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Abstract: There has recently been a great deal of interest in search based test data generation, with many local
and global search algorithms being proposed. In this paper, the program operations, in the form of the program-
specific operations used to increase the performance in the generation of test data. The efficacy and performance
of the proposed testing approach is assessed and validated using a variety of sample programs, and the empirical
investigation is shown to give more than eightfold increase in performance.
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1 Introduction
Test data generation in white-box testing (source-code
based testing) is a process of finding program input
on which a selected element (e.g. a not yet covered
statement) is executed. Finding such input test data
manually can be very labour intensive and expensive.

The goal of automatic test data generation in unit
testing is to generate test data that can satisfy a given
test coverage criterion. A common criterion for unit
testing is branch coverage, i.e. the test set should
execute every branch in the program unit under test.
Branch coverage is also a common criteria for assess-
ing research in automatic test data generation and is
the criterion adopted for the empirical investigation
reported in this paper. The techniques used in achiev-
ing branch coverage require the satisfaction of pred-
icate expressions generated from the program under
test and as such they can be used as the basis of meth-
ods that generate test data for a variety of coverage
criteria.

A number of different automatic software test
data generation methods have been investigated [3].
These methods may be placed into one of two broad
categories known as static methods and dynamic
methods. Static methods aim to analyse the static

structure of the program under test in order to com-
pute suitable test cases. Static methods exploit control
and data-flow information and may use symbolic exe-
cution [16], [17], [4] but the program under test is not
executed.

Dynamic methods aim to exploit information
gained by execution of the program under test. The
most basic dynamic method is random test data gen-
eration [11]. In this method, test data is generated ran-
domly. Each test case is then executed and either re-
tained or discarded according to whether it executes
branches not executed by any other so far retained test
case. Unfortunately, the likelihood that a test, gener-
ated randomly, will execute a difficult to reach branch
is very low. As an example, consider the problem of
generating an input to execute the target branch of the
program fragment shown below.

...
if (s == "UNIVERSITY") {

//TARGET
}

The probability that a randomly generated input
will set the variable s to be equal to the string
UNIVERSITY is likely to be very small. In general,
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random test data generation performs poorly and is
generally considered to be ineffective at covering all
branches in realistic programs [9].

Guided or heuristic search is a more effective test
data generation approach. Various heuristic search
methods have been used to generate test data includ-
ing gradient descent, tabu search and simulated an-
nealing [27], but a commonly used method is a ge-
netic algorithm [15] [14]. A genetic algorithm, which
was used in the work reported here, has the following
features:

1. The genetic algorithm maintains not one but a
population of many candidate solutions. A can-
didate solution is an attempt to solve the prob-
lem. In the context of test data generation, a can-
didate is a potential test case.

2. A fitness (or cost) function which evaluates the
utility of each candidate in the search for a solu-
tion.

3. A probabilistic selection function which selects
candidates from the population with the high-
est probability of selection accorded to the most
promising candidates.

4. Search operators, also known as genetic op-
erators, which modify the selected candidates
(known as parents) to create new candidates
(known as offspring). Two search operators in-
variably associated with genetic algorithm search
are crossover and mutation. The purpose of the
crossover operator is to combine elements from
two different but promising candidates in the
hope of producing offspring that outperform their
parents. Mutation is a genetic operator that mod-
ifies one or more elements of a selected candi-
date. The purpose of mutation is to explore the
space of candidates that are similar to a given
candidate.

Figure 1 shows the basic steps of a genetic algo-
rithm. First the population is initialised, either ran-
domly or with user-defined candidates. The genetic
algorithm then iterates through an evaluate-select-
produce cycle until either a solution is found or some
other stopping criteria applies.

In general, Software vendors typically spend 30
− 70% of their total development budget, i.e. of an or-
ganizations software development resources, on test-
ing. Software engineers generally agree that the cost
to correct a defect increases, as the time elapsed be-
tween error injection and detection increases depend-
ing on defect severity and the software testing process

to produce offspring

initialise population with
random inputs

select parent(s)

use mutation and crossover

yes

no

evaluate inputs

stop solution found?

Figure 1: Flowchart of test data generation using a
genetic algorithm.

maturity level. In order to achieve high testing pro-
ductivity, a framework called the Integrated and Op-
timized Software Testing Process (IOSTP) [18] has
been developed. Testing is inefficient for the detec-
tion and removal of requirements and design defects.
Instead of testing out defects to achieve quality mea-
sures, quality should be designed into software. Many
technical areas have evolved into engineering fields
that can be deployed in IOSTP, such as modelling
and simulation (M&S), design of experiments (DOE),
software measurement, and the Six Sigma approach
to software test process quality assurance and control.
In [24] Saurabh introduced a system dynamics model
of software development are presented, better under-
standing testing processes. Motivation for modeling
testing processes is also presented along with a an ex-
ecutable model of the unit test phase. It motivates the
importance of software cycle time reduction. The ob-
jective of the research in [24] is to provide decision
makers with a model that will enable the prediction of
the impact a set of process improvements will have on
their software development cycle time.

In [20] advanced verification methods and testing
strategies was presented.

As an example, consider the problem of generat-
ing an input to execute the target branch of the pro-
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void func(int a) {
if (a == 0)

//execution required
}

Figure 2: Simple predicate example

gram fragment shown in Fig. 2.

The probability that a randomly generated input
will set the variable a to be equal to 0 may be very
small. In general, random test data generation per-
forms poorly and is generally considered to be ineffec-
tive at covering all branches in realistic programs [9].

Genetic algorithms search has been used to search
for structural test data. Structural test techniques re-
quire the coverage of a certain type of structure in
the source code. The fitness or cost functions used
by researchers to guide the search reward inputs that
are close to executing a desired structure and penalize
those that are far away.

In the program of Fig. 2 suppose a test case is re-
quired to execute the true branch. If the branch is not
executed, many test cases will cause a == 0 to be
false. The value of abs(a - 0) increases as a be-
comes far from 0. A value of 4 has a better objective
value than that of 10, since the objective function is
better (4 is more close to 0 than 10). The search is
encouraged to search around the value of 4, possibly
encountering further “better” values, for example the
values 1 or 2.

It has become generally accepted that genetic al-
gorithms benefit from the incorporation of domain
specific knowledge. Many real-world problems are
solved by designing a problem specific representation
and corresponding operators that manipulate individ-
uals with methods inspired by the context of the prob-
lem. The possibilities for creating more or less sophis-
ticated heuristic operators are endless.

The aim of this work is to investigate the im-
pact of using program-specific search operators and
the seed populations in incremental evolution.

The rest of the paper is organised as follows.
Section 2 overviews about String equality cost func-
tions. Section 3 introduces the technique Program-
dependent Search Operators. Section 4 present Em-
pirical Assessment of String Search Operators and
Cost Functions whilst Section 5 generalize the tech-
nique for Program-specific Search Operators for Non-
string Data Types and Section 6 concludes.

2 Related Works and Background
2.1 Basic Concept
A Control Flow Graph (CFG) of a program is a di-
rected graph G = (N,E, s, e) where N is a set of
nodes, E is a set of edges, while s and e are unique
entry and exit nodes in the graph. Each node n ∈ N
corresponds to a statement in the program, with each
edge e = (ni, nj) ∈ E representing a transfer of con-
trol from node ni to nj . Nodes corresponding to deci-
sion statements (for example an if or while statement)
are referred to as branching nodes. The branch is exe-
cuted when the condition at the branching node is true,
which is referred to as the true branch. Conversely, the
branch is executed when the condition is false, which
is referred to as the false branch. The predicate that
determine whether a branch is taken, is referred to as
a branch predicate. A path through a CFG is a se-
quence of nodes P = (n1, n2, ...nm) such that for
each i, where 1 ≤ i < m, (ni, ni+1) ∈ E. Control
dependency [12] is used to describe the reliance of a
node’s execution on the outcome at previous branch-
ing nodes. For a program node i with two exits (for
example, an if statement), program node j is control
dependent on i if one exit from i always results in j
being executed, while the other exit may not result in
j being executed.

2.2 Search Based Test Data Generation
Evolutionary algorithms [29] combine characteristics
of genetic algorithms and evolution strategies, using
simulated evolution as the model of a search method,
employing operations inspired by genetics and natural
selection. Evolutionary algorithms maintain a popu-
lation of candidate solutions referred to as individu-
als. Individuals are iteratively recombined and mu-
tated in order to evolve successive generations of po-
tential solutions. The aim is to generate fitter individ-
uals within subsequent generations (i.e., better candi-
date solutions). This is performed by a recombination
operator, which forms offspring from the components
of two parents selected from the current population.
The new offspring form part of the new generation of
candidate solutions. Mutation performs low probabil-
ity random changes to solutions, introducing new ge-
netic information into the search. At the end of each
generation, each solution is evaluated for its fitness,
using a problem-specific fitness function. Using fit-
ness values, the evolutionary search decides whether
individuals should survive into the next generation or
be discarded. In applying evolutionary algorithms to
structural test data generation, the individuals of the
search are input vectors. The fitness function is de-
rived from the context of the cur- rent structure of in-
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terest in the program. The fitness function is to be
minimized by the search: thus, lower numerical val-
ues represent fitter input vectors that are closer to ex-
ecuting the target structure. When a zero fitness value
has been found, the required test data has also been
found. The fitness function is made up of two com-
ponents the approach level and the branch distance.
The approach level measures how close an input vec-
tor was to executing the current structure of interest,
on the basis of how near the execution path was to
reaching it in the programs control flow graph. Cen-
tral to the metric is the notion of a critical branching
node. A critical branching node is simply a branching
node with an exit that, if taken, causes the target to be
missed. In other words, the set of critical branching
nodes is the set of nodes on which the target structure
is control dependent (either directly or transitively).

2.3 Branch Cost Functions

A conditional statement (an if-statement or a while-
statement) contains a predicate expression and a pair
of branches: the true branch, executed when the pred-
icate expression is true, and the false branch, executed
otherwise. The so-called multi-way or switch state-
ments are considered to be a sequence of conditional
statements. In some programs, the execution of a tar-
get branch may require the execution of a sequence
of nested branches. The problem of nested branches
is not significantly different from the point of view of
this paper. The problem decomposes into a sequence
of sub-goals, in each of which, a single branch must
be executed in the context of a solution for the enclos-
ing branch.

The cost function of abs(a−1) applied to the
Boolean expression a == 1 of the Flag program
illustrates the cost function for the equality operator.
Similar cost functions are available for other rela-
tional operators as shown below where a and b are
numbers and ϵ is the smallest positive constant in the
domain (i.e. 1 in the case of integer domains and the
smallest number greater than zero, in the particular,
real number representation).

Predicate expression Cost of not satisfying
predicate expression

a ≤ b a− b
a < b a− b+ ϵ
a ≥ b b− a
a > b b− a+ ϵ
a = b abs(a− b)
a ̸= b ϵ− abs(a− b)

2.4 Related Works
Traditionally, the search mechanism has been domain
independent, that is to say the crossover and mutation
operators have no knowledge of what a good solution
would be. However, it has been shown [7] [8] that by
using domain dependent operators good, if not better,
results may be achieved

The program-specific search operators in soft-
ware test data generation is already demonstrated by
Alshraideh and Bottaci in [2] for string data type,
where Program-specific search operators aim to ex-
ploit the structure in the region in the program from
the input variable to the test goal. The structure of
the computation can be used in the search by using
the functions available in the program under test as
the basis of search operators and constants to seed the
search. The examination of the SSCLI code showed
that about 65% of string predicate expressions con-
tains a string literal, also in [10], DeMillo and Offutt
showed that 58% of clauses are of the form x R c,
where x is variable, c is a constant and R is relational
expression. So a program may match a string literal
with a string input, or a string derived from the input.

function f(s:string) {
if (s.Equals("CHILD"){

...
}

}

The first branch of this program is true when s
= "CHILD". This suggests a heuristic to guide the
search for values for the strings s, namely, set s to a
string literal that appears in the program under test.

In [2] by exploiting the presence of string literals
in programs that process string data, a very signifi-
cant improvement in performance was obtained. The
program-dependent string search operators that focus
the search in the region of string literals were pre-
sented, and in the empirical investigation, the use of
these operators was shown to give a fivefold increase
in performance.

Julstrom [1] experimented with a hybrid GA for
the Rectilinear Steiner Problem that seeded the ini-
tial population with organisms that were of a higher
initial fitness. Julstroms work has neither been repro-
duced nor has this method been applied to other prob-
lems. The seeded solution was created using the Con-
struct Randomized Greedy Solution() method used by
the GRASP algorithm with α = 5 (See the section on
GRASP to read about the significance of α ). In some
cases, solutions obtained from another optimization
algorithm are used to seed the initial population [26].
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Although this bears the risk of misguiding the op-
timization process toward local optima, it has been
proved that the seeding approach is very powerful in
some cases. In Oman’s approach [22], the initial pop-
ulation is seeded using case retrieval in order to speed
up the GA in finding a solution.

In a study done by Boomsma [5], He investigated
whether adaptive operator scheduling (AOS) can pro-
vide a solution to his research’s problem. Experiments
were done on instances of the symmetrical Travel-
ing Salesman Problem (TSP), a well known NP-hard
combinatorial problem for which a multitude of oper-
ators exist. It can be defined as the search for a min-
imal Hamiltonian cycle in a complete graph, and can
be understood as the problem of visiting n cities (and
returning to the first), using the path of smallest total
distance. The main concern in the original investiga-
tion was that a large number of operators might slow
down the optimisation process compared to an algo-
rithm using the optimal choice of operators. It was
shown that this concern was unfounded: the algorithm
using AOS converged as fast as the best combination
of mutation and crossover operators with equally good
results. The AOS scheme used in these initial experi-
ments (Davis) was however rather cumbersome to im-
plement.

Software test metrics and their ability are dis-
cussed to show objective evidence necessary to make
process improvements in a development organization.
When used properly, test metrics assist in the im-
provement of the software development process by
providing pragmatic, objective evidence of process
change initiatives. Lazic et. el. in [19] described sev-
eral test metrics that can be implemented, a method
for creating a practical approach to tracking & inter-
preting the metrics, and illustrates one organization’s
use of test metrics to prove the effectiveness of process
changes. Also, their work provided the Balanced Pro-
ductivity Metrics (BPM) strategy and approach in or-
der to design and produce useful project metrics from
basic test planning and defect data. Software test met-
rics is a useful for test managers, which aids in precise
estimation of project effort, addresses the interests of
metric group, software managers of the software or-
ganization who are interested in estimating software
test effort and improve both development and testing
processes.

3 Program-specific Search Opera-
tors

The performance and usefulness of program-specific
operators has been demonstrated for strings it seems
clear that the technique generalises to other data types.

void f1(int a, int b) {
int v = 5;
if (a == 10) {

v = v + b;
}
if (v == 20) {
//Target executed
//with a = 10, b = 15
}

}

Figure 3: Alternative internal variable example

void InverseSin (double a, double b) {
double v = 5.0;
if (a == 25.0) {

v = v + sin(b);
}
if (abs(v - 6.0) <= Double.Epsilon){

//Target executed
}

}

Figure 4: To execute the target, b equal to Π
2

This is illustrated for the numeric data type in the ex-
ample in Fig. 3. Although none of the three integer
values 5, 10 and 20 that occur in the program are input
values that execute the target branch (to execute the
target branch a = 10 and b = 15) they do provide
reasonable starting points for a guided search. To get
the variable b = 15, simply inverse the arithmetic
operation plus (v = v + b) which is (20 = 5 + b )
then b = 20 - 5.

Numerical types may be converted from integer
and double as required by the input domain. Numeri-
cal types may be also converted to character data type
and vice versa if possible. In general, adding the lit-
eral that appears in the program is not straightforward.
If the data types of the input parameters are integer but
the literal collected from the program is double, the in-
put domain is different from the literal data type: the
literal data types are converted to confirm with the in-
put domain data type.

Fig. 4 shows a program in which the first branch
is executed when a = 25. The required branch
is executed only when the first “if statement” is
executed and sin(b) = 1. This happens only when b
= Π

2 . It is easy to execute this branch if the mutation
operator sequence of sin−1(6.0 − 5.0) is used to
create a value for b. The arithmetic operations in this
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program are : Plus and sin, the proposed mutation
operators to execute the required branch might be
Minus and Arcsin.

This has motivated the introduction of addi-
tional genetic operators to increase the performance
of searching the program under test by analysis and
extracting arithmetic operators from the program un-
der test, then reversing these operators to induce the
mutation operators.

In general, when any arithmetic operator1 or
trigonometric function2 occurs in the program under
test, this operator or function and its inverse are used
as mutation operators (e.g. Plus and Minus, sin and
Arcsin). Note that Arcsin and Arccos are used when
the parameter is in the range (-1 to 1) only.

The polygon classification program has an array
of 6 or 8 of positive real numbers. The length of the
array represents the figure shape: 6 means the figure
might be Triangle, 8 means the figure might be Square
or Rectangle or other Polygon. The first half of the in-
put parameters (3 or 4) represents the angles and the
rest represents the side lengths of the figure sides. The
goal of the program is to determine the figure, Square,
Rectangle, Triangle or other shape and also if the fig-
ure is Triangle, to categorize the triangle type. The
program consists of 22 branches, all the branch cost
functions have a gradient which illustrates the useful-
ness of program-specific search operators for program
where branch coverage can be found by straight for-
ward branch cost distance instrumentation. No branch
has a branch distance cost which is locally flat. The
program was executed by GAs with and without us-
ing program-specific search operators and over an av-
erage of 20 trials the number of executions required to
find test data to achieve all branch coverage without
using program-specific search operators was 43872;
the number of executions required to find test data
with program-specific search operators was 1542. It
is clear that there is a significant improvement in per-
formance by using program-specific search operators.

4 Empirical assessment of program-
specific search operators

In this section, the specifications of the experimen-
tal environment utilized by this work are presented.
These specifications include both the hardware and
software modules used in implementing the simula-
tor. More specifically, the hardware specifications that

1Plus, Minus, Multiply, Divide, PostIncrement, PostDecre-
ment, Pow, Sqrt, Modulus and Absolute value

2sin, Arcsin, cos, Arccos, tan and Arctan

are used in the experiments include a Dual-Core Intel
Processor (CPU 2.66 GHz), 2 MB L2 Cache per CPU,
and 1 GB RAM. Moreover, the software specifications
that are used in the experiments include windows XP.
Also, the tested programs that have been used to eval-
uate our proposed approach are described in this sec-
tion.

4.1 Experimental parameters
Each of the cost functions and associated search oper-
ators were implemented in a prototype test data gener-
ation tool. The tool has been constructed by modify-
ing the JScript (JavaScript) language compiler within
the SSCLI and can therefore be used to test functions
within programs written in the JScript language. The
program must include directives to specify any input
domain constraints that are to be applied. The pro-
gram is then parsed and semantic analysis is done.
The tool then inserts instrumentation code at each
branch in the function. This instrumentation code cal-
culates the cost of each branch predicate whenever it
is executed.

The cost of each relational predicate expression
was calculated according to the cost functions given
in the previous section (Section 2.3). Where branch
predicate expressions consist of two or more rela-
tional predicates joined by logical connectives, and,
or and not, the cost values were combined accord-
ing to the scheme given in Bottaci [6]. In the case of
logical and, for example, the costs of the constituent
operands are added whenever they are both false. For
nested branches, the costs of the branches in the con-
trol dependency condition of the target branch were
similarly combined to provide an overall cost value
for the candidate input. Unexecuted branches were
assigned a high fixed cost.

4.2 Subject Programs
In order to assess the reliability of the new approach
introduced in the previous section, an empirical inves-
tigation was done. A number of JavaScript test pro-
grams were assembled including both open and pro-
priety source, these programs already used in used
in test-data generation research [13], [25], [21], [23],
such as “Polygon classifier” (polygon), “middle
value” ( Mid), “Bubble Sort” (Bub), etc. The other
programs are synthetic programs containing complex
structures. Table 1 shows details of the programs:
The first column, Program, gives the name we used
to designate the program; the second column, LOC,
shows the number of lines of code in the program; the
third column, number of branch in the program; the
fourth column, Description, provides a description of

WSEAS TRANSACTIONS on COMPUTERS
Mohammad Alshraideh, Mohammad Qatawneh, 
Wesam Al Mobaiden, Azzam Sleit

ISSN: 1109-2750 804 Issue 8, Volume 9, August 2010



Literals from program
5, 6, 25

any random integer

34%

66%

Figure 5: The integer domain

the program, and for each program, an attempt was
made to generate inputs to achieve branch coverage.
The programs are available from the authors on re-
quest.

4.3 Input domains
The domain of the variable is extracted from variables
domain and numerical literals appear in the program
under test as shown in Fig. 5.

4.4 Genetic algorithm
The search was directed to generate data for one
branch at a time. The order in which the branches
of the program were targeted was arbitrary except that
no nested branch was targeted before the containing
branch. This is not, in general, a good strategy since
the search will become stuck at an infeasible branch
but it is adequate for the experimental purposes of this
research given that all the branches in the sample pro-
grams are feasible.

A steady-state style genetic algorithm, similar to
Genitor [28], was used in this work. The cost function
values computed for each candidate input were used
to rank candidates within the population in which no
duplicate genotypes are allowed. A probabilistic se-
lection function selected parent candidates from the
population with a probability based on their rank, the
highest ranking having the highest probability. More
specifically, for a population of size n, the probability
of selection is

2(n− rank + 1)

n(n− 1)

A single tree-structured representation was used,
both for candidate inputs (phenotype) and for
crossover and mutation (genotype). At the top-level, a
candidate is an array of objects in 1-1 correspondence

with the parameters of the program under test. Each
object may be a primitive value, i.e. a number, char-
acter or string, or an array. This representation has
the advantage that all candidates have the same struc-
ture. Candidates differ only in the lengths of strings
and these occur only at the leaf nodes of the structure.

Single point crossover was used. A genetic algo-
rithm has a number of parameters that may be modi-
fied to suit a given problem. The size of the population
and the frequency with which selected candidates are
mutated are two examples. In the context of test data
generation, a search algorithm must be able to per-
form effectively without significant human interven-
tion as such intervention is not cost effective hence no
parameter was “tuned” to suit any particular program
under test. In the work reported here, a population
size of 100 was always used. At each evaluate-select-
produce cycle, either mutation or crossover was ap-
plied with equal probability. This means that a third
of selected candidates were mutated since two candi-
dates are selected for a single application of crossover.

4.5 Prototype Implementation

Fig. 6 shows the system architecture and dataflow of
Test Data Generation(TDGen). A coverage table is
established to record the branch information of the
program under test, and keeps track of whether a
branch is tested or not. When the coverage table is
initialized with the seed inputs, the test data generator
gets the next untested branch from the coverage table
and send query requests of the Program Dependency
Graph (PDG) analysis with regard to the target branch
to the program analyzer, which takes in the source
code of the program, generates a system program de-
pendence graph including a PDG for each procedure,
accepts query requests from the test data generator.
After getting query results from the program analyzer,
the test data generator converts the query results to
constraints. A genetic algorithm is used to satisfy the
constraints and then test cases are generated. If the
constraints have temporary variables in them, and the
GA needs their values to evaluate fitness functions,
the values of the temporary variables can be obtained
by augmenting the source code of the tested program
to output them. Finally, the program is run with the
test cases generated by the test data generator to see if
the desired result is reached. If the targeted branch or
some other untested branches are traversed, the cover-
age table will be updated, and then a new target will
be selected from the coverage table for the next cycle
of test data generation.
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Figure 6: System architecture and dataflow diagram.

5 Results
By using the program-specific search operators in the
program of Fig. 7, although none of the two integer
values 0 and 1 that occur in the program are input
values that execute the target branch (to execute the
target branch a must be equal to Π

2 ), they do provide
reasonable starting points for a guided search. In par-
ticular, to set the variable a = Π

2 , it is possible to in-
vert the trigonometric function sin(a) with parameter
value equal to 1 which is sin−1(1) then a = Π

2 . Fig. 8
shows different paths to a solution to test data genera-
tion problem shown in Fig. 7.

In this research, we try to measure how effective
is the program-specific search operators in reducing
the number of generations?
We applied the studies procedure to measure the num-
ber of generations that are required for generating the
test cases, and recorded the number of generations for
each test requirement.

Table 2 shows the number of generations required
for satisfying the branch coverage with and without
using program-specific search operators (average over
20 trials). For example, without program-specific op-
erators needs 7350 generation to satisfy branch cov-
erage of programs Mid and only 282 generation to
satisfy branch coverage of the same program when
program-specific search operators are used. On the
other hand the number of generation needs to sat-
isfy branch coverage without program-specific is 3421
for program DateDiff , while the same program
needs 2943 to satisfy the same program coverage with
program-specific search operators, in this program it

void FlagAvoid(double a){
int x = 0;
double y = 0.0;

y = Math.sin (a);
//y in [-1, 1]

y = Math.abs(y);
//y in [0, 1]

x = Math.floor(y);
// x = 0 or 1 only

if (x == 1){
//EXECUTED ONLY WHEN ALL
// VALUES OF a EQUAL TO 90.
//target executed

}
}

Figure 7: A difficult to execute branch in a program
FlagAvoid
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Figure 8: The different paths to a solution to the test data generation problem for program shown in Fig. 7.
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seems that using new approach is not effective and
this is return to nature of the program (the literal and
mathematica operation inside the program).

The results of these empirical studies show that,
for the subjects we studied, the number of genera-
tions to cover the test requirements by using program-
specific search operators is eightfold increase perfor-
mance than without using program-specific search op-
erators.

The usefulness of using program data constants
by itself without program functions and operators has
been investigated here. Similarly we have investi-
gated program operators and functions without data
constants. The Results are shown in Table 3. There
seems to be little advantage in using each of these by
itself.

Another study we concern is to answer the
following research question:
How effective is using program-specific search
operators in reducing search time?
We applied the studies procedure to measure the
search time for generating the test suite, recorded the
start and end times of the execution, and calculated
the search time
search time = end time - start time.

Table 4 shows the search time for generating
the test suite to satisfy the branch coverage criterion
(average over 20 trials). For example, without using
program-specific search operators needs 3352 sec-
onds to satisfy branch coverage for program Find,
but it needs only 115 seconds by using program-
specific search operators.

The results of the studies show that, for the sub-
jects we studied, the branch coverage satisfy by using
program-specific search operators takes less time than
without using program-specific search operators.

6 Conclusion

This paper presents program-dependent for numerical
data type search operators that focus the search in the
region of such numerical values. Empirical investi-
gation of the use of program-specific search opera-
tors with numerical data type is shown to give more
than eightfold increase in performance. Also, exper-
iments have been done to investigate using program
data constants by itself without program functions and
using program operators and functions without data
constants. The Results shown that little advantage in
using each of these by itself.
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Table 1: The JScript functions used for empirical investigation
Program Lines of Number of Description
Name code branchs of program

Bub 32 4 Given an array of integers, the program bubble
sorts the array.
Given array A[], and index F, the program
places all elements less than or equal to A[F]

Find 66 5 to the left of A[F], and all elements that
are greater than or equal to A[F]to the right
of A[F].

Mid 21 5 Given three integers, the program determines
the middle value.

Bisect 36 3 Given an epsilon and X, the program computes
sqrt(X) within epsilon using bisection method.
Given four integers representing the weights

Fourballs 82 7 of balls, the program determines the weights
of the balls relative to each other.
Given an array of numbers,MM is a program to find the

MM 61 7 minimum and maximum numbers within the array.
DateDiff 46 6 The program determines the number of days

between two dates.

Polygon 163 22 Described above in Section 3.

Program Number of execution Number of execution
Name without using Program-specific using Program-specific
Bub 2600 81
Find 3352 115
Mid 7350 282
Bisect 1622 77
Fourballs 6892 407
MM 1289 75
DateDiff 3421 2943
Polygon-Classification 43872 1542

Table 2: A comparison of the number of executions of the program under test required to find test data to achieve
branch coverage (average over 20 trials) with and without program-specific search operators.
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Program Number of execution Number of execution Number of execution
Name using Literal seeding and using using

program-search operators Literal seeding program-search operators
Bub 81 81 1870
Find 115 1118 2789
Mid 282 371 3255
Bisect 77 155 233
Fourballs 407 2156 4677
MM 75 75 1927
DateDiff 2943 3390 5899
Polygon-Classification 1542 20677 38823

Table 3: The number of executions of the program under test required to find test data to achieve branch coverage
(average over 20 trials) with program-specific search operators.

Program Time (S) Time(S)
Name without using Program-specific using Program-specific
Bub 261 21
Find 322 27
Mid 601 54
Bisect 185 38
Fourballs 498 182
MM 134 45
DateDiff 389 325
Polygon-Classification 402 62

Table 4: A search time in Seconds to achieve branch coverage (average over 20 trials) with and without using
program-specific search operators.
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