
The Use of Domain Ontologies for the Virtual Scenes Management

CRENGUTA BOGDAN DORIN MIRCEA POPOVICI
Faculty of Mathematics and Computer Science

Ovidius University
124 Mamaia Blvd., Constanta, 900527

ROMANIA
 cbogdan@univ-ovidius.ro dmpopovici@univ-ovidius.ro www.cerva.ro

Abstract: - In this paper, an object-oriented software system for the management of virtual scenes is presented. This system,
called OntSceneBuilder, uses a domain ontology in order to obtain at least three benefits: accuracy, ease of content reuse and
management of virtual scenes. The accuracy is ensured by default, since any ontology provides a precise specification of the
concepts and their relations of a domain. Each concept is associated with 2D and 3D resources and a virtual artifact. The graph
of the virtual artifacts forms a virtual scene of a virtual exposition. The paper also presents some models of the system
development process, mainly realized during the analysis and design activities. Our aim was to analyze the OntSceneBuilder
from the functional and interactional viewpoints and to create its software use case diagram. Furthermore, each software use
case was designed from the structural and dynamical viewpoints. At the same time we also constructed the system software
architecture. Some classes of the software architecture manage the concepts of the domain ontology associated with the topic
chosen by user. The system has been experimented in the realization of virtual scenes of a virtual historic exposition.

Key-Words: - Virtual scene, domain ontology, concept, virtual artifact, software analysis, software architecture, virtual historic
exposition

1 Introduction
The present study introduces the OntSceneBuilder software
system, the models obtained during its developing process,
and it concentrates on the analysis and the design of the
system. OntSceneBuilder is an intensive object-oriented
software system that uses a domain ontology to construct
virtual scenes with the help of the user.

For users, the benefits of using a domain ontology are at
least three: accuracy, ease of content reuse and management
of virtual scenes. The accuracy is ensured by default, since a
domain ontology is a precise and formal specification of the
knowledge of the domain. The specification contains the
concepts and their relations which the user can use to
construct the virtual scenes and manage their content. The
ontology also acts as a compulsion factor in the process of
the scenes content management. For example, the user cannot
choose the Color concept if he/she did not add to the scene
the concept by which the first concept depends on.

OntSceneBuilder can be used with any domain ontology.
We tested the system functioning using the ontology of the
Roman artifacts found in the Tomis fortress [1]. The
ontology is based on the top-level ontology DOLCE [2] and
its modules, such as D&S [3], Temporal Relations and so on.

The main objective was the creation of the virtual scenes
of a virtual exposition of the Tomis fortress. The virtual
exposition shows virtual artifacts of the Roman exhibits
found at the National History and Archaeology Museum of
Constanta, Romania. The exhibits have been ontologically
classified in categories such as objects, constructions,

decorative elements, clothing parts and their accessories,
activities, and so on.

And least but not last, OntSceneBuilder permits the
virtual reality (VR) expert to easily manage content of a
virtual scene using interactive graphical interfaces. The user
can also move the virtual artifacts of a scene through drag-
and-drop actions. Therefore, the VR expert can construct
his/her scenes without having to be an ontology or domain
expert.

The paper is organized as follows: sections 2 and 3
present some of the models created during the analysis and
design of the OntSceneBuilder system. The models have
been created using a standard language called the Unified
Modeling Language (UML). This language allows the
creation either of the graphic models of the information or of
the software system [4]. Section 4 focuses on the
implementation and testing aspects. Section 5 covers related
work. Finally, section 6 concludes and presents our future
work plans.

2 Software Analysis
The objective of the OntSceneBuilder is to provide an easy-
to-use content management tool that allows users to add,
edit, view and save virtual scenes.

2.1 Software actors
A software actor is a role ''played'' by one or more
individuals (person, team, or organization) or even another

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 868 Issue 8, Volume 9, August 2010

software application in its interactions with our system. The
role is characterized by a set of properties and actions which
each individual in this role can exhibit or ''play'' in the given
context [5].

In the case of the OntSceneBuilder application, we
identified two software actors: user and time.

The user interacts with the system for that the later to
provide the following functionalities: a) it creates a scene
based on the concepts of the domain ontology used by the
system; b) it modifies a saved scene, by changing the
artifacts properties, or the concepts resources used or deleting
virtual artifacts from scene. Modification of the topological
properties of the virtual artifacts can also be made from the
3D environment. By default, when a user asks for removing
of a virtual artifact, the associated resource and concept are
removed by the system from the used lists and the virtual
artifact from the scene. However, the system does not delete
on the disk the resource associated to the virtual artifact and
the concept from the domain ontology by which belongs to;
c) it shows and saves an opened scene.

Another software actor of our application is time, since at
each five minutes the system saves the current scene.

2.2 Software use case diagram
The software use case diagram belongs to the functional
model created during the object-oriented analysis activity of
a software system. Besides the software use case diagram, a
functional model contains the application requirements, the
description of the software use cases and their activity
diagrams [5].

The software use case diagram is formed by the software
actors and uses cases and their relations. For example, the
OntSceneBuilder application has the software use case
diagram presented in Fig. 1.

Each use case was informally described using a structured
text-based template. For example, the description of the
“Create scene” and “Save scene as XML file” use cases is
presented in Table 1.

Table 1: The informal structured description of the “Create
scene” use case

Name Create scene
Software actor User
Trigger event User asks to create a scene.
Preconditions The system has to function.
Postconditions The system has shown the created scene
Main flow:
User System
1. He/she asks to

create a scene. 2. Displays a list of topics.

3. Chooses a topic 4. Shows the list of concepts that

belong to chosen topic.
5. Chooses a

concept that is
used by scene1

6. Displays a frame that contains
the tree structure of the files
system of the current computer.

7. Chooses the
resource
associated to the
concept selected
previously.

8. Registers the choice.
9. Shows the resource.
10. Requires user to enter values of

the geometry properties: location,
orientation and scale of the
virtual artifact associated with the
resource selected previously.

11. Provides values
demanded

12. Registers the property values of
the virtual artifact.

13. Requires the
scene
construction

14. Creates a scene by composing
virtual artifacts.

15. Shows the scene.

Name Save scene as XML file
Software actor User
Trigger Event User asks to save a scene.
Preconditions The system has showed a scene.
Postconditions The system has saved the scene.
Main flow:
User System

1. He/she asks to
save a scene.

2. Displays a frame that contains
the tree structure of the files
system of the current computer.

3. Chooses a new
path and/or a new
name of the scene
[A1].

4. Saves the scene.

 5. Deletes the previous saving.
Alternative flow:
[A1] There is a file with the same name at the current
path:

1. The system shows an attention message
2. The system replaces the old file with the new one.

1 The steps 5-11 repeat for each concept that is

graphically represented by a virtual artifact in scene.

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 869 Issue 8, Volume 9, August 2010

Fig. 1: The use case diagram of the

OntSceneBuilder system

3 Software Design
The object-oriented analysis has focused on learning to ''do
the right thing''; that is, the understanding some of the goals
for the OntSceneBuilder application, and related rules and
constraints. By contrast, the design work will stress ''do the
thing right'' [5]; that is, skillfully designing a solution to
satisfy the system objective. The heart of this solution is
creation of the system software architecture.

3.1 Software architecture
The software architecture of the OntSceneBuilder system has
been done in two steps. The first step consisted of the
construction of the application architecture that is a layered
architecture that partitions the application into three layers
(Fig. 2):

- the presentation layer is formed by GUI components
which are shown to users as frames;

- the logic layer contains components independent by
the ontology used and fulfill the most part of the
system functionalities depicted in Fig. 1, and

- the persistence management layer contains
components consisted of the manager classes which
are described in detail in the next subsection. Briefly,
these classes deal with the resources (ontology and
2D/3D files) used by system.

The relations between layers are dependencies between
classes of a layer to the next lower layer. We have also
dependency relations between the presentation and logic
layers of our system and the ARéViJava toolkit used (see the
next section).

Fig. 2: The layered application architecture of the
OntSceneBuilder system

In the second step, we continued the design of the software

architecture detailing the application architecture (Fig. 2)
following the software use cases and applying the Model-
View-Controller (MVC) architectural pattern [6].

According to this pattern, the objects are classified in three
categories: models, views, and controllers. The classification
criterion is given by the responsibilities of the objects from
each category. The view objects are objects with which user
stakeholders interact directly, such as frames, forms, panels,
and so on. The view objects form a part of the presentation
layer of the application architecture of our system (Fig. 2).

The model objects eventually contain persistent
information managed by system. Many such objects come
from the business objects of the domain model of the
information system where the software system will operate.
In our case, the domain model was substituted by the domain
ontology used. This is why, we introduced the Concept and
Ontology classes into the software architecture.

Another kind of model objects is constituted by the
composite objects. These contain model objects created at the

Presentation

Logic

Persistence
Management

A domain
ontology

2D and 3D resources

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 870 Issue 8, Volume 9, August 2010

beginning or during the system execution. The idea is that if
there are many objects of the same class and they have to be
used during the system execution, we temporarily put them in
a composite object that is linked using aggregation by the
object parts. In addition, a composite object has the
responsibilities to create and change the states of objects it
contains. In this way, we also fulfill the Creator pattern [7].

Furthermore, the controller objects might send requests to
the composite object that solves them. These objects are
useful especially when they have to be unique during the
system execution. In these cases, we apply the Singleton
pattern [6] to the composite objects. For instance, the
ConceptsList class contains a collection of objects of the
Concept class. We observe in Fig. 3 the ConceptsList class
fulfils the Singleton pattern containing three elements:

- a single and private constructor (the operation
create());

- a private and static variable named instance of the
type ConceptsList, i.e. the class which belongs, and

- a public and static operation called getInstance() that
returns (using the variable instance) a reference to
the unique object of the ConceptsList class.

There are also other classes that fulfill the Singleton pattern
such as Ontology and TopicsList (Fig. 3).

The last category of the model objects is constituted by
manager objects. These objects have the responsibility to
manage the operations with the ontology or files. The
manager objects deal with loading and saving the individuals
from/in ontology.

Finally, the controller objects have the responsibility to
manage the logical flow and the events produced by users in
their interactions with view objects. For instance, the part of
the software architecture that contains the design classes used
in the “Create scene” use case execution is shown in Fig. 3.

In order to obtain a quality and modular software
architecture we applied the design principles of low coupling,
high cohesion, and assignment of responsibilities. These
principles are fulfilled if we use the general responsibilities
assignment patterns (shortly, GRASP) like Information
Expert, Creator, Low Coupling, High Cohesion, Controller,
and Polymorphism [7].

The behavioral aspect of the software architecture is shown
by sequence diagrams. They present the interactions between
the user and system in terms of objects and messages sent
between them. For example, Fig. 4 and Fig. 5 depict the
sequence diagrams of the “Create scene” and “Save scene as
XML file” software use cases.

Most of the messages are synchronous, such as those from
Fig. 4, but also there are asynchronous messages, such as
some messages of the sequence diagram of the
“Automatically save scene” use case.

Moreover, OntSceneBuilder integrates a distributed virtual
reality toolkit called the ARéViJava [8] (Fig. 6(b)). For
example, the ARéViJava and ControlPanel classes of Fig. 3
are part of the ARéViJava toolkit. The first class is a

graphical user interface that contains a 3D canvas used to
render the virtual scene. The second one permits users to load
inside the virtual scene objects and dynamically attach to
them specific behaviors.

In essence, ARéViJava is a Java3D based open-source API,
used for rendering of the dynamic scene, that is adaptive to
different configurations, ranging from desktops to 3D
stereoscopic immersion systems and integrating a wide sort
of interaction devices from mouse and joystick to space-
mouse and WiiMote. It implements a reactive agent-based
architecture that permits us to build immersive and
interactive virtual spaces as were defined in [9].

4 Implementation
For the implementation of the OntSceneBuilder system, we
used the Java programming language (Java Developing Kit
1.6 version).

The ontology was written using the languages Web
Ontology Language (OWL) and Semantic Web Rule
Language (SWRL) with the assistance of the Protégé tool
[10] (version 3.4).

To work with our ontology, we used the Protégé-OWL
API. Nevertheless, other object oriented software libraries for
the management of OWL ontologies could be used, such as
O3L [11, 12], which derives from OWLET [13], an object-
oriented environment that maps an OWL ontology into a
Java representation.

The Protégé-OWL API is an open-source Java library for
OWL and RDF [14]. For example, the concepts tree of Fig.
6(a) shows a part of the ontology taxonomy that contains the
concepts that belong to the domain ontology, but do not to
the imported ontologies, such as DOLCE and D&S. Using
the Protégé-OWL API we read all the RDFS/OWL classes of
the ontology and filtered them taking only the concepts and
their superclasses by which we need them.

Moreover, due to the ARéViJava framework facilities, once
the virtual scene is created, the user may adopt different
navigation and/or interaction metaphors (e.g. hover, drive,
fly, orbit, spacemouse in Fig. 6(b)) in order to obtain better
views of the virtual environment and to adjust its topology by
means of direct 3D interaction on the virtual artifacts.

The system functioning has been tested to construct virtual
scenes of a virtual historic exposition. In this case, the
museum custodian “plays” the role of user in our system.
With the assistance of the system, the custodian creates
his/her own virtual scenes of a historic exposition based on a
domain ontology and 2D/3D files incorporated in system
(Fig. 6(c)).

5 Related Work
The Intelligent 3D Visualization Platform - I3DVP [15] is a
framework for the enhancing virtual scenes with semantic

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 871 Issue 8, Volume 9, August 2010

information and for performing reasoning by inference on
content and the semantics of the scenes. The framework uses
two kinds of OWL ontologies: a graphic ontology (called
OntologyX3D) which describes graphics and virtual reality
concepts of 3D models and their animation and is based on
VRML and X3D standard; and domain ontologies. The used
domain ontology is mapped to OntologyX3D through 15
relationships described by the classes of another intermediate
ontology. The virtual scenes created by I3DVP are organized
as graphs of OWL individuals (i.e. instances of OWL
classes) of the OntologyX3D. Instead, in our system, a scene
is organized as a graph of virtual artifacts, where each virtual
artifact is associated with a 3D resource which in turn is
related to a concept from the domain ontology used.
Moreover, I3DVP permits users to construct and manipulate
virtual scene through sets of rules that allow inference-based
decision making [15].

The HANNAH framework [16] is based on an ontology
converted to a database to generate visual graph
representations of 3D layouts. The OntSceneBuilder does not
use a database, but files to store ontologies, the topics list,
and so on.

The MUG application [17] allows users to author the
structural, behavioural and functional knowledge about a
design in a 3D virtual environment of CAD system.
Knowledge is described by ontologies written in DAML
language [18]. The ontologies are used for synchronous
communication and interaction of designers, annotation and
saving designs in DAML files. The application is useful for
the collaborative creation of conceptual designs for devices.

6 Conclusions and Future Work
This paper presented the OntSceneBuilder system and a part
of its development process. The system uses a domain
ontology to construct the virtual scenes of a virtual
exposition. Therefore, the system software architecture
contains classes which manage the domain ontology chosen
by a user. The quality of the software architecture is ensured
by the MVC architectural pattern and the design patterns
applied: Information Expert, Creator, Low Coupling, High
Cohesion and so on.

Our work to improve the current OntSceneBuilder system
will include reasoning for modifying of the scenes. For the
time being, OntSceneBuilder allows users to modify values
of the virtual artifacts properties and the resources of the
related concepts.

OntSceneBuilder also uses single domain ontology, but we
will take into account the problem that the designer chooses
to use two or many domain ontologies. In this case, we will
need a mapping of the imported ontologies. There already are
some methods to realize this mapping, such as that proposed
in [19]. The method uses the information flow theory to
make a semantically relation between two ontologies using a

family of infomorphisms between concepts and their
instances.

Further work will also consider the ontological description
of the processes, activities, and agent states that will be
incorporated into the virtual scenes as ARéViJava behavior
objects.

Acknowledgements
This work is partially funded within the ''Using virtual reality
in 3D Multi-modal reconstruction of historical sites''
(TOMIS) project, no: 11-041/2007, by the National Centre of
Programs Management, PNCDI-2 – Partnerships program.

References:
[1] C. Bogdan, Domain Ontology of the Roman Artifacts

found in the Tomis Fortress, Knowledge Engineering.
Principles and Techniques. Selected Papers, editors
Militon Frenţiu and Horia F. Pop, Presa Universitara
Clujeană, Romania, 2009, pp. 117-123.

[2] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A.
Oltramari, WonderWeb Deliverable D18. Ontology
Library. IST Project 2001-33052 WonderWeb: Ontology
Infrastructure for the Semantic Web, 2003

[3] A. Gangemi, P. Mika, Understanding the Semantic Web
through Descriptions and Situations, Proceedings of the
International Conference ODBASE03, Italy, Springer,
2003, pp. 689-706.

[4] OMG, Unified Modelling Language Superstructure,
version 2.0, ptc/03-0802, 2003

[5] R. S. Pressman, Software Engineering. A Practitioner's
Approach, McGraw-Hill Publishing Company, 2000

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley Professional, 1994

[7] C. Larman, Applying UML and Patterns. An Introduction
to Object-Oriented Analysis and Design and the Unified
Process, Prentice Hall, 2004

[8] P. Reignier, F. Harrouet, S. Morvan, J. Tisseau, T. Duval,
ARéVi: A Virtual Reality Multiagent Platform, Lectures
Notes in Computer Science, Vol. 1434, 1998,
http://www.cerv.fr/fr/activites/AReVi.php, accessed 10
september 2009

[9] D. M. Popovici, L. D. Serbanati, F. Harrouet, The
Virtual Environment-Another Approach. Proceedings of
the 11-th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision
2003 in cooperation with Eurographics (WSCG’2003),
Plzen, Czech Republic, 2003, pp. 109-112.

[10] J. Gennari, M. Musen, R. Fergerson, W. Grosso, M.
Crubzy, H. Eriksson, N. Noy, S. Tu, The evolution of
Protégé-2000: An environment for knowledge-based
systems development, International Journal of Human-
Computer Studies, 58(1), 2003, pp. 89-123.

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 872 Issue 8, Volume 9, August 2010

[11] Poggi, A., O3L: An OWL Object-Oriented Library for
the Realization of Ontology Based Applications. In Proc.
of the 13th WSEAS International Conference on
COMPUTERS, pp. 340-345, Rhodes, Greece, 2009

[12] Poggi, A., Developing Ontology Based Applications
with O3L, WSEAS Transactions on Computers, 8(8):
1286-1295, 2009

[13] Poggi, A., OWLET: An Object-Oriented Environment
for OWL Ontology Management. In Proc. of the 11th
WSEAS International Conference on COMPUTERS, pp.
44-49, Agios Nikolaos, Greece, 2007.

[14] Protégé-OWL API, link:
http://protege.stanford.edu/plugins/owl/api/, accessed 4

september 2009
[15] E. Kalogerakis, S. Christodoulakis, N. Moumoutzis,

Coupling Ontologies with Graphics Content for
Knowledge Driven Visualization, Proceedings of the

IEEE Virtual Reality Conference (VR’06), 2006, pp. 43-
50.

[16] K. Einsfeld, A. Achim Ebert, J. Wölle, Modified Virtual
Reality for Intuitive Semantic Information Visualization,
Proceedings of the 12th International Conference
Information Visualization, 2008, pp. 515-520.

[17] D. C. Cera, W. C. Regli, I. Braude, Y. Shapirstein, C.
V. Foster, A Collaborative 3D Environment for
Authoring Design Semantics, Drexel University
Technical Report DU-MCS-01-06, 2001, pp. 1-16.

[18] DAML Language,
http://www.daml.org/language/, accessed 8 december 2009
[19] H. Liu, H. Bao, J. Feng, Instance Assisted Ontology

Alignment for Digital Museums, Proceedings of the 7th
WSEAS International Conference on Simulation,
Modelling and Optimization, Biejing, China, 2007, pp.
79-84.

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 873 Issue 8, Volume 9, August 2010

Fig. 3 : The design class diagram of the “Create scene” software use case

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 874 Issue 8, Volume 9, August 2010

Fi

g.
 4

: T
he

 s
eq

ue
nc

e
di

ag
ra

m
 o

f t
he

 “
C

re
at

e
sc

en
e”

 u
se

 c
as

e

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 875 Issue 8, Volume 9, August 2010

Fi

g.
 5

: T
he

 s
eq

ue
nc

e
di

ag
ra

m
 o

f t
he

 “
Sa

ve
 sc

en
e

as
 X

M
L

fil
e”

 u
se

 c
as

e

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 876 Issue 8, Volume 9, August 2010

(a
) T

he
 c

ho
ic

e
of

 c
on

ce
pt

s f
ro

m
 th

e
on

to
lo

gy

ta
xo

no
m

y
an

d
di

sp
la

yi
ng

 th
ei

r 2
D

 re
so

ur
ce

s

(c
) D

is
pl

ay
in

g
of

 a
 v

irt
ua

l s
ce

ne

(b
) T

he
 N

av
ig

at
io

n
ta

bb
ed

 p
an

e
of

 th
e

C
on

tro
lP

an
el

 fr
am

e
of

 th
e

A
Ré

V
iJ

av
a

to
ol

ki
t

Fi
g.

 6
: O

nt
Sc

en
eB

ui
ld

er
 sy

st
em

 e
xe

cu
tio

n

WSEAS TRANSACTIONS on COMPUTERS Crenguta Bogdan, Dorin Mircea Popovici

ISSN: 1109-2750 877 Issue 8, Volume 9, August 2010

