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Abstract: - Cyclic Redundancy Check (CRC) technique which is widely used tools in globally standardized 
telecommunications systems for dealing with data errors detection and correction have not been fully 
standardized. Most of the CRCs in current use have some weakness with respect to strength or construction. 
Standardization of CRCs would allow for better designed CRCs to come into common use is primarily limited 
due to the complexity of search procedures of the primitive characteristic polynomials. To this direction this 
paper proposes a method of simplifying the computation and complexity of the search procedure of the 
primitive characteristic polynomials in order to facilitate implementation of the circuitry for high-speed CRC 
computation in standard CMOS technology. 
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1 Introduction 
A CRC is an error-detecting code. The CRC 
methodology is based on cyclic algorithm that 
generates redundant information. The CRC 
technique is heavily used in data communication, 
storage devices and VLSI testing. Linear Feedback 
Shift Registers (LFSRs) along with Exclusive-OR 
logic gates is the possible way out to realize the 
hardware solutions for CRC.  While on the other 
hand the simulation of polynomial division process 
realizes the CRC in software manner. In general, 
LFSR with serial data feed has been used to 
implement the CRC algorithm. This LFSR based 
method simply performs a division and then the 
remainder which is the resulting CRC checksum, is 
stored in the registers after each clock cycle of the 
transmitted bit, and at the end of the last bit entry of 
the data records the final check sum of the 
transmitted data [1] – [4]. An n-bit LFSR based 
CRC implementation is as shown in Figure 1.  
   In general an n-bit LFSR based CRC circuit may 
give 2n-1 different characteristic polynomials. For 
example a 3-bit CRC circuit may have any of the 4 
possible characteristic polynomials, namely these 
are 1+x3, 1+x2+x3, 1+x+x3, and 1+x+x2+x3. Table 1 
provides some of the used characteristic 
polynomials. The use of the different characteristic 
polynomials results in different efficiency in terms 
of error masking capability along with hardware, 

time, and power requirements. As it has been 
claimed that the use of primitive characteristic 
polynomials are better for the practice but careful 
investigations of primitive polynomials are required.  
However, finding an optimal solution of selecting 
appropriate characteristic polynomials is restricted 
due to the search problem of primitive characteristic 
polynomials [5] – [11]. Figure 2 maps the 
complexity of the search problem of primitive 
characteristic polynomials of order n = 1 to 24. In 
Figure 2, NP represents the total number of possible 
characteristic polynomials whereas; NPP indicates 
the total number of possible characteristic primitive 
characteristic polynomials of order n.  The 
complexity of the search problem increases as the 
value of n increased. Due to this problem many of 
the CRC characteristic polynomials which are in use 
are not the primitive one. Refer to the Table 1, 
where it can be verified that the characteristic 
polynomials of the circuits CRC-32K (Koopman), 
CRC-32C (Castagnoli) are not primitive 
characteristic polynomials. Hence this paper extends 
the research work of finding the primitive 
characteristic polynomials in an efficient manner.  
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Theorem 3:  
If a primitive characteristic polynomial P(x) of an n-
stage LFSR has corresponding feedback 
connections from stages n, k, h, ....., then the 
reciprocal of this polynomial P*(x) will have 
corresponding feedback connections from stages n, 
n-k, n-h, ...., etc. (n>k>h..). 
 
Theorem 4: 
If the characteristic polynomial of an n-stage LFSR 
is irreducible, then the period of generated sequence 
by the LFSR is a factor of 2n-1. 
 
Corollary 1: 
If p = m = 2n-1 is a prime number, then the 
characteristic polynomial corresponds to that 
connection of LFSR will be primitive, if and only if 
[A]m = I. 
 
Corollary 2: 
If p = m = 2n-1 is not a prime number, and [A]pi = I, 
where pi is a divisor of p, then the characteristic 
polynomial corresponds to that connection of LFSR 
can not be primitive. 
 
Theorem 5: 
The characteristic polynomial of an n-stage LFSR 
can be primitive, if and only if the number of 
tapping in that LFSR is even. 

     The determination of the primitive polynomial 
involves the use of the Euler phi-function Φ(.) and 
search for primes.  
 
Theorem 6: 
If m is a composite integer, then m has a prime 
factor not exceeding √m. 
 
Lemma 1: 
Every positive integer grater than one has a prime 
divisor. 
 
Theorem 7: 

Let  m p p p pa a
i
a

k
ai k= 1 2

1 2L L  be the prime-power 
factorization of the positive integer m.   
Then 
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Theorem 8: 
The total number of possible primitive polynomials 
(NPP) of order n is given by 

NPP = 
Φ( )m

n                                                     (7) 

 
 
3 Algorithm Design  
   Based on our rigorous investigations we devised 
efficient algorithms which are presented below.  
 
3.1 Algorithm:  
3.1.1 Computing Prime Factors of p 
 
Input: n; Output: p, prime factors of p (pi), number 
of prime factors (k), and exponents of each prime 
factor (ei). 

1. Read n and do the followings 
2. Compute p = 2n – 1; 
3. Check is p prime or not, if yes GO TO 8 

Step else GO TO 3; 
4. Find pi; 
5. Compute k; 
6. Find ei; 
7. Return with p, pi, k, and ei 
8. Return with p, pi = p, k = 1, and ei = 1 

 
3.1.2 Computing NPP 
 
Input: n; Function: A.1; generates p, k, and ei; 
Output: NPP 
 

1. Use the Equations (1) and (2) to compute 
NPP 

2. Return with NPP 
 
3.1.3 Computing Irreducible Characteristic 
Polynomials 
 
Input: n; Function: A.1; generates p, k, and ei; 
Output: List of irreducible characteristic 
polynomials [irp]  
 

1. Read n and do the followings 
2. Write first in decimal, the digits 3 to p; and, 

then convert it into binary; delete all such 
entries which has total odd number of ones; 
and, call it CONE of size let mxn; 

3. Read CONE; For i = 1:m construct matrix 
[A]; and check that for any factors of p, is 
[A]p

i = I; if yes; GO TO next i; else the ith 
vector of the CONE will be listed in [irp]; 

4. Compute the size of [irp], say jxn; 
5. Return with [irp] 
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3.1.4. Computing Primitive Characteristic 
Polynomials [pp] 
 
Input: n; Function: A.3; generates [irp]; Output: List 
of primitive characteristic polynomials [pp]  

1. Read n and do the followings 
2. Check for each [irp] entries [A] = [A]p = I, 

list this irp in the list of primitive 
polynomial [pp]; add it’s reciprocal also in 
the list.  

3. Return with [pp] 
 
Example 3.1 
The algorithm m is tested for different values of n, 
here for the purpose of demonstration, we present a 
case for n = 6. The computation debug is as below: 
Algorithm A1 computes as: 
 
p = 63, pi = {3, 7}, k = 2, and ei = {2, 1}. 
 
Algorithm 3.1.2 computes NP = 6. 
 
Total possible polynomials NP = 32; 
 
Algorithm 3.1.3 enumerates the following matrices.  
 
CONE lists a total 15 elements as: 
 
CONE = {000011, 000101, 001001, 001111, 
010001, 010111, 011011, 011101, 100001, 100111, 
101011, 101101, 110011, 110101, 111001}  
 
And [irp] as, 
 
[irp] = {000011, 000101, 001111, 010001, 011011, 
011101, 100001, 100111, 101011, 101101, 110011, 
111001}. 

The debug results while implementing Algorithm 
3.1.4 and after j = 7 the [pp] can be read as 
 
 [pp] = {000011, 100001, 011011, 101101, 100111, 
101011}. 
 
 
4 Simulation Result 
   Using the devised algorithm we run our program 
and due to the space problem, only a sample of 
some of the results is demonstrated below in Table 
2.  
   Further, the devised program is capable of 
providing the sets of dense or sparse primitive 
characteristic polynomials, for example for n = 32, a 
set of these are provided below:  

 
Table 2: Some of the outputs of the program 

n p pi NPP
24 16777215 32, 5, 7, 13, 17, 

241 
276480 

30 1073741823 32, 7, 11, 31, 151, 
331

17820000 

32 4294967295 3, 5, 17, 257, 
65537 

67108864 

33 8589934591 7, 23, 89, 599479 211016256
 
Sparse with minimum feedback taps: 
x32+x7+x6+x2+1; x32+x8+x5+x2+1; x32+x9+x3+x2+1; 
 
Sparse with 6 feedback taps: 
x32+x7+x5+x3+x2+x+1; x32+x7+x6+x5+x4+x2+1; 
 
Sparse with maximum feedback taps: 
x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+
x7+x6+x5+x4+x2+1; 

x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+
x7+x6+x4+x3+x2+1; 
 
Sparse with 26 feedback taps: 
x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x8+x7+
x2+1; 

x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x
20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x8+x6+
x5+1; 
 
Sparse with 28 feedback taps: 
x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+
x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+
x10+x9+x7+x6+x5+x2+1; 

x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+
x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+
x10+x9+x5+x4+x3+x2+1; 
 
 
4 Conclusion 
   Through this work we wanted to demonstrate an 
algorithmic procedure for computing the primitive 
polynomials for the use of CRC applications. The 
presented devised algorithmic procedure is the 
results based on the exhaustive research work on the 
theory of the primitive polynomials and the related 
mathematics. The design of the algorithm is such 
that it can provide the different kind of the subsets 
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of the primitive polynomials. These subsets can be 
obtained in groups by reserving the different kinds 
of parameters like the number of the taps, a 
particular tap, minimum number of taps, and 
maximum number of taps, security level, power 
consumption, time requirements, silicon area etc.  
Hence, the algorithm makes it possible to provide an 
optimal CRC designs to meet the specified 
requirements.  
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