
Selection of Polynomials for Cyclic Redundancy Check for the use of
High Speed Embedded – An Algorithmic Procedure

A. Ahmad and L. Hayat

Department of Electrical and Computer Engineering,
College of Engineering, Sultan Qaboos University

P. O. Box 33, Postal Code 123; Muscat, Sultanate of Oman
Tel.: (968) 24415327, Fax. (968) 24413454

E-mails: afaq@squ.edu.om

Abstract: - Cyclic Redundancy Check (CRC) technique which is widely used tools in globally standardized
telecommunications systems for dealing with data errors detection and correction have not been fully
standardized. Most of the CRCs in current use have some weakness with respect to strength or construction.
Standardization of CRCs would allow for better designed CRCs to come into common use is primarily limited
due to the complexity of search procedures of the primitive characteristic polynomials. To this direction this
paper proposes a method of simplifying the computation and complexity of the search procedure of the
primitive characteristic polynomials in order to facilitate implementation of the circuitry for high-speed CRC
computation in standard CMOS technology.

Key-Words: - Cyclic Redundancy Check, CRC, Linear Feedback Shift Registers, LFSRs, Primitive Polynomial
Primitive Characteristic Polynomial, Power Dissipation, Exclusive-OR, D-Flip-Flop

1 Introduction
A CRC is an error-detecting code. The CRC
methodology is based on cyclic algorithm that
generates redundant information. The CRC
technique is heavily used in data communication,
storage devices and VLSI testing. Linear Feedback
Shift Registers (LFSRs) along with Exclusive-OR
logic gates is the possible way out to realize the
hardware solutions for CRC. While on the other
hand the simulation of polynomial division process
realizes the CRC in software manner. In general,
LFSR with serial data feed has been used to
implement the CRC algorithm. This LFSR based
method simply performs a division and then the
remainder which is the resulting CRC checksum, is
stored in the registers after each clock cycle of the
transmitted bit, and at the end of the last bit entry of
the data records the final check sum of the
transmitted data [1] – [4]. An n-bit LFSR based
CRC implementation is as shown in Figure 1.
 In general an n-bit LFSR based CRC circuit may
give 2n-1 different characteristic polynomials. For
example a 3-bit CRC circuit may have any of the 4
possible characteristic polynomials, namely these
are 1+x3, 1+x2+x3, 1+x+x3, and 1+x+x2+x3. Table 1
provides some of the used characteristic
polynomials. The use of the different characteristic
polynomials results in different efficiency in terms
of error masking capability along with hardware,

time, and power requirements. As it has been
claimed that the use of primitive characteristic
polynomials are better for the practice but careful
investigations of primitive polynomials are required.
However, finding an optimal solution of selecting
appropriate characteristic polynomials is restricted
due to the search problem of primitive characteristic
polynomials [5] – [11]. Figure 2 maps the
complexity of the search problem of primitive
characteristic polynomials of order n = 1 to 24. In
Figure 2, NP represents the total number of possible
characteristic polynomials whereas; NPP indicates
the total number of possible characteristic primitive
characteristic polynomials of order n. The
complexity of the search problem increases as the
value of n increased. Due to this problem many of
the CRC characteristic polynomials which are in use
are not the primitive one. Refer to the Table 1,
where it can be verified that the characteristic
polynomials of the circuits CRC-32K (Koopman),
CRC-32C (Castagnoli) are not primitive
characteristic polynomials. Hence this paper extends
the research work of finding the primitive
characteristic polynomials in an efficient manner.

WSEAS TRANSACTIONS on COMPUTERS A. Ahmad, L. Hayat

ISSN: 1109-2750 16 Issue 1, Volume 10, January 2011

T

 Fig. 1: A g

Table 1: Diffe

Fig. 2

eneral LFSR

erent characte

: The values o

based CRC c

ristic Polynom

of n vs NP / N

circuit

mials Usage

NPP

2
 This
backgro

Theore
the sm
polynom

Theore
primitiv
P*(x) is

Let A r
n×n, fo
at any
[Y(t)]=

(
(

(
(

y t
y t

y t
y t
n

n

1

1

1

+
+

+
+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

−

M

Where
cj = 1, f

Equatio

[Y(t+1)

On the
and Equ

[Y(t)] =

Asserti
The per
when p

Definit
For th
polynom

ϕ(x) =

Definit
A char
maxima
polynom

Primitive
section brie

ound LFSR.

em 1: A prim
allest positiv
mial.

em 2: A po
ve, if and on
s also primitiv

represent the
or an n-stage L
y time ‘t’

=[y1(t),y2(t), ..

)
)

)
)

1
1

1
1
+
+

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 =

⎢
⎢
⎢
⎢
⎢

⎣

⎡

00
00

01
21

MM

cc

 cj = 0 or
for j = n.

on (1) can be

)] = [A][Y(t)]

basis of the
uation (3), it

= [Y(t+p)] = [

ion 1:
riod p of an n

p = m = 2n-1.

tion 1:
he matrix A
mial is given

1+ c
j

n

=
∑

1
j xj

tion 2:
racteristic pol
al length se
mial’.

e Polynom
efly presents

mitive polynom
ve where n is

olynomial P(
nly if, its rec
ve.

 state transiti
LFSR. Let th

be repres
.,yn(t)]

⎥
⎥
⎥
⎥
⎥

−

010
000

000
13

L

L

MMLM

L

L nn ccc

1, for 1≤ j ≤ n

written as

]

property of p
follows that

[A]p[Y(t)]

n-bit LFSR w

A of LFSR,
by

 cn=1.

lynomial P(x
equence is c

mials - Sear
the mathem

mial is irreduc
s the degree

x) of degree
ciprocal polyn

ion matrix of
he state of the
sented by

⎥
⎥
⎥
⎥
⎥

⎦

⎤

 *

()
()

()
()

y t
y t

y t
y t
n

n

1

1

1

M

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

n-1

periodicity of

will only be m

the charact

) associated
called a ‘pri

rch
matical

cible if
of the

e n is
nomial

f order
 LFSR
vector

 (1)

 (2)

 (3)

f LFSR

 (4)

aximal

teristic

 (5)

with a
imitive

WSEAS TRANSACTIONS on COMPUTERS A. Ahmad, L. Hayat

ISSN: 1109-2750 17 Issue 1, Volume 10, January 2011

Theorem 3:
If a primitive characteristic polynomial P(x) of an n-
stage LFSR has corresponding feedback
connections from stages n, k, h,, then the
reciprocal of this polynomial P*(x) will have
corresponding feedback connections from stages n,
n-k, n-h,, etc. (n>k>h..).

Theorem 4:
If the characteristic polynomial of an n-stage LFSR
is irreducible, then the period of generated sequence
by the LFSR is a factor of 2n-1.

Corollary 1:
If p = m = 2n-1 is a prime number, then the
characteristic polynomial corresponds to that
connection of LFSR will be primitive, if and only if
[A]m = I.

Corollary 2:
If p = m = 2n-1 is not a prime number, and [A]pi = I,
where pi is a divisor of p, then the characteristic
polynomial corresponds to that connection of LFSR
can not be primitive.

Theorem 5:
The characteristic polynomial of an n-stage LFSR
can be primitive, if and only if the number of
tapping in that LFSR is even.

 The determination of the primitive polynomial
involves the use of the Euler phi-function Φ(.) and
search for primes.

Theorem 6:
If m is a composite integer, then m has a prime
factor not exceeding √m.

Lemma 1:
Every positive integer grater than one has a prime
divisor.

Theorem 7:

Let m p p p pa a
i
a

k
ai k= 1 2

1 2L L be the prime-power
factorization of the positive integer m.
Then

Φ()m m
p p pk

= −
⎛
⎝
⎜

⎞
⎠
⎟ −
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟1 1 1 1 1 1

1 2

L (6)

Theorem 8:
The total number of possible primitive polynomials
(NPP) of order n is given by

NPP =
Φ()m

n (7)

3 Algorithm Design
 Based on our rigorous investigations we devised
efficient algorithms which are presented below.

3.1 Algorithm:
3.1.1 Computing Prime Factors of p

Input: n; Output: p, prime factors of p (pi), number
of prime factors (k), and exponents of each prime
factor (ei).

1. Read n and do the followings
2. Compute p = 2n – 1;
3. Check is p prime or not, if yes GO TO 8

Step else GO TO 3;
4. Find pi;
5. Compute k;
6. Find ei;
7. Return with p, pi, k, and ei
8. Return with p, pi = p, k = 1, and ei = 1

3.1.2 Computing NPP

Input: n; Function: A.1; generates p, k, and ei;
Output: NPP

1. Use the Equations (1) and (2) to compute
NPP

2. Return with NPP

3.1.3 Computing Irreducible Characteristic
Polynomials

Input: n; Function: A.1; generates p, k, and ei;
Output: List of irreducible characteristic
polynomials [irp]

1. Read n and do the followings
2. Write first in decimal, the digits 3 to p; and,

then convert it into binary; delete all such
entries which has total odd number of ones;
and, call it CONE of size let mxn;

3. Read CONE; For i = 1:m construct matrix
[A]; and check that for any factors of p, is
[A]p

i = I; if yes; GO TO next i; else the ith
vector of the CONE will be listed in [irp];

4. Compute the size of [irp], say jxn;
5. Return with [irp]

WSEAS TRANSACTIONS on COMPUTERS A. Ahmad, L. Hayat

ISSN: 1109-2750 18 Issue 1, Volume 10, January 2011

3.1.4. Computing Primitive Characteristic
Polynomials [pp]

Input: n; Function: A.3; generates [irp]; Output: List
of primitive characteristic polynomials [pp]

1. Read n and do the followings
2. Check for each [irp] entries [A] = [A]p = I,

list this irp in the list of primitive
polynomial [pp]; add it’s reciprocal also in
the list.

3. Return with [pp]

Example 3.1
The algorithm m is tested for different values of n,
here for the purpose of demonstration, we present a
case for n = 6. The computation debug is as below:
Algorithm A1 computes as:

p = 63, pi = {3, 7}, k = 2, and ei = {2, 1}.

Algorithm 3.1.2 computes NP = 6.

Total possible polynomials NP = 32;

Algorithm 3.1.3 enumerates the following matrices.

CONE lists a total 15 elements as:

CONE = {000011, 000101, 001001, 001111,
010001, 010111, 011011, 011101, 100001, 100111,
101011, 101101, 110011, 110101, 111001}

And [irp] as,

[irp] = {000011, 000101, 001111, 010001, 011011,
011101, 100001, 100111, 101011, 101101, 110011,
111001}.

The debug results while implementing Algorithm
3.1.4 and after j = 7 the [pp] can be read as

 [pp] = {000011, 100001, 011011, 101101, 100111,
101011}.

4 Simulation Result
 Using the devised algorithm we run our program
and due to the space problem, only a sample of
some of the results is demonstrated below in Table
2.
 Further, the devised program is capable of
providing the sets of dense or sparse primitive
characteristic polynomials, for example for n = 32, a
set of these are provided below:

Table 2: Some of the outputs of the program

n p pi NPP
24 16777215 32, 5, 7, 13, 17,

241
276480

30 1073741823 32, 7, 11, 31, 151,
331

17820000

32 4294967295 3, 5, 17, 257,
65537

67108864

33 8589934591 7, 23, 89, 599479 211016256

Sparse with minimum feedback taps:
x32+x7+x6+x2+1; x32+x8+x5+x2+1; x32+x9+x3+x2+1;

Sparse with 6 feedback taps:
x32+x7+x5+x3+x2+x+1; x32+x7+x6+x5+x4+x2+1;

Sparse with maximum feedback taps:
x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+
x7+x6+x5+x4+x2+1;

x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+
x7+x6+x4+x3+x2+1;

Sparse with 26 feedback taps:
x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x8+x7+
x2+1;

x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x8+x6+
x5+1;

Sparse with 28 feedback taps:
x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+
x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+
x10+x9+x7+x6+x5+x2+1;

x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+
x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+
x10+x9+x5+x4+x3+x2+1;

4 Conclusion
 Through this work we wanted to demonstrate an
algorithmic procedure for computing the primitive
polynomials for the use of CRC applications. The
presented devised algorithmic procedure is the
results based on the exhaustive research work on the
theory of the primitive polynomials and the related
mathematics. The design of the algorithm is such
that it can provide the different kind of the subsets

WSEAS TRANSACTIONS on COMPUTERS A. Ahmad, L. Hayat

ISSN: 1109-2750 19 Issue 1, Volume 10, January 2011

of the primitive polynomials. These subsets can be
obtained in groups by reserving the different kinds
of parameters like the number of the taps, a
particular tap, minimum number of taps, and
maximum number of taps, security level, power
consumption, time requirements, silicon area etc.
Hence, the algorithm makes it possible to provide an
optimal CRC designs to meet the specified
requirements.

ACKNOWLEDGMENT
The acknowledgements are due to Sultan Qaboos
University (Sultanate of Oman) for providing
research support grant (SQU-DVC/
PSR/RAID/2010/23).

References:
[1] Ruckmani, S.R., and Anbalagan, P., ‘High

Speed cyclic Redundancy Check for USB’, DSP
Journal, vol. 6, no. 1, Sept., 2006, pp. 45 - 50

[2] Koopman, P., ‘32-bit cyclic redundancy codes
for Internet applications’, Proceedings.
International Conference on Dependable
Systems and Networks, 2002 (DSN 2002), vol.,
2002, pp. 459 – 468

[3] J. A. Davis, M. Mowbray, and S. Crouch,
‘Finding cyclic redundancy check polynomials
for multilevel systems’, IEEE Trans on
communications, vol. 46, no. 10, Oct.1998, pp.
1250 -53

[4] http://en.wikipedia.org/wiki/Cyclic_redundancy
_check

[5] Krogsgaardt, K. and Karp, T., ‘Fast
identification of primitive polynomials over
Galois fields’, Proceedings IEEE International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP’05), 18-23 March 2005,
vol. 5, pp. 553 – 556.

[6] S. Maitra, K. C. Gupta, and A. Venkateswarlu,
Results on multiples of primitive polynomials
and their products over GF(2)’, Theoretical
Computer Science (Elsevier Science Publishers
Ltd.), vol. 341 , no.1, Sept. 2005, pp. 311 –
343.

[7] Pradhan, D.K, Kagaris, D. and Gambhir, R., ‘A
Hamming distance based test pattern generator
with improved fault coverage’, 11th IEEE
International Testing Symposium, vol., 6-8 July
2005, pp. 221 – 226

[8] Udar, S., Kagaris, D., ‘LFSR Reseeding with
Irreducible Polynomials’, 13th IEEE
International On-Line Testing Symposium,

2007 (IOLTS 07), vol., 8-11 July 2007, pp. 293
- 298

[9] Green, D.H., Amarasinghe, S.K., ‘Sequences
and arrays derived from non-primitive
irreducible polynomials’, IEE Proceedings
Computers and Digital Techniques, vol. 139,
no. 4, Jul 1992, pp. 363 – 371

[10] Ahmad A., Nanda N.K. and Garg K., ‘Are
primitive polynomials always best in signature
analysis?’, IEEE design & Test of Computers
(USA), 1990, vol.7, no.4, pp. 36 - 38

[11] Ahmad A. and Elabdalla A. M., ‘An
efficient method to determine linear feedback
connections in shift registers that generate
maximal length pseudo-random up and down
binary sequences,” Computer & Electrical
Engineering -An Int’l Journal (USA), 1997, vol.
23, no. 1, pp. 33-39.

WSEAS TRANSACTIONS on COMPUTERS A. Ahmad, L. Hayat

ISSN: 1109-2750 20 Issue 1, Volume 10, January 2011

