintain and expand,
and the architecture is applicable for large-scale
software development. There is a minor disadvantage
that the system task dispatching module is complex
because it is correlated with various clues (with
various components), but it is acceptable when most
components become independent.

Acknowledgment:

This work was supported in part by the National
Natural Science Foundation of China (No.
60736045).

References:
[1] P. Naur and B. Randell, Software engineering:

Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany:
Scientific Affairs Division, NATO, 1968.

[2] Hey, Programmers, We Got No Theory! Dr.
Dobbs Journal, March 22, 2010 (Retrieved
March 26, 2010)

[3] Ivar Jacobson and Ian Spence, Why We Need a
Theory for Software Engineering, Dr. Dobbs
Journal, October 02, 2009.

[4] McConnell Steve, The Art, Science, and
Engineering of Software Development, IEEE
Software, Vol.15, No.1, 1998.

[5] Alain Abran, James W. Moore, Pierre Bourque,
and Robert Dupuis, Guide to the Software
Engineering Body of Knowledge - 2004 Version,
IEEE Computer Society, 2004, pp. 1–1.

[6] E.W. Dijistra, The structure of the multi-
programming operating system, Communication
of ACM, Vol.11, No.5, 1968, pp. 341-346.

[7] D.L. Pamas, P.C. Clements, and D.M. Weiss,
The modular structure of complex systems, In:
Proeeedings of the 7th intemational Conference
on Software Engineering (Orlando, Florida,
USA, March 26-29, 1984), IEEE Press,
Piscataway, NJ, 1984, pp. 408-417.

[8] Sun changai, Jin maozhong and Liu chao,
Overviews on Software Architecture Research,
Journal of software, Vol13, No.7, 2002, pp.
1228-1237.

[9] D. Garlan and M. Shaw, An introduction to
software architecture, Technique Report,
CMU/SEI -94-TR-21 ， Camegie Mellon
University, 1994.

[10] The Boeing ComPany-Defense and Space
Group, STARS conceptual ftamework for reuse
Processes， lockheed martin tactical defense
system, STARS Program Technieal Report,
1994.

[11] D.E. Perry, Software engineering and software
architecture, In: proceedings of the Intemational
Confereneeon Software: Theory and Practiee,
Beijing: Eleetronic Industry Press, 2000, pp.
1-4.

[12] S. Vestal, A cursory overview and comparison of
four architecture description languages,
Honeywell Technology Center Technical Report,
1993.

[13] IEEE, IEEE Glossary of Software Engineering
Terminology, 610.12-1990, 1998.

[14] C. Gacek, A. Abd-Allah and B.K. Clark, et al.,
On the definition of software system architecture,
In: Proceedings of the lst Intemational
Workshop on Architecture for Software Systems,
New York: ACM Press, 1995, pp. 85-95.

[15] Camegie Mellon University Software
Engineering Institute, How do you define
Software Architecture, http://www.sei.cmu.edu/
architecture/definitions.html.

[16] Rick Kazman, Software Architecture. in
handbook of software Engineering and
Knowledge Engineering, S-K Chang(ed.), World
Scientific Publishing, 2001.

[17] Y.S. Zhang, Software Architecture, Beijing:
Tsinghua University Press, 2004.

[18] Microsoft Corporation, The Component Object
Model Specification, http://www.microsoft.com/
com/default.mspx, 2010.

WSEAS TRANSACTIONS on COMPUTERS Zhongzhi Li, Xuegang Wang, Xuelian Yu

ISSN: 1109-2750 70 Issue 2, Volume 10, February 2011

http://www.sei.cmu.edu/
http://www.microsoft.com/

