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Abstract: - When the omnipresent challenge of space saving reaches its full potential so that a file cannot be 

compressed any more, a new question arises: “How can we improve our compression even more?”. The answer is 

obvious:”Let´s speed it up!”. This article tries to find the meeting point of space saving and compression time 

reduction. That reduction is based on a theory in which a task can be broken into smaller subtasks which are 

simultaneously compressed and then joined together. Five different compression algorithms are used two of which are 

entropy coders and three are dictionary coders. Individual analysis for every compression algorithm is given and in the 

end compression algorithms are compared by performance and speed depending on the number of cores used. To 

summarize the work, a speedup diagram is given to behold if Mr. Amdahl and Mr. Gustafson were right. 
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1   Introduction 
According to [1], compression is used to reduce physical 

space needed for storing data using certain methods of 

data writing. The main unit for data storage is a file and 

depending on the data type within the file, some 

repetition is noticed. The data is stored once and after 

that only the position of repeated data is stored. In this 

way, it is possible to decrease space needed for data 

storage, which depends on data type and structure. 

There are two kinds of compression: lossless and 

lossy compression (compression without and with 

certain data loss). Lossless compression is carried out by 

data compression algorithms which ensure that the 

reconstructed data from compressed files corresponds to 

the starting data. Lossless compression is used when it is 

necessary to save the original data and typical examples 

by which lossless compression must be used are 

executable files, source codes, textual data, etc. [2], [4]. 

The majority of programs performing lossless 

compression practice two steps on the data that will be 

compressed and these steps are: 

• Generation of input data statistical model 

• Input data can be transformed into sequences of bits by 

using the statistical model so that less frequently 

occurring data give longer output sequences [5]. 

There are two main statistical models: static and 

adaptive model. In the static model, data is analyzed, the 

model is created and packed together with compressed 

data. This approach is very simple, but there is a chance 

that the model itself takes a lot of space in the 

compressed file. Another problem is that one model is 

used for all input data and it can give bad results on files 

containing various data [1].  

Adaptive models dynamically refresh the model as 

the data is compressed. Coder and decoder start with an 

elementary model that gives bad compression for the 

input data but as the model learns more about the input 

data, compression efficiency increases. The majority of 

compression methods use adaptive models. 

One lossless compression algorithm cannot 

efficiently compress all possible data, and completely 

random data streams cannot be compressed. For this 

reason, there are various algorithms designed for certain 

file types. 

By using lossy compression, the reconstructed data 

differs from the input data, but these differences are so 

small and the reconstructed data is still usable. 

According to [1] and [2], lossy compression methods are 

used for multimedia compression (audio, video and 

pictures). 

  The original file contains a certain amount of 

information and there is a lower data size boundary able 

to carry the overall information. In most cases files or 

data streams contain more information than needed, e.g. 

a picture can have more details than a human eye can 

distinguish, and lossy compression methods tend to 

exploit imperfections of human perception [2].  

  
Two main lossy compression schemes are: 

• Lossy transformation codecs (coder-decoder) – Picture 

or audio samples are taken, divided into smaller parts, 

quantized and compressed using entropy coding [1]. 
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• Predictive lossy codecs – preceding and/or following 

decoded data is used to assume a current picture or 

audio sample. The difference between the assumed and 

the real sample with additional data is quantized and 

coded. 

 

2   Compression Methods Analyzed 
Since we deal with textual data, only the lossless 

compression methods will be shown and analyzed. 

These methods are: Huffman coding, Arithmetic coding, 

LZ77, LZ78 and LZW [3]. 

 

2.1 Huffman Coding 
As in [2], Huffman coding codes symbols with variable 

length code words, depending on their probability of 

incidence. 

Huffman coding is based on two simple facts: 

1. In optimal code, symbols with greater probabilities 

of incidence have smaller code words than symbols 

with lesser probabilities of incidence. 

2. In optimal code, two symbols with the smallest 

probabilities have code words of the same length. 

 

Huffman coding algorithm is shown in Fig. 1, similarly 

to [2]: 

1. Sort symbols by falling probabilities. 

2. Link two symbols with least probabilities 

into one new symbol, on branching assign 

“0” to one branch and “1” to the second 

branch. 

3. Sort the obtained symbols by probabilities. 

4. Repeat until there is only one symbol. 

5. Go back through tree read codes. 

 

Fig. 1 - Huffman coding algorithm 

 

Algorithm data structure is a binary tree. The decoding 

algorithm uses the same procedure as the coder for 

building a tree and before sending data, the coder must 

first send the probabilities of symbol incidence. 

 

Advantages of the Huffman algorithm: 

1. Easy implementation. 

2. Near optimal coding is achieved for “good” 

probabilities of incidence. 

 

Disadvantages of the Huffman algorithm: 

1. Probabilities of incidence must be known. 

2. Codes can become “bad” for wrong probabilities of 

incidence.  

 

 

A coding example will be given in the next section: We 

can assume that we have the following stream – 

AACBBABCAA. 

 

First, we must calculate the probabilities of each symbol 

as shown in Table 1. The coding tree can then be created 

by using the data from Table 1, which is shown in Fig 2. 

 

Table 1. Symbol probabilities 

Symbol Probability 

A 0.5 

B 0.2 

C 0.3 

 

 

 

 

 

Fig. 2 - Huffman coding example 

 

The binary code of every symbol can be acquired by 

reading the Huffman tree in right to left manner and the 

resulting code can be seen in Table 2. 

 

Table 2. Output code 

Symbol Binary Code 

A 10 

B 111 

C 110 

 

Using Table 2 a unique code can be written for the input 

stream as follows: 1010110111111101111101010. 

 

2.2 Arithmetic Coding 
The algorithm takes queues of symbols as the input data 

(message) and transforms them into a floating point 

number, depending on a known statistical model. 

Arithmetic coding is shown in Fig. 3, as in [2]: 

 

1. Divide interval [0,1] into M intervals that 

correspond to symbols, symbol length is 

proportional to symbols probability. 

2. Select the interval of the first symbol in queue. 

3. Subdivide the current symbol interval into 

new M subintervals, proportional to their 

probabilities. 

4. From these subintervals, select the one that 

matches the next symbol in queue. 

5. Repeat steps 3 and 4 until all symbols are 

coded. 

6. Output the interval value in binary form. 

 

Fig. 3 - Arithmetic coding algorithm 

 

A 0.5 

C 0.3 

B 0.2 
1 

1 
1 

0 

0 

0.5 
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The procedure of interval division in arithmetic coding is 

shown in Fig. 4. 

 

 

 

 

 

 

 

Fig. 4 - Arithmetic coding algorithm 

 

The arithmetic coding procedure can be shown on the 

following example: Assume that we have the following 

input stream – BBAB. First, we must define the ranges 

and the probability line. The ranges and probabilities can 

be seen in Table 3. 

 

Table 3. Symbol probabilities and ranges 

Symbol Probability Range 

A 0.25 [0, 0.25) 

B 0.75 [0.25, 1) 

 

Our input stream is BBAB and we can calculate its 

output number. The coding process can be seen in Table 

4. 

 

Table 4. Output number calculation 

Symbol Range Low value High value 

  0 1 

B 1 0.25 1 

B 0.75 0.4375 1 

A 0.5625 0.4375 0.578125 

B 0.140625 0.47265625 0.578125 

 

According to Table 4, the output number will be 

0.47265625. 

 
2.3 LZ77 
Algorithm LZ77 uses a code word dictionary and tries to 

replace a stream of symbols with the reference to the 

stream dictionary location. The main assumption is that 

the reference to the stream in the dictionary is shorter 

than the stream itself. The stream is coded using an 

arranged pair length-distance which can be described as 

follows: “every length symbol equals the symbol that is 

exactly distance symbols after uncompressed stream”. 

Coder and decoder must monitor the number of recent 

data, last 2 kB, 4 kB or 32 kB. The structure in which 

this data is held is called a sliding window; hence, LZ77 

is sometimes called sliding window compression. Coder 

needs this data to discover if there is any correspondence 

and decoder needs this data for reference interpretation 

([6] and [7]). 

 

The coding algorithm is shown in Fig. 5, according to 

[1]: 

 

1. Initialize the dictionary to a known value. 

2. Read an uncoded string that is the length of 

the maximum allowable match. 

3. Search for the longest matching string in the 

dictionary. 

4. If a match is found to be greater than or 

equal to the minimum allowable match 

length: 

a. Write the encoded flag, then the 

offset and length to the encoded 

output. 

b. Otherwise, write the uncoded flag 

and the first uncoded symbol to the 

encoded output. 

5. Shift a copy of the symbols written to the 

encoded output from the unencoded string to 

the dictionary. 

6. Read a number of symbols from the uncoded 

input equal to the number of symbols written 

in Step 4. 

7. Repeat from Step 3, until all the entire input 

has been encoded.  
 

Fig. 5 - LZ77 coding algorithm 

 

We can review the LZ77 coding algorithm on the next 

data stream: CBCABBBCA. The coding process as well 

as the output can be seen in Table 6 and the graphical 

representation of the LZ77 coding process of the above 

mentioned input stream is shown in Fig 6.  

 

Table 5. Input data stream 

Position 1 2 3 4 5 6 7 8 9 

Character C B C A B B B C A 

 

Table 6. Coding process 

Step Position Match Character Output 

1. 1 -- C (0,0) C 

2. 2 -- B (0,0) B 

3. 4 C A (2,1) A 

4. 5 B B (3,1) B 

5. 7 B C A (5,2) A 

 

 

 

 

 

 

 

 

 

Fig. 6 - LZ77 algorithm 

0 1 Low High 

Low High 
Low' High' 

Low' High' 
Low'' High'' 

Input stream 

Output stream 
P1 P2 P3 
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2.4 LZ78 

LZ77 algorithm works with previous data and LZ78 tries 

to work with future data. LZ78 reads input stream in 

advance and compares it with the dictionary which is 

constantly updated. Input stream will be read until the 

corresponding data in the dictionary is found and in that 

moment, the position and length of data are written into 

dictionary [7]. 

 

The LZ78 coding algorithm is shown in Fig. 7, 

according to [1]: 

 

1. Empty the dictionary and prefix p. 

2. For every c (character from an 

uncompressed file)  

a. If (p + c) exists in the dictionary, 

then p = p + c. 

b. Else, output the dictionary code for p 

to output and output c, add (p + c) 

to the dictionary and empty p. 

3. Add the dictionary code for p to output.  

 

Fig. 7 - LZ78 coding algorithm 

 

The following input stream will be used to show the 

LZ78 coding process: ABBCBCABA. The coding 

algorithm shown in Fig. 7. is used on the before 

mentioned input stream and the resulting coding process 

and the output are displayed in Table 8. 

 

Table 7. Input data stream 

Position 1 2 3 4 5 6 7 8 9 

Character A B B C B C A B A 

 

Table 8. Coding process 

Step Position Dictionary Output 

1. 1 A (0, A) 

2. 2 B (0, B) 

3. 3 B C (2, C) 

4. 5 B C A (3, A) 

5. 8 B A (2, A) 

 

The biggest advantage over the LZ77 is a reduced 

number of string comparisons in each encoding step. 

LZ77 and LZ78 have a similar compression ratio. The 

LZ77 coding algorithm is shown in Fig 8. 

 

 

 

 

 

 

 

 

Fig. 8 - LZ78 algorithm 

2.5 LZW Coding 

LZW is a refined version of the LZ78 algorithm; hence, 

it is faster but usually not optimal because of the 

constrained data analysis. The LZW coding algorithm is 

shown in Fig. 9, as in [8]: 

 

1. Set w to zero. 

2. For every c (character from an 

uncompressed file)  

c. If (w + c) exists in the dictionary, 

then w = w + c. 

d. Else, add a dictionary code for w to 

output, add (w + c) to the dictionary 

and set w = c. 

3. Add the dictionary code for w to output.  

 

Fig. 9 - LZW coding algorithm 

 

We can see the LZW coding efficiency on a next 

example: The alphabet consists of three symbols – A, B, 

C which constitute the starting dictionary shown in 

Table 9. 
 

Table 9. LZW starting dictionary 

Location Character 

(1) A 

(2) B 

(3) C 

 

Input stream that needs to be coded and the LZW 

algorithm execution are shown in Table 10 and Table 11, 

respectively. 

 

Table 10. Input data stream 

Position 1 2 3 4 5 6 7 8 9 

Character A B C B C A B C A 

 

Table 11. LZW algorithm execution 

Step Position Dictionary 

content 

Output 

-- -- (1) A -- 

-- -- (2) B -- 

-- -- (3) C -- 

1. 1 (4) A B (1) 

2. 2 (5) B C (2) 

3. 3 (6) C B (3) 

4. 4 (7) B C A (5) 

5. 6 (8) A B C (4) 

6. 8 (9) C A (3) 

7. -- -- -- (1) 

 
The main advantage of LZW over LZ77-based 

algorithms is in the speed because there aren’t that many 

string comparisons to perform [9]. 

Input 

stream 

Output 

stream 

Dictionary 

1. 

2. 

3. 

4. 

5. 

2 3 2 
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3   Parallel Processing 
Computer software has been written for serial 

computation and to solve a problem, an algorithm is 

constructed which produces a serial stream of 

instructions. These instructions are executed on the 

central processing unit on one computer. Only one 

instruction may be executed at a given time and when 

that instruction is finished, the next one is executed. 

Parallel processing implies simultaneous execution 

of multiple instructions. It is based on the principle that 

bigger tasks can always be divided into smaller ones 

which are simultaneously executed. Communication and 

synchronization between various subtasks are the biggest 

restrictions for achieving good parallel processing 

performance [8].  

Theoretically, by doubling processing elements, 

execution time should halve, and with the second 

doubling, execution time should halve again. However, a 

few parallel algorithms achieve this optimal speed-up. 

The majority of parallel algorithms have this optimal 

(linear) speed-up for a small number of processing 

elements but with a further increase of processing 

elements execution time becomes constant [10].  

 

3.1 Amdahl`s law and Gustafson`s law 
The performance of an algorithm on a parallel 

computing platform depends on parallelizing the 

algorithm to achieve performance so it is important to 

be aware of Amdahl's law, originally formulated by 

Gene Amdahl in the 1960's. It states that a small portion 

of the program which cannot be parallelized will limit 

the overall speedup available from parallelization. Any 

large math or engineering problem will typically consist 

of several parallelizable parts and several non-

parallelizable (sequential) parts. This relationship is 

given by Amdahl's law: 
 

1

1
S

P
=

−
, 

 

where S is the speedup of the program (as a factor of its 

original sequential runtime), and P is the fraction that is 

parallelizable. If the sequential portion of a program is 

20% of the runtime, we can get no more than a 5x 

speedup, regardless of how many processors are added. 

This puts an upper bound on the usefulness of adding 

more parallel execution units. A graphical 

representation of Amdahl`s law is given in Fig. 10. 

A task has two independent parts, A and B. B takes 

20% of the time of the whole process. We may be able 

to make this part 4 times faster, but this insignificantly 

reduces the time for the whole computation. In contrast 

to that, one may need to perform less work to make part 

A be twice as fast. This will make the computation 

much faster than by optimizing part B, even though B 

gets a greater speed-up, (4x versus 2x). 

 

 
 

Fig. 10 – Amdahl`s law 

 

  Gustafson's law is another law in computer 

engineering, closely related to Amdahl's law. 

Gustafson's law can be formulated as: 

 

( ) ( 1)S P P Pα= − − , 

 

where P is the number of processors, S is the speedup, 

and α the non-parallelizable part of the process. 

Amdahl's law assumes a fixed-problem size and that the 

size of the sequential section is independent of the 

number of processors, whereas Gustafson's law does not 

make these assumptions [10]. 

Not every parallelization will result in execution 

time speed-up. As the tasks are divided in more and 

more threads, these threads need more time for mutual 

communication. It is possible for this additional 

communication to dominate the time needed to solve 

problems; therefore, further parallelization increases the 

program execution time, instead of decreasing it. This 

phenomenon is called parallel slowdown [11].  

 

3.2 Parallel programming approaches 
As already mentioned, the majority of programs are 

sequential and have a single line of control, and in order 

to make many processors work on a single program, a 

program must be divided into smaller independent 

chunks so that each processor can work on separate 

chunks. The most prominent parallel programming 

approaches are: 

• Data parallelism, 

• Process parallelism, and 

• Farmer and worker model. 

 
In case of data parallelism, the divide-and-conquer 

technique is used to split data into multiple sets and each 

data set is processed by a different processor by using 

(1) 

(2) 
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the same instruction. This approach is very suitable for 

processing on a machine on the SIMD model. In case of 

process parallelism, a given operation has multiple 

activities which can be processed on multiple 

processors. In case of the farmer and worker model, job 

distribution is used; one processor is configured as 

master and all remaining processors are designated as 

slaves. The master assigns jobs to slaves and they 

inform the master on completion, which in turn collects 

results [11]. 

In this research we used a multi-core processor 

which consists of several processing units (cores) that 

can execute more instructions per cycle from different 

instruction streams, i.e. we used the data parallelism 

approach. 

 

4   Parallel Processing Data Compression    
Data compression program will be executed on a multi-

core processor computer, i.e. on a computer with four 

cores. Computer configuration is as follows: CPU: Intel 

Core i5 750 @ 2.67 GHz, RAM: 4 GB, Windows 7 OS. 

The coding algorithm on a multi-core system can be 

divided into several steps [10]: 

 

• read input data stream, 

• separate input data stream in N equal parts 

where N ≤ the number of processor cores, 

• compress disjointed data using one of the 

mentioned compression methods, 

• join compressed parts into one file. 

 

Compression program was written in C++ for command 

prompt similar to [12] and [15]. An executable file needs 

additional parameters, like compression type, input file 

and output file. Compression was repeated ten times, so 

that we could obtain the best results because various 

processes were running in the background of the 

computer. After that, statistical data about compression 

was written in a file, from where we did our analysis. 

Fig. 11 shows data compression using four cores 

similarly to [13]. 

 

 
 

Fig. 11 - Multi-core data compression algorithm 

This parallel algorithm can only go as fast as its slowest 

parallel work, as shown in Fig. 12. 

 

  
 

Fig. 12 – Parallel work on different cores 

 

In order to have a successful and correct compression, all 

cores must finish their individual parallel work. If one or 

more cores finish their parallel work before other cores, 

they must wait. In an example shown in Fig. 12, cores 1, 

3 and 4 must wait until core 2 finishes its work. 

 

5   Results and Analysis   
The data compression algorithm analysis will be tested 

on a textual file shown in Table 12. The number of 

compression iterations is ten. Results are analyzed and 

minimum, maximum and mean values are shown in 

tables. 

Table 12. Source file 

Document name Size  [in bytes] Description 

text.txt 5,910,599 Text 

 

5.1 Time and Average Time of File 

Compression Using Arithmetic Coding 
Table 13 shows mean and minimum values of the time 

needed for compression, compressed file size and the 

achieved compression. The values were acquired by 

analyzing results shown in Fig. 13. 

 

 

Table 13. Compression times by using arithmetic 

coding 

Time 

[ms] 

Number of cores Compressed 

file size [byte] 

Compression 

ratio [%] 1 2 3 4 

min 2730 1358 920 780 
3,530,681 59.73 

avg 2753 1365 922 832 

 

The compression ratio for the implemented compression 

method was calculated by using expression (3). 

[ ]% *100%
Compressed file size

Compression ratio
Original file size

=  (3) 
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From Table 13, but also from Fig. 13 we can conclude 

that compression time decreases with an increase in a 

utilized core number. By doubling the number of cores, 

compression time halves. Compressed data is stored in 

the file bible_arit.txt. 

 

Fig. 13 - Compression time comparison depending on 

the number of cores used in arithmetic coding 

 

5.2 File Compression Times Using Huffman 

Coding 
Table 14 shows compression times and Fig. 14 enables a 

comparison of compression times when using Huffman 

coding. 

Table 14. Compression times by using Huffman 

coding 

Time 

[ms] 

Number of cores 
Compressed

file size 

[byte] 

Compression 

ratio [%] 1 2 3 4 

min 29951482 998 827
3,671,779 62.12 

avg 301614951009839

 

As well as in arithmetic coding, in Huffman  coding 

compression time decreases proportionally with an 

increase in the number of cores. The compressed file size 

created by Huffman coding is larger than the compressed 

file size generated by arithmetic coding. Compression 

time is longer in Huffman coding than in arithmetic 

coding. 
 

 

Fig. 14 - Compression time comparison depending on 

the number of cores used in Huffman coding 

5.3 Core Number Changing Effect on Data 

Compression Using LZ77 
Table 15 and Fig. 15 show compression time when using 

LZ77 coding and the comparison of compression times 

depending on the number of cores, respectively. 

 

Table 15. Compression times by using LZ77 coding 

Time 

[ms] 

Number of cores 
Compressed 

file size 

[byte] 

Compression 

ratio [%] 1 2 3 4 

min 199649 101684 69326 57096 
2,642,705 44.71 

avg 199631 101434 69250 56901 

 

Data compression time reduces when the number of 

cores increases. Compression time difference is very 

small for cases when three and four cores are used. 

 

 

Fig. 15 - Compression time comparison depending on 

the number of cores used in LZ77 coding 

 

5.4 Results of LZ78 Coding Depending on the 

Number of Cores Used 
Table 16 and Fig. 16 show compression time when using 

LZ78 coding and the comparison of compression times 

depending on the number of cores, respectively. 

 

Table 16. Compression Times by Using LZ78 Coding 

Time 

[ms] 

Number of cores Compressed file 

size [byte] 

Compression 

ratio [%] 1 2 3 4 

min 3916 3338 3042 3042 
3,140,033 53.13 

avg 5148 3356 3062 3059 

 

Data compression time reduces when the number of 

cores increases. Compression time difference is very 

small for cases when three and four cores are used. 

 

5.5 Results of LZW Coding Depending on the 

Number of Cores Used 

Table 17 shows average and minimum values of file 

compression times, compressed file size and the 
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compression ratio. The values were acquired by 

analyzing results shown in Fig. 17. 

 

 

Fig. 16 - Compression time comparison depending on 

the number of cores used in LZ78 coding 

 
Table 17. Compression times by using LZW coding 

Time 

[ms] 

Number of cores 
Compressed 

file size 

[byte] 

Compressio

n ratio [%] 1 2 3 4 

min 5679 4431 4388 4368 
2,434,644 41.19 

avg 5724 4502 4462 4379 

 

LZW coding achieves the best compression ratio but 

compression time only increases with the first core 

doubling and with a further core number increase 

compression time does not change much. 

 

 

Fig. 17 - Compression time comparison depending on 

the number of cores used in LZW coding 

5.6 Comparative analysis of minimal data 

compression times 
Table 18 shows compression time (minimum values in 

ms) and the compression ratio of the file text.txt for all 

coding methods. 

 

 

 

 

 

Table 18. Compression times for various coding 

methods depending on the number of cores used 

Compression 

method 

Number of cores Compression 

ratio [%] 1 2 3 4 

Arithmetic 2730 1358 920 780 59.73 

Huffman 2995 1482 998 827 62.12 

LZ78 3916 3338 3042 3042 53.13 

LZW 5679 4431 4388 4368 41.19 

 

Fig. 19 shows file sizes (in bytes) after 

compressing with a certain coding method. 

 

Fig. 18 - Compression ratio of all coding methods used 

 

Fig. 19 - Compressed file size comparison depending 

on the coding method used 

Fig. 20 shows compression times of all algorithms and 

because of LZ77, a logarithmic scale is used for 

presentation of compression times. 

Fig. 21. shows the achieved speedup by increasing 

the number of cores. Speedup is calculated by using 

expression (4) where n = 2, 3, 4, as in [14]. 
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Fig. 20 - Compression times for all used methods 

 

 

Compression time on n cores
Speedup

Compression time on one core
=  

 

 

Fig. 21 – Achieved speedup 

 

6   Conclusion 
The goal of this paper was to see how much the 

parallelization process shortens the compression time of 

files consisting only of textual data. The parallelization 

process includes splitting up the task in several smaller 

subtasks and their simultaneous execution. This was 

achieved by using multiple cores. A logical thing to do 

was to conclude that the core number increment would 

lead to a compression time decrease. Our former 

conclusion was proven from the results of this paper. We 

used two types of coders in this paper: entropy coders 

and dictionary coders. Dictionary coders are inferior to 

entropy coders as to compression time but superior as to 

file size reduction. The compression time speedup for 

entropy coders was close to linear speedup but the 

discrepancies were due to non-parallelizable parts of 

compression. Dictionary coders, LZ78 and LZW have 

more non-parallelizable parts due to the dictionary so 

their speedup is significantly smaller than the entropy 

coders` speedup, being close to 1. According to what we 

have seen so far, we can securely conclude that the 

parallelization procedure had the best impact on entropy 

coders, especially on arithmetic coding. 
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