
Alternative A(H1N1) Suspects Management

DAN ADRIAN MARIOR, RADU ZGLIMBEA, CONSTANTIN CÂRCIUMARU
Department of Automation and Department of Computer Science

University of Craiova
B-dul Decebal, nr. 107, 200440, Craiova

ROMANIA
marior@automation.ucv.ro http://www.ace.ucv.ro

radu@automation.ucv.ro http://www.ace.ucv.ro
ccircium@ford.com http://www.ford.com

Abstract: This paper deals with the differential diagnostics process behind the verdict of AH1N1 infection or
not for the swine flu suspects. The application was designed as a support for doctors was built with ASP.NET
3.5 technology, the broad spectrum development platform, and it enabled us to create a web application that
could be accessible from anywhere on the internet, assist the doctor in the diagnostics process, filter out false
positives, manage the patients, and also generate sets of statistical charts for case evolution analysis.

Key-Words: A(H1N1), application, diagnostic, management, charts

1 Introduction
During the past year we have seen an outbreak of
swine flu in many countries of the world, and in
Romania those who are suspected of the disease can
put their hope for reliable diagnostic and treatment
in the hands of the capable doctors from the “Matei
Balş Infectious Diseases Institute” in Bucharest.
 Transmission of the swine origin influenza virus
is thought to occur in the same way as seasonal
influenza. Human-to-human transmission occurs by
inhalation of large infectious droplets as well as by
direct contact with secretions or aerosols. At present,
there is no evidence of spread of infection by eating
pork, or through water, thus the psychological effect
is greater than reality and the name of the disease is
not so accurate [1].
 In Romania the pandemic psychological impact
effect has been quite large, and family doctors could
not efficiently manage it, so it was and still is up to
the “Matei Balş Infectious Diseases Institute” to
impose appropriate measures and reliably diagnose
and keep statistics of the persons suspected of
contracting the virus. The false positives (those who
contracted the common influenza or some other
infection) are very hard to detect and filter out, as
the symptoms are similar (fever, chills, nausea,
vomiting, body aches, lethargy, and fatigue, which
usually appear in rapid succession). As it has already
been noted from practice, the new flu can lead to
death by respiratory failure and other causes like
sepsis.

2 Problem Formulation

The doctors entrusted with the diagnostics and
treatment of AH1N1 influenza in Bucharest are
overwhelmed with the number of pacients accusing
the symptoms mentioned earlier in the paper, thus an
application that can help the doctors organize, filter
out the unnecessary and drawing statistical and
management conclusions would be most helpful.
 Management is in general a complex problem,
but in this situation, given the fact that it was a
national health problem, the application would have
to be fairly reliable, easy to use, highly available and
dependable, the requirements of all critical
applications.
 Security measures had to be imposed by design,
as no other person besides the doctors and the
administrator of the application should have the
right to access the resources the application was
supposed to store and process. Programmatically,
this can be done by specific permissions on files and
folders, or user based access, without restrictions of
the operating system the application runs on. Further
in the paper we indicate how these security
measures were imposed in this case.

3 Problem Solution
The ASP.NET 3.5 platform was chosen in order to
offer a solution to the inherent problem, being the
most appropriate for the facilities it offers, such as
independence from hardware architecture (the
application runs in a browser on the client machine,
this being the only compulsory requirement to run

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 812 Issue 8, Volume 9, August 2010

it), very good database connectivity (Active Data
Objects, ADO.NET), membership and role
management, personalization, site navigation,
themes, master pages and other advantages; a
positive aspect of implementing such a solution is
that the application can be accessed via a browser
from anywhere in the world, through the Internet,
and if security measures are correctly imposed, the
great advantage over the alternative solutions is
clear.[2]
 Other positive aspects of the ASP.NET choice
are: reduced amount of necessary code for writing
large applications, Windows built in security and
per-application configuration (making applications
safer and more secure), better performance due to
early binding, just-in-time compilation, native
optimization, and cacheing services, language
independence, simplicity, pure server side
technology, process monitoring and others.
 The architecture for the application was naturally
chosen to be client/server. Client/server
architectures divide applications into two or more
components. The client portion uses the functions of
the server; in most cases, separate hardware systems
are used for clients and servers. “The distribution of
the application load across several computers linked
in a network keeps the individual units relatively
favourable” [3].
 For reasons of scalability and optimal distribution
of computing resources, the three layer resources
distribution approach (business logic layer, database
layer and presentation layer) has prevailed as a
viable foundation for companies of all dimensions;
the former phrase is summarizing the revolution that
made central mainframe computing abilities
available to more organizations, no matter how
wealthy.
 Before going into details about the
implementation of the client/server architecture in
this case, we shall describe certain aspects of this
paradigm. The term client/server computing is used i
nvarious ways. At least two perspectives must be
distinguished to understand this term: the hardware-
oriented view and the software-oriented view. The
operating systems of the 1980’s (for example
Microsoft Net and Novell Netware) were an
implementation of the client/server paradigm. In
those days the idea of client/server computing was
thoroughly computer systems oriented, for example
LAN-connected desktops to specially designed
computers (file servers, print servers, etc.). From
this perspective general usage of this idea of
computing designates desktop systems as clients
conneted to specially designed servers. Restricting
the term client/server omputing to certain hardware

configurations is not appropriate, as this narrow
interpreteation limits the ability to take maximum
advantage of the benefits of this architecture.[2]
 When we consider it as a combined software and
hardware architecture, client server computing
reaches its full potential. The concept beneath it is
clarified if the modern programming languages
structure is considered. They draw the line between
main programs and procedures and/or functions.
 Subroutines provide certain services to the main
program. At runtime the main program calls
subroutines and waits for them to end execution
before it continues with its own steps in the flow.
These are named synchronous subroutine calls.
Subroutines themselves can call other subroutines
for certain tasks they need done.
 The principle subroutines use for calling is
expanded in the client/server approach to include
both programs that operate on different computers
and asynchronous calls. The caling program is
called the master or client, and the called program is
called the slave, or the server. In principle, the client
and server programs can be installed on a single
computer, or they can be installed on different
computers, linked by the corresponding
communication protocols. During these
asynchronous calls the program who calls does not
need to wait for the called program to end, but
continues immediately with the processing; this
manner of processing is applicable for systems
connected through a WAN (Wide Area Network)
when we cannot assume that the communication
links will be available without interruption. The
software-oriented view of client/server computing is
becoming increasingly important when we want to
sepparate between modern business application
software and monolithic mainframe computers. For
example COBOL which is widespread in the
mainframe domain has no implementation of block
structuring. In contrast, client/server applications, by
being modularized, are characterized by a
master/slave relationship betweeen the individual
software modules; typically there are modules for
graphical presentation, others for application
functions and others for data storage. Modern
business applications also run background services,
for example for background processing and message
exchange.
 When we consider it a software architecture,
client/server computing forms the “basis for
cooperative processing of entirely different software
conponents and can be implemented either
centralized or highly distributed, netowrked
installations with a multitude of different
servers”[2].

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 813 Issue 8, Volume 9, August 2010

 Client/server systems can be set up in various
forms, but there are mainly 5 configurations that
companies have used in time:

- Centralized system;
- Distributed presentation;
- Database access across computer

boundaries;
- Three layer client/server systems with

distributed presentation, distributed
application logic, and database access logic
across computer boundaries;

- Multilayer client/server systems with
cooperative processing.

When a centralized system configuration is
chosen, presentation logic, application logic and a
database management system are installed on the
same computer. [4]

In distributed presentation configurations, the
processing associated with the graphical display of
the user interface is shifted to sepparate presentation
computers close to the user. Application logic and
database storage run both on a central server.

În database access across computer boundaries
configurations we have separate servers for the
database and the DBMS (Database Management
System). Application logic and presentation are
running together on separate computers. There is a
lot of communication between the servers and it is
usually done by RemoteSQL.
 When we compare the client/server architectures
discussed so far, three layer systems offer clearly
improved flexibility in load distribution. Special
computers are implemented spearately for
presentation, application logic and DBMS, which
allows for a homogenous lload distribution on
individual servers with clearly improved response
times. Relatively inexpensive computers can be
implemented as application servers, since they do
not need graphical screens and have none or little
need for hard disk storage capacity. [5]
 The greatest flexibility is provided by multilayer
client/server systems with distribution of the
different application and system services on the
servers best suited for their assigned role.
Communication between the servers is based on
synchronous program to program communication,
asynchronous message exchange and Remote SQL.
 The variant of client/server architecture
implemented in the application is the first, with all
three servers aggregated in one machine, which
makes for a very cost effective sollution, in case a
more powerful computer is provided; there is no
need to specifiy minimal or optimal system
requirements because they are, from any given point

of view, above average. The average performance of
the three applications heavily dependends, in this
case, upon the hardware resources of the assigned
system so we can safely say the more powerful the
computer (the weaker the bottlenecks are) the better.
 In modern systems it seems hard disk drives are
becoming more and more of a bottleneck as they are
mostly mechanic components of an architecture. Of
course, many improvements have been made over
the last years and now it is appropriate to say that
high performance is no longer out of reach even for
the individual persons, to say nothing of companies
seeking to wisely invest in computers in order to
provide better services for customers, whether they
are patients or not.
 Given the fact that our application is from the
web category (by running it in the browser we
ensure at least for the application itself there is no
need for high end computers) the performance
requirements seem to be laid more upon the
database server (RAM memory and harddisk
transfer speed and latency) and less on the graphical
subsystem of the computer.
 We continue the paper with some data sets and
their corresponding results, from which a person
with the right statistical and management knowledge
could draw conclusions to optimize the activities.
 For the first dataset we have the results shown in
figures 2 and 3, with their corresponding input
dataset given in table 1, and for the others there is a
similar association.
 As for security only a few of the problems that
could arise have been addressed. For example by
enforcing usernames or passwords we made sure
none of the other members of the personnel except
doctors and the application administrator(s) have
acces to the database, which in these cases contains
highly sensitive and personal data. In this case, if an
attacker or person trying to gain access to the system
were to steal the information therein, a possible
scenario of consequent actions would be to find out
whether a person (public or not) has or does not
have A(H1N1) flu, which is not necessarily a
tragedy, but in the case of companies which store
customer credit card and also personal data losing
information could be devastating.
 Considering these issues in the future the
application could be made immune to cross-site
scripting (XSS) which is a common vulnerability
found in web servers and web applications alike.
Cross site scripting attacks can lead, by using a
specially crafted query string, to gaining database
access in a matter of seconds. Other commonly
exploited flaws are buffer overflows, cross site

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 814 Issue 8, Volume 9, August 2010

request forgering, directory traversal, Xpath injection, SQL injection and others.

Fig. 1 Main application page (after login)

Table 1 First dataset

Name Surname Age Sex Diagnostic Diag. date Conf. ?

Dan Ionescu 59 M AH1N1 01/12/2009 YES
Corina Danielescu 18 F Seas. flu 02/13/2009 NO
Ionel Danciulescu 31 M Healthy 02/14/2009 NO
Ionel Iorga 29 M Healthy 03/04/2009 NO
George Becali 56 F AH1N1 04/15/2009 YES
Ramona Theodorescu 34 F Pulm. Inf. 01/12/2009 NO
Radu Zglimbea 28 M Healthy 06/15/2009 N O
Marius Marian 30 M Healthy 06/16/2009 N O
Alina Matei 34 F AH1N1 07/17/2009 NO
Daniela Matei 27 F Healthy 08/17/2009 NO
Traian Basescu 100 M Sifilis 09/18/2009 NO
Emil Boc 90 M Sifilis 09/18/2009 NO
Elena Udrea 36 F Sifilis 10/19/2009 NO
Robert Fundeanu 40 M Healthy 12/20/2009 NO

Name Surname Age Sex Diagnostic Diag. date Conf. ?

Adrian Marior 28 M Healthy 08/09/2009 NO
Ion Ionescu 44 M Infection 05/23/2009 NO
Alin Teodorescu 34 M AH1N1 09/10/2009 YES
Ion Ceausescu 20 M Healthy 12/23/2009 NO
Crin Antonescu 45 M Seas. flu 04/30/2009 NO
Nina Iliescu 90 F AH1N1 09/20/2009 YES
Ramona Badescu 36 F Seas. flu 03/16/2009 NO
Ionel Teodoreanu 20 M Bact. inf. 09/28/2009 NO
Camelia Partescu 56 F AH1N1 08/30/2009 YES
Elena TincuŃ 67 F Seas. flu 07/07/2009 NO
Marius Cercel 44 M AH1N1 04/05/2009 NO
Andra Ionescu 50 F AH1N1 02/15/2009 NO

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 815 Issue 8, Volume 9, August 2010

Table 2 Second dataset

Name Surname Age Sex Diagnostic Diag. date Conf. ?

Tim Roth 46 M Healthy 01/03/2009 NO

Cicerone Pascu 13 M AH1N1 01/03/2009 YES
Romina Lascu 17 F AH1N1 01/05/2009 NO

Fane Spoitoru 50 M Pulm. inf. 02/06/2009 NO
Domnica Geangu 78 F Healthy 02/06/2009 NO

Ioana Teodoreanu 56 F Healthy 02/07/2009 NO
Florin Marin 45 M Healthy 03/07/2009 NO
Nicu Marinescu 24 M Healthy 03/08/2009 NO

Table 3 The 3
rd

 dataset

Name Surname Age Sex Diagnostic Diag. date Conf. ?

Cerasela Micu 34 F AH1N1 01/02/2009 YES
Daniela Micu 45 F Healthy 02/03/2009 NO
Lavinia Badulescu 19 F Urinary inf. 02/04/2009 NO
Bogdan Dragnea 56 M Healthy 03/02/2009 NO
Costin Miron 46 M Seas. flu 04/15/2009 NO
Cornel Naidin 70 M AH1N1 04/30/2009 NO
Alina Popescu 33 F Healthy 05/24/2009 NO
Florin Dracea 24 M Seas. flu 05/16/2009 NO
Maria Businescu 25 F Seas. flu 06/19/2009 NO
Corina Pentelescu 56 F AH1N1 06/09/2009 YES
Daniela Menchenie 34 F AH1N1 06/08/2009 YES
Raluca Sandulescu 50 F Seas. flu 07/07/2009 NO
Radu Matei 27 M AH1N1 07/28/2009 YES
Coralia Marcu 26 F Seas. flu 07/29/2009 NO
Gabriel Munteanu 28 M Seas. flu 07/30/2009 NO
Dorian Demetriu 40 M AH1N1 09/08/2009 YES
Despina Vandu 15 F Seas. flu 10/08/2009 NO
Virgil Miron 59 M AH1N1 11/08/2009 YES

Table 4. The 4
th

 and last dataset

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 816 Issue 8, Volume 9, August 2010

Fig. 2 Monthly evolution 1
st
 dataset

Fig. 3 Patient number evolution 1
st
 dataset

Fig. 4 Monthly evolution for 2
nd

 dataset

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 817 Issue 8, Volume 9, August 2010

Fig. 5 Patient number evolution for 2
nd

 datset

Fig. 6 Monthly evolution for the 3
rd

 dataset

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 818 Issue 8, Volume 9, August 2010

Fig.7 Patient number evolution for the 3
rd

 dataset

Fig 8. Monthly evolution for 4
th

 dataset

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 819 Issue 8, Volume 9, August 2010

Fig. 9 Patient number evoliution, 4 th dataset

Fig. 4 Differential diagnostics

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 820 Issue 8, Volume 9, August 2010

 The first page of the application as we
mentioned above is the login page, where the doctor
can insert his credentials and after being
authenticated (his access to resources is determined,
for example he can have administrative rights, or,
for the sake of the integrity of the data base, a
smaller amount of control could be assigned).
 The application was designed as user friendly as
possible, with explanations at every moment of the
execution. The next step for the doctor is to insert
the patients in the database with their presumed
diagnostic – it is worth noting that a diagnostic is
confirmed only after thorough clinical examination
and paraclinical examinations (HNN analysis,
which can point accurately to the virus strain,
whether it is A(H1N1) or another).
 A complex logic (business logic layer) to
determine, of course with the help of the doctor
(who decides on the need for certain laboratory
tests), whether the patient is suffering from
A(H1N1) flu or the case is a false positive (any
other condition). This is accomplished by
continuing to the page where the application
collects all the data from the patient (age, symptoms
in the beginning, actual manifestations, whether it is
an infection or not).
 The main advantage of the approach is that by
including the possibility for the doctor to correct
data inserted, the integrity and reliability of the data
are increased, not to mention obtaining a more
natural implementation.
 The main symptom which makes the doctor
consider a possible infection is fever. In the case of
the common flu, the fever is equal or greater than
390 C, while in the case of the A(H1N1) flu the
fever is between 37,50 C and 38,50 C. The
diagnostic algorithm considers also the case of the
common flu, as the symptoms are quite similar as
we have already mentioned and there is a need to
disseminate by further investigations the false
positives from the more threatening AH1N1
infections.
 In the cases when fever is at least 390 C the
doctor must ask the patient whether he/she has any
pain, in which case it might indicate a respiratory
virosis should other symptoms occur (such as chills,
altered state, watery nose secretions, sore throat,
etc.). When there is additional muscle or eye pain
we have a case of seasonal flu.
 More importantly, the case when the temperature
is in the interval mentioned before, is indicating the
need for a further investigation; should any of the
symptoms cough, discomfort, watery nose
secretions, or throat discomfort a HNN analysis is in
order (AH1N1 infection is highly possible).

 Returning to the main page of the application,
there are a few functionalities that need attention:
searching and chart generating. In order to perform
the search, the instructions in the header of the page
must be read; in the paper we presented charts
generated by the Zed Graphical library (.dll)
integrated with the application (figures 2 and 3).
The chart engine needs to have as input the period
on which it has to draw the charts, and the output is
the monthly view of the situation and also the
patient number statistics, in case the general
management needs such reporting. The Zed
Graphics library was chosen for its .Net platform
integration oriented design.

4.Conclusion
As we have seen from the paper, the vast .NET
platform (containing quite a lot of libraries from a
broad range of development areas) can be employed
even in the medical diagnostics process, in order to
aid the doctors decide upon the most accurate
possible verdict and decisions; the application can
be considered a decision support system, as it
makes the data collected about the patients
available at all times for the doctor to review the
decisions and eventually make corrections.

Acknowledgement
This work was supported (in part) by the grant no.
POSDRU/6/1.5/S/14b.

References:

[1] Sinha, Manish, Swine flu, Journal of Infection

and Public Health, Vol.2, No.X, 2009, pp.
157—166.

[2] Buck-Emden, Rudiger, Galimow, Jurgen, Sap

R/3 system. A clien/ server technology, Addison-
Wesley, 1996

[3] Ebada Sarhan, Atif Ghalwash, Mohamed
Khafagy, “Queue Weighting Load-Balancing

Technique for Database Repl. in Dynamic

Content Web Sites”, Proc. of the 8th WSEAS Int.
Conf. on Comput. Int., Man-Machine Sys. and
Cybernetics (CIMMACS '09)

[4] Hsaio-Fan Wang, Cheng-Ting Wu,” A Strategy-

Oriented Oper.Module for Recommender

Systems in E-Commerce”, Proc. of 9th WSEAS
Int. Conf. on Applied Inf. and Comm. (AIC '09)

[5] Akshai Aggarwal, Sujata Kanhere, Vishnu
Kanhere, Shankar Kanhere, “The 4

th
 Dimension

of Inf. System Audit and Security”, Int. Conf. on
Soft. Eng., Parallel and Distr. Systems (SEPADS
'09)

WSEAS TRANSACTIONS on COMPUTERS Dan Adrian Marior, Radu Zglimbea, Constantin Carciumaru

ISSN: 1109-2750 821 Issue 8, Volume 9, August 2010

