
Frequencies of propagation of electromagnetic
waves in a hexagonal waveguide

Arti Vaish and Harish Parthasarathy

Abstract—In this work, cut-off frequencies of propagation of
electromagnetic waves in a hexagonal waveguide are calculated
using two-dimensional (2-D) finite element method. The numerical
approach is a standard one and involves six finite elements. A new
type of hexagonal waveguide structure for the simple homogeneous
dielectric case has been considered. The starting point is Maxwell’s
equations in conjunction to the exponential dependence of the fields
on the Z- coordinates. For the homogeneous case, it results in the
Helmholtz equations. Finally, finite element method has been used
to derive approximate values of the possible propagation constant for
each frequency.

Keywords—Finite-element-method, Variational principle, Eigen-
vector, Matrix Equation, frequencies of propagation, hexagonal
waveguide.

I. I NTRODUCTION

THE finite element method (FEM ) has been widely used
over the decades in the analysis of waveguide compo-

nents. It is because the propagation characteristics of arbitrarily
shaped waveguides of is based on a spatial discretization
of cross-section [1], [2], [3], [6].This approximation allows
handling of waveguide cross section geometries which are
very similar to the real structures employed in practice. As a
consequence, FEM constitutes a promising tool to characterize
such problems [7].
Modern phased array radars imply the requirements for po-
larization agility of wideband array elements. Surface hexag-
onally poled lithium niobate for two dimensional non-linear
interactions in optical waveguide structures has been reported
[8], [9]. One possible choice for a radiating element with
this property is the hexagonal waveguide. In this paper, a
numerically efficient finite-element formulation is proposed to
solve waveguides problems. Propagation modes obtained by
this formulations may be used to analyse problems involving
linear systems of arbitrary complex tensor permittivity and
permeability. The solution of these eigenvalue problems results
in the approximate fields for all components of different
eigenmodes in the waveguide which can further be used
to obtain the corresponding eigenvalues [10], [11], [12]. A
possible comparison of the proposed methodology with the
available theoretical results has also been presented herein
this paper to claim the accuracy and reliability of the solution
method.
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Fig. 1. hexagonal cross section of the waveguide

II. T HE FINITE ELEMENT FORMULATION

The basic idea of taking hexagonal cross-section and divid-
ing the cross-section in to finite number of elements has been
taken from elsewhere [2], [6]. In this paper, the equilateral
hexagonal cross section of the waveguide is divided into a
number of finite elements. An element is considered to be
first-order triangular in shape. An schematics of a triangular
finite element in the hexagonal waveguide is shown in figure 1.
Consider a triangle having vertices(x1, y1), (x2, y2), (x3, y3).
We draw a vector−→u joining (x1, y1), (x2, y2) and another
vector−→v joining (x1, y1)and(x3, y3).

Let

d1 = |u| =
√

(x2 − x1)2 + (y2 − y1)2 (1)

and

d2 = |v| =
√

(x3 − x1)2 + (y3 − y1)2 (2)

The unit vector along the two directionsu andv are

û =
u

|u|
=

(x2 − x1, y2 − y1)

d1
(3)

and

v̂ =
v

|v|
=

(x3 − x1, y3 − y1)

d2
(4)
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any point(x, y) inside this triangle can be represented as

(x, y) = (x1, y1) + u.û+ v.v̂

= (x1, y1) +
u(x2 − x1, y2 − y1)

d1

+
v(x3 − x1, y3 − y1)

d2

so

(x− x1) =
u(x2 − x1)

d1
+

v(x3 − x1)

d2
(5)

and

(y − y1) =
u(y2 − y1)

d1
+

v(y3 − y1)

d2
(6)

Equations (5) and (6) are two linear equations for the variable
u andv and solving them gives usu, v as linear functions of
x, y. The area measure is given by

ds(u, v) = |~u× ~v|du.dv

where
|~u× ~v| = sin(α)

here angleα between the vectorsu andv defined as

cos(α) =
u.v

d1.d2

=
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)

d1.d2
(7)

The integral of a function can be evaluated as

I(φ) =
1

2

∫ d1

0

∫ d2

0

φ[x1 +
u(x2 − x1)

d1
+

v(x3 − x1)

d2

y1 +
u(y2 − y1)

d1
+

v(y3 − y1)

d2
]sinα.dudv (8)

if φ = 1 then we get

I(φ) =
d1.d2sinα

2
(9)

which is the correct formula for the area of the triangle.
Suppose we write

V (x, y) = ax+ by + c

for
x, y ∈ ∆

with ∆ as the area bounded by the triangle.a, b, c are chosen
so that V at the vertices are given, i.e.,

V (x1, y1) = V1

V (x2, y2) = V2

V (x3, y3) = V3

Thus,





x1 y1 1
x2 y2 1
x3 y3 1









a

b

c



 =





V1

V2

V3





Thus we find that

a =
V1(y2 − y3) + V2(y3 − y1) + V3(y1 − y2)

∆
(10)

b =
V1(x2 − x3) + V2(x3 − x1) + V3(x1 − x2)

∆
(11)

c =
V1(x2.y3 − x3.y2) + V2(x3.y1 − x1y3) + V3(x1.y2 − x2.y1)

∆
(12)

where

∆ = x2.y3 − x3.y2 + x3.y1 − x1.y3 + x1.y2 − x2.y1 (13)

thus for
x, y ∈ ∆

we have

V (x, y) = ax+ by + c

= V1φ1(x, y) + V2φ2(x, y) + V3φ3(x, y)

φ1(x, y) =
(y2 − y3)x+ (x2 − x3)y + (x2.y3 − x3.y2)

∆
(14)

φ2(x, y) =
(y3 − y1)x+ (x3 − x1)y + (x3.y1 − x1.y3)

∆
(15)

φ3(x, y) =
(y1 − y2)x+ (x1 − x2)y + (x1.y2 − x2.y1)

∆
(16)

The following two integrals occur when one uses the finite
element method

first
I1 =

∫

∆

V 2
(x,y)dx.dy

second

I2 =

∫

∆

|∇V |2dx.dy

TABLE I
NODAL COORDINATES OF THEFINITE ELEMENT MESH OFFIGURE 2

S.No. Element no. Coordinates
1 Element 1 (0.0,0.0), (1.0,1.73), (2.0,0.0)
2 Element 2 (0.0,0.0), (1.0,-1.73), (2.0,0.0)
3 Element 3 (0.0,0.0), (-1.0,-1.73), (1.0,-1.73)
4 Element 4 (0.0,0.0), (-2.0,0.0), (-1.0,-1.73)
5 Element 5 (0.0,0.0), (-1.0,1.73), (-2.0,0.0)
6 Element 6 (0.0,0.0), (-1.0,1.73), (1.0,1.73)
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Fig. 2. A finite element mesh (6 elements and 7 nodes). The numbers shown
in circles represent the elements.

Now

I1 =

∫

∆

V 2
(x,y)dx.dy =

∫

∆

(ax+ by + c)2dx.dy (17)

By substituting the value of (x,y) in terms of(xi, yi)in
equation(17), we get

I1 =

∫

∆

V 2
(x,y)dx.dy

=
sinα

2

∫ d1

0

∫ d2

0

[a(x1 +
u(x2 − x1)

d1

+
v(x3 − x1)

d2
) + b(y1 +

u(y2 − y1)

d1

+
v(y3 − y1)

d2
) + c]2dudv (18)

The use of method of variable separation for u and v results
in the following

I1 =

∫

∆

V 2
(x,y)dx.dy =

sinα

2

∫ d1

0

∫ d2

0

[u

(
a(x2 − x1) + b(y2 − y1)

d1
) + v

(
a(x3 − x1) + b(y3 − y1)

d2
) + c′]2 (19)

where

c′ = ax1 + by1 + c

Equation (19) can be written as

I1 =

∫

∆

V 2
(x,y)dx.dy = T1 + T2 + T3 + T4 + T5 + T6

(20)

Here

T1 = sinα
2

∫ d1

0

∫ d2

0

[

a(x2−x1)+b(y2−y1)
d1

]2

u2dudv

(21)

T2 =
sinα

2

∫ d1

0

∫ d2

0

2

[

a(x2 − x1) + b(y2 − y1)

d1

]

[

a(x3 − x1) + b(y3 − y1)

d2

]

uvdudv

(22)

T3 =
sinα

2

∫ d1

0

∫ d2

0

[

a(x3 − x1) + b(y3 − y1)

d2

]2

v2dudv

(23)

T4 =
sinα

2

∫ d1

0

∫ d2

0

[

2C′(a(x2 − x1) + b(y2 − y1))

d1

]

ududv

(24)

T5 =
sinα

2

∫ d1

0

∫ d2

0

[

2C′(a(x3 − x1) + b(y3 − y1))

d2

]

vdudv

(25)

T6 =
sinα

2

∫ d1

0

∫ d2

0

C′2dudv

(26)

The above integration for first element is given as follows

I1 =

∫

∆

V 2
(x,y)dx.dy

= .576756v21 + 2.307v1v2 + 2.018646v22

+.5000774565v1(−1.73)v2 − .5000774565

v1(−1.73)v3 − 2.018645998v2v3

+.5767559995v23 − 1.7303v1v3

(27)

After calculating the above integrals for each element in the
above stated manner, we will find the sum of these integrals
over the elements in which we have divided the cross-section.
Here we have divided the cross-section into 6 elements (Fig.
2). Summation of these integrals will result in a matrixB of
size7× 7.

III. C ALCULATION OF INTEGRAL |∇V |2

∫ d1

0

∫ d2

0

|∇V |2dudv =

∫ d1

0

∫ d2

0

[

(

∂V

∂x

)2

+

(

∂V

∂y

)2
]

dxdy

(28)

Here,

dxdy = Jdudv (29)

The JacobianJ is given by

J =

(

∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

)

=

( x2−x1

d1

x3−x1

d2

y2−y1

d1

y3−y1

d2

)

. (30)
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Now

dx.dy =
(x2 − x1)(x3 − x1)

d1.d2
du.dv (31)

Finally
∫ d1

0

∫ d2

0

|∇V |2dudv =

∫ d1

0

∫ d2

0

[

(

∂V

∂x

)2

+

(

∂V

∂y

)2
]

(x2 − x1)(x3 − x1)

d1d2
dudv (32)

Here
[

(

∂V

∂x

)2

+

(

∂V

∂y

)2
]

= a2 + b2 (33)

After substituting all the values in above equation and inte-
grate, we get
∫ d1

0

∫ d2

0

|∇V |2dudv = .577098v21 + .5760718862v1v2

+.577098v22 − .578124(v1v3

+v2v3 − v23) (34)

Here v1,v2, v3 · · · vn are the nodal potential. Solution of
integration of|∇V |2dudv for all the 6 element, computed in
same manner will result in a matrixA of size7× 7.

IV. F INDING EIGEN VALUES OF THE MATRIX

Now the process of finding eigen values of the matrix is as
follows.

(V TAV − k2V TBV )

when minimized over V gives the quadratic form defined by
∫

∆

|∇V |2dxdy − k2
∫

∆

V 2dxdy (35)

here

δ

∫

∆

(∇
−→
V ,∇

−→
V )dxdy = 2

∫

∆

(
−→
∇, δ

−→
∇V )dxdy

= −2

∫

δV∇2V dxdy (36)

and
δ

∫

∆

V 2dxdy =

∫

2V δV dxdy (37)

Now from equation (33)

−2

∫

δV∇2V dxdy − 2k2
∫

δV.V dxdy = 0 (38)

or ∫

δV (∇2 + k2)V dxdy = 0 (39)

(∇2 + k2)V dxdy = 0 (40)

equation 38 when evaluated approximately using the finite
element method gives

AV − k2BV = 0 (41)

(A− k2B)V = 0 (42)

det(A− k2B) = 0 (43)

Here V is the vector of vertex nodal field values. Solution
of this matrix will give the eigen values.These eigen values
are the propagation frequencies of the waveguide.Using above
method we can calculate the propagation frequencies of a
waveguide of any type of cross-section.

V. SIMULATION RESULTS

In order to validate the procedure, the computed result is
compared with those obtained from the theoretical analysis.
Table 2 compares the Eigenvalues of the fundamental fre-
quencies of propagation of the hexagonal waveguide with the
theoretical and computed. MATLAB software has been used
here for the simulations [13].

TABLE II
EIGENVALUES OF THE FUNDAMENTAL FREQUENCIES OF PROPAGATION OF

THE HEXAGONAL WAVEGUIDE

S. No. eigen value(This work) eigen value(Theoretical)
1 .451 .460
2 .657 .665
3 .7709 .765
4 1.22666 × 10−8 + 1.439i 1.220
5 −.1489× 10−6 + .0006328i -.149
6 -.4513 -.452
7 -.657 -.658

VI. CONCLUSION

In this paper an advantageous finite-element- method for
the hexagonal cross-sectional waveguide problem has been
developed by which complex propagation characteristics may
be obtained for arbitrarily shaped waveguide . The extension
to higher order elements is straightforward. By suitable mod-
ifications of the method it is possible to treat other types of
waveguides as well, e.g. dielectric waveguides with impedance
walls and open unbounded dielectric waveguides properly
treating the region of infinity.

VII. A CKNOWLEDGEMENT

The authors gratefully acknowledge Prof. Raj Senani, Ar.
Rajesh Ayodhyawasi and Dr. Ram Prakash Bharti for their
constant encouragement and provision of facilities for this
research work.

REFERENCES

[1] P.P.Silvester and R.L.Ferrari,Finite Elements for Electrical Engineers,
(Second edition),Cambridge University Press, New York,1990.

[2] M.N.O.Sadiku, Numerical Techniques in Electromagnetics, CRC press,
2006.

[3] Vaish Arti and Harish Parthasarathy,Numerical computation of the
modes of electromagnetic wave propagation in a non-homogeneous
rectangular waveguide, IEEE Conference, INDICON-06,15-17 Septem-
ber2006.

[4] Arti Vaish and Harish Parthasarathy,Analysis of a rectangular Waveg-
uide using Finite Element Method, Progress in Electromagnetic Research
C 2, page 117-125, 2008.

[5] Arti Vaish and Harish Parthasarathy,Wave propagation in a waveguide
having anisotropic permittivity using method of moments, International
Journal of Tomography and Statistics, Fall 2009, Vol. 12, No. F09.

[6] M.N.O.Sadiku, Elements of Electromagnetics, Oxford university press,
2007.

WSEAS TRANSACTIONS on COMPUTERS Arti Vaish, Harish Parthasarathy

ISSN: 1109-2750 4 Issue 1, Volume 10, January 2011



[7] Y. Xu and R.G. Bosisio,An efficient method for study of general bi-
anisotropic waveguides, IEEE Trans. Microwave Theory Tech., vol. 43,
pp. 873-879, Apr. 1995.

[8] A. C. Busacca, C. L. Sones, R. W. Eason, S. Mailis, K. Gallo, R.
T. Bratfalean and N.G. BroderickSurface hexagonally poled lithium
niobate waveguides, Optoelectronics research centre, 2002.

[9] A. Szameit, Y. V. Kartashov, V. A. Vysloukh, M. Heinrich, F. Dreisow,
T. Pertsch, S. Nolte, A. Tnnermann, F. Lederer, and L. TornerAngular
surface solitons in sectorial hexagonal arrays, Optics letters, Vol. 33,
No. 13, July 1, 2008.

[10] E.K.Miller (Ed.), Computational electromagnetics-A selected reprint
volume, IEEE press, 2000.

[11] J.M.Jin, The finite element method in Electromagnetics, 2nd ed.,Wiley,
New York,2006.

[12] M. Koshiba and K. Inoue,Simple and efficient finite-element analysis
of microwave and optical waveguides, IEEE Trans. Microwave Theory
Tech., vol. 40, pp. 371-377, Feb. 1992.

[13] MATLAB(2008) The Mathworks Worldwide.[Online] Avail-
able”www.mathworks.com.

Arti Vaish received M.Tech. degree in Microwave
engineering from the Rajiv Gandhi Prodyogiki Vish-
wavidyalaya, Bhopal, INDIA, in 2004, and is cur-
rently working towards the Ph.D. degree. Her re-
search interests include electromagnetic wave propa-
gation in inhomogeneous and anisotropic waveguide
structures, numerical techniques in electromagnetic
field problems and design and analysis of different
types of microstrip patch antenna. She is working as
Assistant Professor at Manav Rachna International
University, Faridabad.

Prof. Harish Parthasarathy received his B.Tech.
degree in electrical engineering from IIT,Kanpur, in
1990 and his Ph.D. degree from IIT, Delhi in 1994.
He completed his post doctoral programme from
Indian Institute of Astrophysics in 1996. He has
worked as an assistant professor at IIT, Bombay and
as a visiting faculty at IIT, Kanpur. Currently he is
working as a Professor at Netaji Subhash Institute
of Technology, New Delhi. His research interests
include numerical techniques in electromagnetics,
group representation theory and stochastic processes.

He has authored several books and research papers on electromagnetics, signal
processing, engineering mathematics and physics.

WSEAS TRANSACTIONS on COMPUTERS Arti Vaish, Harish Parthasarathy

ISSN: 1109-2750 5 Issue 1, Volume 10, January 2011




