
Textual Data Compression Speedup by Parallelization

GORAN MARTINOVIC, CASLAV LIVADA, DRAGO ZAGAR

Faculty of Electrical Engineering

Josip Juraj Strossmayer University of Osijek

Kneza Trpimira 2b, 31000 Osijek

CROATIA

goran.martinovic@etfos.hr, caslav.livada@etfos.hr, drago.zagar@etfos.hr, www.etfos.hr

Abstract: - When the omnipresent challenge of space saving reaches its full potential so that a file cannot be

compressed any more, a new question arises: “How can we improve our compression even more?”. The answer is

obvious:”Let´s speed it up!”. This article tries to find the meeting point of space saving and compression time

reduction. That reduction is based on a theory in which a task can be broken into smaller subtasks which are

simultaneously compressed and then joined together. Five different compression algorithms are used two of which are

entropy coders and three are dictionary coders. Individual analysis for every compression algorithm is given and in the

end compression algorithms are compared by performance and speed depending on the number of cores used. To

summarize the work, a speedup diagram is given to behold if Mr. Amdahl and Mr. Gustafson were right.

Key-Words: - data compression, lossless coding, entropy coder, dictionary coder, parallel computing, compression time

 speed up

1 Introduction
According to [1], compression is used to reduce physical

space needed for storing data using certain methods of

data writing. The main unit for data storage is a file and

depending on the data type within the file, some

repetition is noticed. The data is stored once and after

that only the position of repeated data is stored. In this

way, it is possible to decrease space needed for data

storage, which depends on data type and structure.

There are two kinds of compression: lossless and

lossy compression (compression without and with

certain data loss). Lossless compression is carried out by

data compression algorithms which ensure that the

reconstructed data from compressed files corresponds to

the starting data. Lossless compression is used when it is

necessary to save the original data and typical examples

by which lossless compression must be used are

executable files, source codes, textual data, etc. [2], [4].

The majority of programs performing lossless

compression practice two steps on the data that will be

compressed and these steps are:

• Generation of input data statistical model

• Input data can be transformed into sequences of bits by

using the statistical model so that less frequently

occurring data give longer output sequences [5].

There are two main statistical models: static and

adaptive model. In the static model, data is analyzed, the

model is created and packed together with compressed

data. This approach is very simple, but there is a chance

that the model itself takes a lot of space in the

compressed file. Another problem is that one model is

used for all input data and it can give bad results on files

containing various data [1].

Adaptive models dynamically refresh the model as

the data is compressed. Coder and decoder start with an

elementary model that gives bad compression for the

input data but as the model learns more about the input

data, compression efficiency increases. The majority of

compression methods use adaptive models.

One lossless compression algorithm cannot

efficiently compress all possible data, and completely

random data streams cannot be compressed. For this

reason, there are various algorithms designed for certain

file types.

By using lossy compression, the reconstructed data

differs from the input data, but these differences are so

small and the reconstructed data is still usable.

According to [1] and [2], lossy compression methods are

used for multimedia compression (audio, video and

pictures).

 The original file contains a certain amount of

information and there is a lower data size boundary able

to carry the overall information. In most cases files or

data streams contain more information than needed, e.g.

a picture can have more details than a human eye can

distinguish, and lossy compression methods tend to

exploit imperfections of human perception [2].

Two main lossy compression schemes are:

• Lossy transformation codecs (coder-decoder) – Picture

or audio samples are taken, divided into smaller parts,

quantized and compressed using entropy coding [1].

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 909 Issue 8, Volume 9, August 2010

• Predictive lossy codecs – preceding and/or following

decoded data is used to assume a current picture or

audio sample. The difference between the assumed and

the real sample with additional data is quantized and

coded.

2 Compression Methods Analyzed
Since we deal with textual data, only the lossless

compression methods will be shown and analyzed.

These methods are: Huffman coding, Arithmetic coding,

LZ77, LZ78 and LZW [3].

2.1 Huffman Coding
As in [2], Huffman coding codes symbols with variable

length code words, depending on their probability of

incidence.

Huffman coding is based on two simple facts:

1. In optimal code, symbols with greater probabilities

of incidence have smaller code words than symbols

with lesser probabilities of incidence.

2. In optimal code, two symbols with the smallest

probabilities have code words of the same length.

Huffman coding algorithm is shown in Fig. 1, similarly

to [2]:

1. Sort symbols by falling probabilities.

2. Link two symbols with least probabilities

into one new symbol, on branching assign

“0” to one branch and “1” to the second

branch.

3. Sort the obtained symbols by probabilities.

4. Repeat until there is only one symbol.

5. Go back through tree read codes.

Fig. 1 - Huffman coding algorithm

Algorithm data structure is a binary tree. The decoding

algorithm uses the same procedure as the coder for

building a tree and before sending data, the coder must

first send the probabilities of symbol incidence.

Advantages of the Huffman algorithm:

1. Easy implementation.

2. Near optimal coding is achieved for “good”

probabilities of incidence.

Disadvantages of the Huffman algorithm:

1. Probabilities of incidence must be known.

2. Codes can become “bad” for wrong probabilities of

incidence.

A coding example will be given in the next section: We

can assume that we have the following stream –

AACBBABCAA.

First, we must calculate the probabilities of each symbol

as shown in Table 1. The coding tree can then be created

by using the data from Table 1, which is shown in Fig 2.

Table 1. Symbol probabilities

Symbol Probability

A 0.5

B 0.2

C 0.3

Fig. 2 - Huffman coding example

The binary code of every symbol can be acquired by

reading the Huffman tree in right to left manner and the

resulting code can be seen in Table 2.

Table 2. Output code

Symbol Binary Code

A 10

B 111

C 110

Using Table 2 a unique code can be written for the input

stream as follows: 1010110111111101111101010.

2.2 Arithmetic Coding
The algorithm takes queues of symbols as the input data

(message) and transforms them into a floating point

number, depending on a known statistical model.

Arithmetic coding is shown in Fig. 3, as in [2]:

1. Divide interval [0,1] into M intervals that

correspond to symbols, symbol length is

proportional to symbols probability.

2. Select the interval of the first symbol in queue.

3. Subdivide the current symbol interval into

new M subintervals, proportional to their

probabilities.

4. From these subintervals, select the one that

matches the next symbol in queue.

5. Repeat steps 3 and 4 until all symbols are

coded.

6. Output the interval value in binary form.

Fig. 3 - Arithmetic coding algorithm

A 0.5

C 0.3

B 0.2
1

1
1

0

0

0.5

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 910 Issue 8, Volume 9, August 2010

The procedure of interval division in arithmetic coding is

shown in Fig. 4.

Fig. 4 - Arithmetic coding algorithm

The arithmetic coding procedure can be shown on the

following example: Assume that we have the following

input stream – BBAB. First, we must define the ranges

and the probability line. The ranges and probabilities can

be seen in Table 3.

Table 3. Symbol probabilities and ranges

Symbol Probability Range

A 0.25 [0, 0.25)

B 0.75 [0.25, 1)

Our input stream is BBAB and we can calculate its

output number. The coding process can be seen in Table

4.

Table 4. Output number calculation

Symbol Range Low value High value

 0 1

B 1 0.25 1

B 0.75 0.4375 1

A 0.5625 0.4375 0.578125

B 0.140625 0.47265625 0.578125

According to Table 4, the output number will be

0.47265625.

2.3 LZ77
Algorithm LZ77 uses a code word dictionary and tries to

replace a stream of symbols with the reference to the

stream dictionary location. The main assumption is that

the reference to the stream in the dictionary is shorter

than the stream itself. The stream is coded using an

arranged pair length-distance which can be described as

follows: “every length symbol equals the symbol that is

exactly distance symbols after uncompressed stream”.

Coder and decoder must monitor the number of recent

data, last 2 kB, 4 kB or 32 kB. The structure in which

this data is held is called a sliding window; hence, LZ77

is sometimes called sliding window compression. Coder

needs this data to discover if there is any correspondence

and decoder needs this data for reference interpretation

([6] and [7]).

The coding algorithm is shown in Fig. 5, according to

[1]:

1. Initialize the dictionary to a known value.

2. Read an uncoded string that is the length of

the maximum allowable match.

3. Search for the longest matching string in the

dictionary.

4. If a match is found to be greater than or

equal to the minimum allowable match

length:

a. Write the encoded flag, then the

offset and length to the encoded

output.

b. Otherwise, write the uncoded flag

and the first uncoded symbol to the

encoded output.

5. Shift a copy of the symbols written to the

encoded output from the unencoded string to

the dictionary.

6. Read a number of symbols from the uncoded

input equal to the number of symbols written

in Step 4.

7. Repeat from Step 3, until all the entire input

has been encoded.

Fig. 5 - LZ77 coding algorithm

We can review the LZ77 coding algorithm on the next

data stream: CBCABBBCA. The coding process as well

as the output can be seen in Table 6 and the graphical

representation of the LZ77 coding process of the above

mentioned input stream is shown in Fig 6.

Table 5. Input data stream

Position 1 2 3 4 5 6 7 8 9

Character C B C A B B B C A

Table 6. Coding process

Step Position Match Character Output

1. 1 -- C (0,0) C

2. 2 -- B (0,0) B

3. 4 C A (2,1) A

4. 5 B B (3,1) B

5. 7 B C A (5,2) A

Fig. 6 - LZ77 algorithm

0 1 Low High

Low High
Low' High'

Low' High'
Low'' High''

Input stream

Output stream
P1 P2 P3

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 911 Issue 8, Volume 9, August 2010

2.4 LZ78

LZ77 algorithm works with previous data and LZ78 tries

to work with future data. LZ78 reads input stream in

advance and compares it with the dictionary which is

constantly updated. Input stream will be read until the

corresponding data in the dictionary is found and in that

moment, the position and length of data are written into

dictionary [7].

The LZ78 coding algorithm is shown in Fig. 7,

according to [1]:

1. Empty the dictionary and prefix p.

2. For every c (character from an

uncompressed file)

a. If (p + c) exists in the dictionary,

then p = p + c.

b. Else, output the dictionary code for p

to output and output c, add (p + c)

to the dictionary and empty p.

3. Add the dictionary code for p to output.

Fig. 7 - LZ78 coding algorithm

The following input stream will be used to show the

LZ78 coding process: ABBCBCABA. The coding

algorithm shown in Fig. 7. is used on the before

mentioned input stream and the resulting coding process

and the output are displayed in Table 8.

Table 7. Input data stream

Position 1 2 3 4 5 6 7 8 9

Character A B B C B C A B A

Table 8. Coding process

Step Position Dictionary Output

1. 1 A (0, A)

2. 2 B (0, B)

3. 3 B C (2, C)

4. 5 B C A (3, A)

5. 8 B A (2, A)

The biggest advantage over the LZ77 is a reduced

number of string comparisons in each encoding step.

LZ77 and LZ78 have a similar compression ratio. The

LZ77 coding algorithm is shown in Fig 8.

Fig. 8 - LZ78 algorithm

2.5 LZW Coding

LZW is a refined version of the LZ78 algorithm; hence,

it is faster but usually not optimal because of the

constrained data analysis. The LZW coding algorithm is

shown in Fig. 9, as in [8]:

1. Set w to zero.

2. For every c (character from an

uncompressed file)

c. If (w + c) exists in the dictionary,

then w = w + c.

d. Else, add a dictionary code for w to

output, add (w + c) to the dictionary

and set w = c.

3. Add the dictionary code for w to output.

Fig. 9 - LZW coding algorithm

We can see the LZW coding efficiency on a next

example: The alphabet consists of three symbols – A, B,

C which constitute the starting dictionary shown in

Table 9.

Table 9. LZW starting dictionary

Location Character

(1) A

(2) B

(3) C

Input stream that needs to be coded and the LZW

algorithm execution are shown in Table 10 and Table 11,

respectively.

Table 10. Input data stream

Position 1 2 3 4 5 6 7 8 9

Character A B C B C A B C A

Table 11. LZW algorithm execution

Step Position Dictionary

content

Output

-- -- (1) A --

-- -- (2) B --

-- -- (3) C --

1. 1 (4) A B (1)

2. 2 (5) B C (2)

3. 3 (6) C B (3)

4. 4 (7) B C A (5)

5. 6 (8) A B C (4)

6. 8 (9) C A (3)

7. -- -- -- (1)

The main advantage of LZW over LZ77-based

algorithms is in the speed because there aren’t that many

string comparisons to perform [9].

Input

stream

Output

stream

Dictionary

1.

2.

3.

4.

5.

2 3 2

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 912 Issue 8, Volume 9, August 2010

3 Parallel Processing
Computer software has been written for serial

computation and to solve a problem, an algorithm is

constructed which produces a serial stream of

instructions. These instructions are executed on the

central processing unit on one computer. Only one

instruction may be executed at a given time and when

that instruction is finished, the next one is executed.

Parallel processing implies simultaneous execution

of multiple instructions. It is based on the principle that

bigger tasks can always be divided into smaller ones

which are simultaneously executed. Communication and

synchronization between various subtasks are the biggest

restrictions for achieving good parallel processing

performance [8].

Theoretically, by doubling processing elements,

execution time should halve, and with the second

doubling, execution time should halve again. However, a

few parallel algorithms achieve this optimal speed-up.

The majority of parallel algorithms have this optimal

(linear) speed-up for a small number of processing

elements but with a further increase of processing

elements execution time becomes constant [10].

3.1 Amdahl`s law and Gustafson`s law
The performance of an algorithm on a parallel

computing platform depends on parallelizing the

algorithm to achieve performance so it is important to

be aware of Amdahl's law, originally formulated by

Gene Amdahl in the 1960's. It states that a small portion

of the program which cannot be parallelized will limit

the overall speedup available from parallelization. Any

large math or engineering problem will typically consist

of several parallelizable parts and several non-

parallelizable (sequential) parts. This relationship is

given by Amdahl's law:

1

1
S

P
=

−
,

where S is the speedup of the program (as a factor of its

original sequential runtime), and P is the fraction that is

parallelizable. If the sequential portion of a program is

20% of the runtime, we can get no more than a 5x

speedup, regardless of how many processors are added.

This puts an upper bound on the usefulness of adding

more parallel execution units. A graphical

representation of Amdahl`s law is given in Fig. 10.

A task has two independent parts, A and B. B takes

20% of the time of the whole process. We may be able

to make this part 4 times faster, but this insignificantly

reduces the time for the whole computation. In contrast

to that, one may need to perform less work to make part

A be twice as fast. This will make the computation

much faster than by optimizing part B, even though B

gets a greater speed-up, (4x versus 2x).

Fig. 10 – Amdahl`s law

 Gustafson's law is another law in computer

engineering, closely related to Amdahl's law.

Gustafson's law can be formulated as:

() (1)S P P Pα= − − ,

where P is the number of processors, S is the speedup,

and α the non-parallelizable part of the process.

Amdahl's law assumes a fixed-problem size and that the

size of the sequential section is independent of the

number of processors, whereas Gustafson's law does not

make these assumptions [10].

Not every parallelization will result in execution

time speed-up. As the tasks are divided in more and

more threads, these threads need more time for mutual

communication. It is possible for this additional

communication to dominate the time needed to solve

problems; therefore, further parallelization increases the

program execution time, instead of decreasing it. This

phenomenon is called parallel slowdown [11].

3.2 Parallel programming approaches
As already mentioned, the majority of programs are

sequential and have a single line of control, and in order

to make many processors work on a single program, a

program must be divided into smaller independent

chunks so that each processor can work on separate

chunks. The most prominent parallel programming

approaches are:

• Data parallelism,

• Process parallelism, and

• Farmer and worker model.

In case of data parallelism, the divide-and-conquer

technique is used to split data into multiple sets and each

data set is processed by a different processor by using

(1)

(2)

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 913 Issue 8, Volume 9, August 2010

the same instruction. This approach is very suitable for

processing on a machine on the SIMD model. In case of

process parallelism, a given operation has multiple

activities which can be processed on multiple

processors. In case of the farmer and worker model, job

distribution is used; one processor is configured as

master and all remaining processors are designated as

slaves. The master assigns jobs to slaves and they

inform the master on completion, which in turn collects

results [11].

In this research we used a multi-core processor

which consists of several processing units (cores) that

can execute more instructions per cycle from different

instruction streams, i.e. we used the data parallelism

approach.

4 Parallel Processing Data Compression
Data compression program will be executed on a multi-

core processor computer, i.e. on a computer with four

cores. Computer configuration is as follows: CPU: Intel

Core i5 750 @ 2.67 GHz, RAM: 4 GB, Windows 7 OS.

The coding algorithm on a multi-core system can be

divided into several steps [10]:

• read input data stream,

• separate input data stream in N equal parts

where N ≤ the number of processor cores,

• compress disjointed data using one of the

mentioned compression methods,

• join compressed parts into one file.

Compression program was written in C++ for command

prompt similar to [12] and [15]. An executable file needs

additional parameters, like compression type, input file

and output file. Compression was repeated ten times, so

that we could obtain the best results because various

processes were running in the background of the

computer. After that, statistical data about compression

was written in a file, from where we did our analysis.

Fig. 11 shows data compression using four cores

similarly to [13].

Fig. 11 - Multi-core data compression algorithm

This parallel algorithm can only go as fast as its slowest

parallel work, as shown in Fig. 12.

Fig. 12 – Parallel work on different cores

In order to have a successful and correct compression, all

cores must finish their individual parallel work. If one or

more cores finish their parallel work before other cores,

they must wait. In an example shown in Fig. 12, cores 1,

3 and 4 must wait until core 2 finishes its work.

5 Results and Analysis
The data compression algorithm analysis will be tested

on a textual file shown in Table 12. The number of

compression iterations is ten. Results are analyzed and

minimum, maximum and mean values are shown in

tables.

Table 12. Source file

Document name Size [in bytes] Description

text.txt 5,910,599 Text

5.1 Time and Average Time of File

Compression Using Arithmetic Coding
Table 13 shows mean and minimum values of the time

needed for compression, compressed file size and the

achieved compression. The values were acquired by

analyzing results shown in Fig. 13.

Table 13. Compression times by using arithmetic

coding

Time

[ms]

Number of cores Compressed

file size [byte]

Compression

ratio [%] 1 2 3 4

min 2730 1358 920 780
3,530,681 59.73

avg 2753 1365 922 832

The compression ratio for the implemented compression

method was calculated by using expression (3).

[]% *100%
Compressed file size

Compression ratio
Original file size

= (3)

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 914 Issue 8, Volume 9, August 2010

From Table 13, but also from Fig. 13 we can conclude

that compression time decreases with an increase in a

utilized core number. By doubling the number of cores,

compression time halves. Compressed data is stored in

the file bible_arit.txt.

Fig. 13 - Compression time comparison depending on

the number of cores used in arithmetic coding

5.2 File Compression Times Using Huffman

Coding
Table 14 shows compression times and Fig. 14 enables a

comparison of compression times when using Huffman

coding.

Table 14. Compression times by using Huffman

coding

Time

[ms]

Number of cores
Compressed

file size

[byte]

Compression

ratio [%] 1 2 3 4

min 29951482 998 827
3,671,779 62.12

avg 301614951009839

As well as in arithmetic coding, in Huffman coding

compression time decreases proportionally with an

increase in the number of cores. The compressed file size

created by Huffman coding is larger than the compressed

file size generated by arithmetic coding. Compression

time is longer in Huffman coding than in arithmetic

coding.

Fig. 14 - Compression time comparison depending on

the number of cores used in Huffman coding

5.3 Core Number Changing Effect on Data

Compression Using LZ77
Table 15 and Fig. 15 show compression time when using

LZ77 coding and the comparison of compression times

depending on the number of cores, respectively.

Table 15. Compression times by using LZ77 coding

Time

[ms]

Number of cores
Compressed

file size

[byte]

Compression

ratio [%] 1 2 3 4

min 199649 101684 69326 57096
2,642,705 44.71

avg 199631 101434 69250 56901

Data compression time reduces when the number of

cores increases. Compression time difference is very

small for cases when three and four cores are used.

Fig. 15 - Compression time comparison depending on

the number of cores used in LZ77 coding

5.4 Results of LZ78 Coding Depending on the

Number of Cores Used
Table 16 and Fig. 16 show compression time when using

LZ78 coding and the comparison of compression times

depending on the number of cores, respectively.

Table 16. Compression Times by Using LZ78 Coding

Time

[ms]

Number of cores Compressed file

size [byte]

Compression

ratio [%] 1 2 3 4

min 3916 3338 3042 3042
3,140,033 53.13

avg 5148 3356 3062 3059

Data compression time reduces when the number of

cores increases. Compression time difference is very

small for cases when three and four cores are used.

5.5 Results of LZW Coding Depending on the

Number of Cores Used

Table 17 shows average and minimum values of file

compression times, compressed file size and the

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 915 Issue 8, Volume 9, August 2010

compression ratio. The values were acquired by

analyzing results shown in Fig. 17.

Fig. 16 - Compression time comparison depending on

the number of cores used in LZ78 coding

Table 17. Compression times by using LZW coding

Time

[ms]

Number of cores
Compressed

file size

[byte]

Compressio

n ratio [%] 1 2 3 4

min 5679 4431 4388 4368
2,434,644 41.19

avg 5724 4502 4462 4379

LZW coding achieves the best compression ratio but

compression time only increases with the first core

doubling and with a further core number increase

compression time does not change much.

Fig. 17 - Compression time comparison depending on

the number of cores used in LZW coding

5.6 Comparative analysis of minimal data

compression times
Table 18 shows compression time (minimum values in

ms) and the compression ratio of the file text.txt for all

coding methods.

Table 18. Compression times for various coding

methods depending on the number of cores used

Compression

method

Number of cores Compression

ratio [%] 1 2 3 4

Arithmetic 2730 1358 920 780 59.73

Huffman 2995 1482 998 827 62.12

LZ78 3916 3338 3042 3042 53.13

LZW 5679 4431 4388 4368 41.19

Fig. 19 shows file sizes (in bytes) after

compressing with a certain coding method.

Fig. 18 - Compression ratio of all coding methods used

Fig. 19 - Compressed file size comparison depending

on the coding method used

Fig. 20 shows compression times of all algorithms and

because of LZ77, a logarithmic scale is used for

presentation of compression times.

Fig. 21. shows the achieved speedup by increasing

the number of cores. Speedup is calculated by using

expression (4) where n = 2, 3, 4, as in [14].

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 916 Issue 8, Volume 9, August 2010

Fig. 20 - Compression times for all used methods

Compression time on n cores
Speedup

Compression time on one core
=

Fig. 21 – Achieved speedup

6 Conclusion
The goal of this paper was to see how much the

parallelization process shortens the compression time of

files consisting only of textual data. The parallelization

process includes splitting up the task in several smaller

subtasks and their simultaneous execution. This was

achieved by using multiple cores. A logical thing to do

was to conclude that the core number increment would

lead to a compression time decrease. Our former

conclusion was proven from the results of this paper. We

used two types of coders in this paper: entropy coders

and dictionary coders. Dictionary coders are inferior to

entropy coders as to compression time but superior as to

file size reduction. The compression time speedup for

entropy coders was close to linear speedup but the

discrepancies were due to non-parallelizable parts of

compression. Dictionary coders, LZ78 and LZW have

more non-parallelizable parts due to the dictionary so

their speedup is significantly smaller than the entropy

coders` speedup, being close to 1. According to what we

have seen so far, we can securely conclude that the

parallelization procedure had the best impact on entropy

coders, especially on arithmetic coding.

Acknowledgment

This work was supported by research project grant No.

165-0362980-2002 from the Ministry of Science,

Education and Sports of the Republic of Croatia.

References:

[1] X1. M. Pu, Fundamental Data Compression,

Butterworth-Heinemann, 2005.

[2]X2. K.P. Subbalakshmi, Lossless Image

Compression, Lossless Compression Handbook,

Academic Press, Chapter 9, 2003, pp. 207-226.

[3] X3. T. Moffat, C. Bell, I. H. Witten, Lossless

Compression for Text and Images, Int. J. of High

Speed Electronics and Systems, Vol.8, No.1, 1997,

pp. 179-231.

[4] X4. J. Platoš, V. Snášel, Compression of small text

files, Advanced Engineering Informatics, Vol.22,

Issue 3, 2008, pp. 410-417.

[5]X5. J. Ziv, A. Lempel, A Universal Algorithm for

Sequential Data Compression, IEEE Transaction on

Information Theory, Vol.23, No.3, 1977, pp. 337-

343.

[6] X6. S. C. Sahinalp, N. M. Rajpoot, Dictionary-Based

Data Compression: An Algorithmic Perspective,

Lossless Compression Handbook, Academic Press,

Ch.6, 2003, pp. 153-167.

[7] X7. F. Rizzo, J. A. Storer, B. Carpentieri, LZ-based

image compression, Information Sciences, Vol.135,

Issues 1-2, 2001, pp. 107-122.

[8] X8. M. R. Nelson, LZW Data Compression, Dr.

Dobb`s Journal, Vol.14, Issue 10, 1989, pp. 29-39.

[9] X9. R.Logeswaran, Enhancement of Lempel-Ziv

Coding Using a Predictive Pre-Processor Scheme for

Data Compression, Advances in Information Science

and Soft Computing, WSEAS Press, 2002, pp. 238-

243.

[10]X10. A. Grama, G. Karypis, V. Kumar, A. Gupta,

Introduction to Parallel Computing, Addison

Wesley, 2nd Ed., 2003.

[11] X11. J. A. Storer, J. H. Reif, A parallel architecture

for high speed data compression, Journal of Parallel

and Distributed Computing, Vol.13. Issue 2, 1991,

pp. 222-227.

[12] X12. W. Bielecki, D. Burak, Parallelization of the

AES Algorithm, Proc. of the 4th WSEAS Int. Conf. on

Information Security, Communications and

Computers, Tenerife, Spain, December 16-18, 2005,

pp. 224-228.

(4)

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 917 Issue 8, Volume 9, August 2010

[13] X13. I. Aziz, N. Haron, L.T. Jung, W. R.W.

Dagang, Parallelization of Prime Number Generation

using Message Passing Interface, WSEAS Trans. on

Computers, Vol. 7, Issue 4, 2008, pp. 291-303.

[14] X14. H. P. Flatt, K. Kennedy, Performance of

parallel processors, Parallel Computing, Vol.12,

Issue 1, 1989, pp. 1-20.

[15] X15. R. Bose, An Efficient Method to Calculate

the Free Distance of Convolutional Codes, Proc. of

the 6th WSEAS Int. Conf. on Electronics, Hardware,

Wireless and Optical Communications, Corfu Island,

Greece, February 16-19, 2007, pp. 60-63.

WSEAS TRANSACTIONS on COMPUTERS Goran Martinovic, Caslav Livada, Drago Zagar

ISSN: 1109-2750 918 Issue 8, Volume 9, August 2010

	89-830
	89-832
	89-851
	89-852
	89-861
	89-876
	89-880
	89-883
	89-888
	89-896
	89-921

