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Abstract: - The influence of noise on the results of rigid registration of segmented ultrasound volumes is studied in this 

paper. Binary volumes result from a segmentation of ovarian ultrasound volumes. Rigid registration is preformed in 

frequency domain, where the rotation and translation can be calculated separately. The calculation of rotation is done 

using the amplitude spectrum and sphere correlation. The method was tested on pairs of synthetic volumes where 

ovarian follicles in one volume were altered and, thus, simulated different kinds of noise (non-rigid changes) 

characteristic for segmented volumes. We systematically assessed the performance of our registration algorithm by 

changing the number of follicles, their position, orientation and size. Hundred volume pairs were involved in each 

experiment. The method proved sensitive to the change of follicle size but resistive to all other kinds of destruction we 

simulated. 
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1 Introduction 
Automated assessment of growth of structures given in 

3D ultrasound images is a useful application which can 

relieve medical personnel of time-consuming and error-

prone work. The algorithm presented in this paper is a 

part of our application for the detection and growth 

assessment of ovarian follicles. 

     The whole process of growth assessment can be 

divided into several steps. In the first step the centres of 

gravity in follicles are detected and their shapes are 

outlined in each ultrasound volume [1-4].  

     In the second step a rigid transformation which 

registers segmented volumes is calculated. This means a 

basis for the growth assessment. Registered volumes are, 

afterwards, additionally processed by elastic registration 

[5], which fine tunes the results. 

     Final step compares registered volumes and the 

follicle intersections are calculated. Intersections show a 

possible similarity of the structures. 

     The tested rigid registration works in frequency 

domain, as described in next section. The algorithm is 

described in Section 3. The efficiency of the algorithm is 

tested and discussed in Section 4, while Section 5 

concludes the paper. 

 

 

2 Rigid registration in frequency domain 
Rigid registration uses rigid transformation which 

consists of translation and rotation. Rigid registration 

methods that are based on the frequency-domain 

transform are especially interesting because of the 

Fourier shift theorem. The theorem provides a 

mathematical tool to divide the problem of finding rigid 

transformation into two separate problems of finding 

translation and rotation. 

 

 

2.1 Translation 
Two volumes V1 and V2 are translated by vector 

t=(tx,ty,tz) if the following relationship holds: 

 

).,,(),,(2 zyx tztytxzyx  1VV                                 (1) 

 

     Cross-correlation [6] Rv1v2(t) is often used to detect 

such translation. Maximum value of argument t in 

Rv1v2(t) indicates the approximate translation parameter. 

Proceeding by the Fourier transform of this cross- 

correlation, the so called Cross Power Spectral Density 

Function is calculated as: 
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If the inverse Fourier transform is applied to Eq. (2), one 

can easily get the cross-correlation values. In [7] it was 

shown that better results are obtained when a generalized 

cross-correlation method is used if volumes are 

corrupted by noise. In this case ),,( v1v2G  is 

multiplied by a general frequency weighting function 
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ψg(ξ,ν,δ). We deal with phase correlation if ψg(ξ,ν,δ) 

equals [7, 8]: 
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The abovementioned theory can be condensed into the 

following algorithm for the translation detection. Fourier 

transforms Ψ1 and Ψ2 are computed for V1 and V2, 

respectively. Cross power spectrum retains only the 

information about phase differences between V1 and V2 

and can be calculated using Eqs. (2) and (3) as follows: 
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where * denotes complex conjugate. Translation equals 

the position of maximum value in the result of the 

inverse Fourier transform of Φ(ξ,ν,δ). 

 

 

2.2 Fourier shift theorem 
Fourier shift theorem states that translation of the 

volume in the spatial domain influences just the phase of 

Fourier transform [9]. If V1 and V2 are related by Eq. (1), 

their Fourier transforms Ψ1 and Ψ2 yield: 
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If only the frequency-domain amplitudes are observed, 

the following equality holds true: 

 

.),,(),,(  12 ΨΨ                                                (6) 

 

Eq. (6) shows that translation does not influence the 

amplitude spectrum, thus, in the case of rigid transforms 

the amplitude spectrum is influenced just by rotation. 

 

 

2.3 Rotation 
Given two volumes V1 and V2 that are related by 

translation vector t=(tx,ty,tz) and rotation matrix R, the 

point p=(x,y,z) from V1 is linked with the corresponding 

point in V2 by: 

 

).()(2 tRpVpV 1                                                          (7) 

 

In frequency domain, the two volumes are related by the 

following equation: 
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where k denotes frequencies (ξ,ν,δ). The relationship of 

amplitude spectra  is the following: 

 

)()( RkΨkΨ 12  .                                                         (9) 

 

Eq. (9) proves that amplitude spectra are influenced only 

by rotation. Many algorithms exist for determining the 

rotation, however they mainly work in 2D [8]. An 

interesting approach was published in [10]. It is based on 

eigenvectors, nevertheless it turned out to be quite noise-

sensitive in our experiments. 

 

 

2.4 Detection of rotation parameters using  

spherical cross-correlation 
We propose a detection of rotation in the amplitude 

spectrum by using spherical cross-correlation. Denote 

the amplitude spectra of |Ψ1| and |Ψ2| by Ξ1 and Ξ2, 

respectively. Referring to Eq. (9), Ξ2(k) = Ξ1(Rk). 

     It is trivial to show that the Euclidian distance 

between the frequencies k and (0, 0, 0) equals the 

Euclidian distance between the frequencies Rk and (0, 0, 

0). This property changes the problem of finding the 

rotation using the amplitude spectrum to the problem of 

calculating spherical cross-correlation, since all 

frequencies with the same Euclidian distance form a 

sphere. After spherical cross-correlation computed, the 

rotation matrix R can be easily identified by the position 

of a maximum in correlation. We write more about how 

to do this in Section 3.  

 

 

2.5 Correlation based on SO(3) Fourier 

Transform 
SO(3) denotes a group of rotations about the origin in 

3D. Rotations are represented by 33 matrices with 

determinant 1, or with Euler angles α, β, γ, where 0 ≤  α, 

γ  ≤ 2π and 0 ≤  β  ≤ π. Any element G from SO(3) can 

be expressed with those angles as [11]: 

 

)()()(),,(  zyz RRRG  g                             (10) 

 

where Rz(a) and Ry(β) stand for the rotation matrices 

around the z and y axes, respectively. 

Denote two functions on a sphere as f(ω) and h(ω), 

where ω=(θ,φ) stands for spherical coordinates. To each 

G we can associate linear operator ΛG which acts on  

h(ω): 

 

)()( 1  GG hh                                                        (11) 

 

We can define the correlation of f(ω) and h(ω) as: 
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where * denotes complex conjugates. 

     As in planar cases, the correlation on sphere can be 

performed in frequency domain by using spherical 

Fourier transform of f(ω) and h(ω). To do this we used 

the algorithm published in [11], where also the method’s 

details are revealed. 

 

 

3 Registration algorithm 
In this section we describe the proposed algorithm for a 

registration in frequency domain. The algorithm runs on 

two input volumes V1 and V2. We assume both volumes 

binary, as they exit the segmentation step, however the 

procedure should also work with volumes comprising 

grey-valued voxels. 

     A bounding box for each volume is determined to 

decrease space and time complexity of the algorithm. 

Then we calculate 3D Fourier transform for V1 and V2 to 

get Ψ1 and Ψ2. It is important that Ψ1 and Ψ2 are of the 

same size, therefore we pad the smaller volume by 

zeroes. 

     We calculate the amplitude spectra Ξ1 and Ξ2 for |Ψ1| 

and |Ψ2|, respectively. Both Ξ1 and Ξ2 are normalized by 

their DC components: Ξ1/Ξ1(0) and Ξ2/Ξ2(0).      

     Then we calculate spherical cross-correlations for 

various distances from frequency 0. Let or designate the 

vector of spherical cross-correlation at distance r, 

obtained by using the computer program disclosed in 

[11]. Each vector or is normalized by its maximum 

value. Vectors or at various distances are summed up. 

Denote the resulting vector by o.  

     Indices of the vector’s elements can be expressed by 

Euler’s angles that describe the rotation matrix. It should 

be stressed that the highest value in vector o does not 

automatically sort out the best rotation matrix. 

Remember that the amplitude spectrum is symmetric, 

therefore an ambiguous rotation in spatial domain can be 

obtained. Such false rotations are always rotated by 90 

degrees from the correct ones. 

     To find the proper rotation we further test the 24 

rotations with highest spherical cross-correlations. Any 

rotation Ri is tested by the following procedure. Volume 

V1 is initially rotated by Ri. If the rotation is correct, one 

can obtain translation ti by calculating cross power 

spectrum as described in 2.1. Registration accuracy is 

estimated by a ratio ρ that compares the intersection 

volume of the two registered volumes V1R and V2 to the 

final volume V2. 

     The obtained rigid transformation is finally improved 

by applying the ICP (Iterative Closest Point) algorithm 

[12], like in [13]. The ICP algorithm is widely used for 

rigid alignment of two clouds of points when an initial 

estimate of the relative pose is known. It iteratively 

revises the transformation needed to minimize the 

distance between the points.  

 

 

4 Simulation results 
 

 

4.1 Model description 
The efficiency of the algorithm was tested on binary 

synthetic 3D volumes. The volumes simulate outputs of 

our follicle segmentation algorithm which process 

ultrasound (US) volumes [1-4], like one depicted in Fig. 

1. 

     A follicle in 3D US volumes is seen as a spherical 

homogenous region whose average greyness is darker 

than the surroundings. There can be more than one 

follicle in such image, especially when the patient 

receives hormone therapy. Size of follicles differ, the 

largest follicles are called dominant follicles. 

     Our goal was to assess the growth of the individual 

follicles. The crucial step in this assessment is a 

successful registration of two volumes that belong to the 

same patient and are acquired in consecutive 

examinations. 

 

 
Figure 1: 3D view of an ultrasound volume 

 

     Our model consists of two 3D volumes, filled with 

ellipsoids that simulate the segmented follicles. Each of 

volumes represents one of the examinations, and since 

the position of ultrasound probe changes from one 

examination to another, we introduced different points of 

view that are simulated by rigidly transforming the 

modelled volumes. Due to the fact that real follicles 

exhibit considerable dynamics by their growth, decline, 

appearance and disappearance, we simulate this 

dynamics too. 
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     We began by creating the volume V1 of dimensions 

150150150 voxels. Inside the volume, we placed 8 

ellipsoids whose size, position and rotation is randomly 

chosen (uniform distribution) by the following rules. The 

whole ellipsoid must fit into the volume, the ellipsoid 

radii (a, b, c) are set within the range of [10, 30] voxels. 

Each ellipsoid is randomly rotated by Euler’s angles α, β, 

γ in the range of [-0.5, 0.5] radians (-29 to 29 degrees). 

We took precautions that ellipsoids do not intersect.  

     For volume V2 we firstly created a random rigid 

transform matrix that simulates a rigid transform. To 

simulate the dynamics of follicle growth the volume V2 

was created by altering the parameters for V1.  

     Not all ellipsoids from V1 were preserved in V2; to 

simulate real dynamics we deleted at most 3 of them. 

This simulates disappearance of follicles and, at the 

same time, the errors of not detected follicles due to a 

bad segmentation. Parameters of the remaining ellipsoids 

were altered. Centres of gravity in each ellipsoid were 

randomly changed for at most 10 voxels in each 

coordinate axis (maximum Euclidan distance of two 

such centres is therefore 17 voxels). This simulates 

displacement of follicles. The radii a, b, c of the ellipsoid 

were also individually and randomly changed by 20 % 

(e.g., for the radius a of 30 voxels, the new size is in the 

range of [24, 36] voxels). This simulates the follicle 

growth and decline. To simulate displacement, each 

ellipsoid was randomly rotated in a range from -15 to 15 

degrees in each Euler’s angle. To simulate new follicles, 

we randomly added at most 3 new ellipsoids.  

     When creating V2 we did not take any special 

precautions for ellipsoids not to intersect, so that they 

usually do. This simulates the behaviour of segmentation 

algorithms that tend to connect follicles lying close 

together in US volume. Simulated volumes V1 and V2 

are exemplified by Fig. 2. 

     We showed in [14] that the follicle dynamics  

influence the results of our registration algorithm. 

Therefore we made several experiments in which we 

separately altered parameters for follicles in V2. We treat 

such alternation of parameters as a noise, since it is seen 

as such from the perspective of rigid transform. 

 

 

4.2 Registration results 
In each experiment we tested our registration method on 

100 pairs of synthetic binary volumes. When calculating 

spherical correlation the radial distances between [10, 

30] voxels were used.  

     We estimated the alignment of volumes after every 

registration. The ratio ρ compares the intersection 

volume of the two registered volumes V1R and V2 to the 

final volume V2. In an ideal case this ratio would be 1. 

Three different ratios were calculated: ρk denotes the 

results obtained by the same transformation as used in 

the model creation (ρk would be 1 if we did not change 

the parameters of ellipsoids); ρf denotes the results 

obtained just by using spherical cross-correlation, 

without the last step that utilizes ICP; ρi denotes the final 

result after all steps of our registration algorithm. 

     We also compared the difference between the rotation 

used in the model and rotation calculated by our 

algorithm. Rotation in 3D can be described with 3 

Euler’s angles. In such a way it is difficult to compare 

two different rotations, therefore we expressed rotations 

with quaternions. We denote the spatial angle between 

quaternions by Θ. We expect that angle Θ is small. 

     The result was also evaluated by the difference 

between the translations. We calculated the Euclidian 

distance between the translation used in the model and 

the translation calculated by our algorithm. We denote 

this distance by d. We expect that distance d is small. 

 

 

 

 

 

 
(a) (b) 

Figure 2: Simulated volumes V1 and V2 before (a) and after (b) registration 
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4.2.1 Ideal case 

In the first experiment we study the ideal case, where the 

only difference between V1 and V2 was a random rigid 

transform. In Fig. 3, the results for all 100 pair of 

volumes are depicted. The average ratio ρk is 0.99 (std. 

0.01), average ratio ρf is 0.87 (std. 0.04) and average 

ratio ρi is 0.94 (std 0.02). The average angle Θ between 

known and calculated rotation is 3.10 (std 1.10) degrees 

and average distance d between known and calculated 

translation is 5.17 (std 2.39) voxels. 

     The obtained results show that our registration 

algorithm performs very well in ideal case. 

 

 

4.2.2 New follicles 

In the second experiment we tested how our algorithm 

performs in the case, when additional new follicles 

appear in V2. Otherwise, all follicles from V1 remain in 

V2. This simulates appearance of new follicles and, at 

the same time, the errors of wrongly detected follicles 

due to a bad segmentation. The number of additional 

follicles was random but limited to 3. Our automated 

registration case generator created a testing set in which 

we have 17 pairs of volumes with no new follicle added 

in V2, 40 pairs with 1 follicle added, 31 pairs with 2 

follicles added, and 12 pairs with 3 follicles added. In 

Fig. 4, the results for all 100 pair of volumes are 

depicted. The average ratio ρk is 0.99 (std. 0.01), average 

ratio ρf is 0.85 (std. 0.06) and average ratio ρi is 0.93 (std 

0.06). The average angle Θ between known and 

calculated rotation is 4.82 (std 18.27) degrees and 

average distance d between known and calculated 

translation is 7.60 (std 22.61) voxels. 

     In Fig. 4 we can see that our segmentation algorithm 

successfully registered 99 pairs of volumes, but was 

unsuccessful in one case. Only one additional follicle 

was added to V2 in that particular case. Nevertheless, we 

can conclude that the algorithm performs well when 

changes in the form of additional follicles are induced.  

 

 

4.2.3 Missing follicles 

In the third experiment we tested how missing follicles 

that exist in V1 but not in V2 influence the registration 

results. None of the new follicles appear in V2. This 

simulates disappearance of follicles due to their 

maturation cycle and, at the same time, the errors of not 

detected follicles due to a bad segmentation. The number 

of removed follicles was random but limited to 3. Our 

automated registration case generator created a testing 

set in which we have 26 pairs of volumes with no 

follicles removed from V2, 28 pairs with 1 follicle 

removed, 31 pairs with 2 follicles removed, and 15 pairs 

with 3 follicles removed. In Fig. 5, the results for all 100 

pair of volumes are depicted. The average ratio ρk is 0.82 

(std. 0.14), average ratio ρf is 0.72 (std. 0.13) and 

average ratio ρi is 0.78 (std 0.14). The average angle Θ 

between known and calculated rotation is 3.31 (std 1.39) 

degrees and average distance d between known and 

calculated translation is 5.60 (std 2.97) voxels. 

     The results prove our registration algorithm performs 

successfully even with missing follicles, since all test 

cases were correctly registered. 

 

 

4.2.4 New and missing follicles 

In the fourth experiment we tested how algorithm’s 

performs when some new follicles appear in the second 

volume and some of follicles are also removed. The 

number of additional follicles was random but limited to 

3. Our automated registration case generator created a 

testing set in which we have 18 pairs of volumes with no 

follicles added, 37 pairs with 1 follicle added, 29 pairs 

with 2 follicles added, and 16 pairs with 3 follicles added 

to V2. Similarly, the number of removed follicles was 

random and limited to 3. Our generator created a test set 

in which we have 15 pairs of volumes with no follicles 

removed from V2, 38 pairs with 1 follicle removed, 31 

pairs with 2 follicles removed, and 16 pairs with 3 

follicles removed. In Fig. 6, the results for all 100 pair of 

volumes are depicted. The average ratio ρk is 0.83 (std. 

0.13), average ratio ρf is 0.72 (std. 0.13) and average 

ratio ρi is 0.78 (std 0.14). The average angle Θ between 

known and calculated rotation is 8.04 (std 26.86) degrees 

and average distance d between known and calculated 

translation is 12.86 (std 37.70) voxels. 

     Fig. 6 shows that our registration algorithm was 

unsuccessful in 3 cases out of 100. Only one additional 

follicle was added to V2 in all three particular cases. At 

the same time, 3 follicles were removed in two cases and 

1 follicle in one case. 

 

 

4.2.5 Displacement of follicles 

In this experiment we tested how well our algorithm 

performs, when follicles move in the tissue. In order to 

do so, we randomly moved the centres of follicles in V2 

for at most 10 voxels in each coordinate axis (maximal 

Euclidan distance of two such centres is therefore 17 

voxels). In Fig. 7, the results for all 100 pair of volumes 

are depicted. The average ratio ρk is 0.63 (std. 0.05), 

average ratio ρf is 0.65 (std. 0.08) and average ratio ρi is 

0.70 (std 0.07). The average angle Θ between known and 

calculated rotation is 9.00 (std 19.65) degrees and 

average distance d between known and calculated 

translation is 15.70 (std 25.49) voxels. 

     From the Fig. 7 it is clear that our registration 

algorithm was successful in registering 99 pairs of 

volumes, but was unsuccessful in one case. The average 

displacement of follicle in that particular case was 9.43 
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voxels (std. 2.12). However it is interesting that average 

ratio ρi is greater than ρk. 

 

 

4.2.6 Rotation of follicles 

To further test the displacement we tested how local 

rotation of follicles influences the results. Each ellipsoid 

in V2 was randomly rotated in a range from -15 to 15 

degrees in each Euler’s angle. In Fig. 8, the results for all 

100 pair of volumes are depicted. The average ratio ρk is 

0.96 (std. 0.01), average ratio ρf is 0.82 (std. 0.09) and 

average ratio ρi is 0.92 (std 0.04). The average angle Θ 

between known and calculated rotation is 4.37 (std 

17.68) degrees and average distance d between known 

and calculated translation is 5.86 (std 12.96) voxels. 

     From the Fig. 8 it is clear that our registration 

algorithm was unsuccessful in only one case out of 100. 

 

 

4.2.7 Follicles growth 

In this experiment we tested how the growth and decline 

of follicles influence the results of our registration 

algorithm. Therefore the radii a, b, c of the ellipsoids in 

V2 were individually and randomly changed by 20 %. In 

Fig. 9, the results for all 100 pair of volumes are 

depicted. The average ratio ρk is 0.92 (std. 0.03), average 

ratio ρf is 0.68 (std. 0.18) and average ratio ρi is 0.82 (std 

0.18). The average angle Θ between known and 

calculated rotation is 25.11 (std 54.85) degrees and 

average distance d between known and calculated 

translation is 33.84 (std 68.37) voxels. 

     From the Fig. 9 and calculated results it is clear that 

our registration algorithm performance is very poor 

when this type of noise is present. This can be explained 

by the fact that the change of the follicle size express in 

the change of the distance from frequency 0 in frequency 

domain.  

 

 

4.2.8 All test cases combined 

Finally, we combined all types of noise used in previous 

experiments. The number of additional and removed 

follicles in V2 was random but limited to 3. The centres 

of follicles in V2 were moved for at most 10 voxels in 

each coordinate axis. Each ellipsoid in V2 was randomly 

rotated in a range from -15 to 15 degrees and its size was 

randomly changed by 20 %. The results are depicted in 

Fig. 10. The average ratio ρk is 0.59 (std. 0.08), average 

ratio ρf is 0.44 (std. 0.10) and average ratio ρi is 0.51 (std 

0.11). The average angle Θ between known and 

calculated rotation is 58.18 (std 66.05) degrees and 

average distance d between known and calculated 

translation is 84.17 (std 84.98) voxels. 

     Fig. 10 and calculated results show that our 

registration algorithm performance is poor, however 

from the previous experiments we can conclude that 

most of the errors originate form the problem of follicle 

growth. 

 

 

 

4.3 Discussion 
The results of the proposed registration method are in 

most cases comparable with the computations where the 

registration is based on known transformation 

parameters used for the simulation models creation. 

However, the experiments showed that our procedure 

has significant problems with the cases where the size of 

follicles changes. The results also show that the 

implementation of ICP improves the algorithm’s 

performance, in particular its accuracy. This  

improvement was expected, since spherical cross-

correlation is computed just for a limited, finite set of 

possible rotations. 

 

 

5 Conclusions 
We proposed and tested a novel algorithm for rigid 

registration of binary volumes in frequency domain. The 

most important part is the calculation of rotational 

parameters using the amplitude spectrum. 

     Translation was determined by spherical correlation. 

We applied an algorithm that calculates spherical cross- 

correlation by transforming spheres into the SO(3) 

frequency domain. We believe that the obtained results 

would be different if spherical cross-correlation were 

calculated by a different technique. Corresponding tests 

will be performed in the future.  

     We showed that the results are usually stable also in 

the noisy environment (non-rigid changes) where 

registered volumes are not entirely equal. We showed 

empirically that the biggest challenge to the registration 

algorithm is the change of the follicle size. Most 

probably this drawback must be attributed to the way we 

threat particular frequencies separately when calculating 

the rotations, therefore multiple frequencies should be 

observed simultaneously in the future.  
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Figure 3: Registration accuracy in the ideal case: ρk denotes the results obtained by the same transformation 

parameters as used in the model creation, ρf denotes the results obtained just by using spherical correlation, 

without the last step that utilizes ICP; ρi denotes the final result after all steps of our registration algorithm (a). 

Angle Θ between known and calculated rotation (b). Distance d between known and calculated translation (c). 

Figure 4: Registration accuracy in the case of appearing follicles: ρk denotes the results obtained by the same 

transformation parameters as used in the model creation, ρf denotes the results obtained just by using spherical 

correlation, without the last step that utilizes ICP; ρi denotes the final result after all steps of our registration 

algorithm (a). Angle Θ between known and calculated rotation (b). Distance d between known and calculated 

translation (c). 
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Figure 5: Registration accuracy for 100 volume pairs in the case of dissapearing follicles: ρk denotes the results 

obtained by the same transformation parameters as used in the model creation, ρf denotes the results obtained 

just by using spherical correlation, without the last step that utilizes ICP; ρi denotes the final result after all steps 

of our registration algorithm (a). Angle Θ between known and calculated rotation (b). Distance d between known 

and calculated translation (c). 

Figure 6: Registration accuracy for 100 volume pairs in the case of appearing and dissapearing follicles: ρk 

denotes the results obtained by the same transformation parameters as used in the model creation, ρf denotes the 

results obtained just by using spherical correlation, without the last step that utilizes ICP; ρi denotes the final 

result after all steps of our registration algorithm (a). Angle Θ between known and calculated rotation (b). 

Distance d between known and calculated translation (c). 
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Figure 7: Registration accuracy for 100 volume pairs in the case of follicle displacement: ρk denotes the results 

obtained by the same transformation parameters as used in the model creation, ρf denotes the results obtained 

just by using spherical correlation, without the last step that utilizes ICP; ρi denotes the final result after all steps 

of our registration algorithm (a). Angle Θ between known and calculated rotation (b). Distance d between known 

and calculated translation (c). 

Figure 8: Registration accuracy for 100 volume pairs in the case of follicle rotation: ρk denotes the results 

obtained by the same transformation parameters as used in the model creation, ρf denotes the results obtained 

just by using spherical correlation, without the last step that utilizes ICP; ρi denotes the final result after all steps 

of our registration algorithm (a). Angle Θ between known and calculated rotation (b). Distance d between known 

and calculated translation (c). 
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Figure 9: Registration accuracy for 100 volume pairs in the case of follicle growth: ρk denotes the results 

obtained by the same transformation parameters as used in the model creation, ρf denotes the results obtained 

just by using spherical correlation, without the last step that utilizes ICP; ρi denotes the final result after all steps 

of our registration algorithm (a). Angle Θ between known and calculated rotation (b). Distance d between known 

and calculated translation (c). 

Figure 10: Registration accuracy for 100 volume pairs when all non-rigid changes apply: ρk denotes the results 

obtained by the same transformation parameters as used in the model creation, ρf denotes the results obtained 

just by using spherical correlation, without the last step that utilizes ICP; ρi denotes the final result after all steps 

of our registration algorithm (a). Angle Θ between known and calculated rotation (b). Distance d between known 

and calculated translation (c). 
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