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Abstract: Multiple Imputation (MI) is a Markov chain Monte Carlo technique developed to work out missing data problems,
specially in cross section approaches. This paper uses Multiple Imputation from a different point of view: it intends to apply
the technique to time series and develops that way a simpler framework presented in previous papers. Here, the authors’
idea consists basically on an endogenous construction of the database (the use of lags as supporting variables supposes a
new approach to deal with the distance effect). This construction strategy avoids noise in the simulations and forces the limit
distribution of the chain to convergence well. Using this approximation, estimated plausible values are closer to real values,
and missing data can be solved with more accuracy. This new proposal solves the main problem detected by the authors in
[1] when using MI with time series: the previously commented distance effect. An endogenous construction when analyzing
time series avoids this undesired effect, and allows Multiple Imputation to benefit from information from the whole data base.
Finally, new R computer code was designed to carry out all the simulations and is presented in the Appendix to be analyzed
and updated by researchers.
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1 Introduction

Complex probability distributions, where the number of di-
mensions were a serious issue, were solved by physicists by
simulation instead of direct calculation. One of the most
important papers in that direction was published in 1953
[13], and was the beginning of a new fertile field. The main
output of the article was the presentation of Metropolis Al-
gorithm, that later will be generalized by Hastings [12].
The key innovation of the commented algorithm was the
use of Markov chains to look for probability distributions,
making the target distribution the limit distribution of the
chain.

In the early years, Markov Chain Monte Carlo
(MCMC) was only developed theoretically due to the lack
of computational power to run these extraordinary complex
algorithms. But since the late 1980s, the huge development
of computers and technology allowed the empirical use of
MCMC in many sciences. Nowadays, the empirical ap-
plication of Markov Chain Monte Carlo is available in the
great majority of technical software (Stata, R, SAS, SPlus).

As advanced before, MCMC implied a real and impor-
tant revolution in multiple fields, not only in physics. We
may find them in Mechanical Statistics, Bayesian Statis-
tics or Reconstruction Image Theory for example. Within
Bayesian Statistics, MCMC has been used to solve miss-
ing data problems (see [14]), application that is the main

objective of this paper. Missing values in a data base rep-
resent a huge issue, because then data can not be analyzed
directly. The absence of some values oblige researchers
to decide how to deal with that situation: missings can be
deleted or can be artificially substituted by a chosen value.
The issue has been and still is a hot issue of investigation
(see for example [5], [8],[7]). As can be seen in special-
ized literature, the decision taken by the researcher when
facing missings is not innocuous, and introduces biases in
calculations. To overcome this problem, Rubin proposed a
new perspective. The author’s idea was to combine MCMC
algorithms such as EM, Data Augmentation or Gibbs Sam-
pling to approximate the joint probability distribution of
missing data and observed data. Applying Rubin’s strategy
it is possible to analyze the data base and the underlying
missing structure to provide not only one alternative value
to replace the missing value but (m) values. This simula-
tion technique, known as Multiple Imputation (MI), offers
(m) plausible values to fill in every empty cell. Once this
variety of simulated results is available, MI faces another
problem: this multiplicity of values must be managed and
pooled. Therefore, special inference rules are designed to
combine the simulated values and take into account the un-
certainty.1

Literature regarding Multiple Imputation has been fo-

1The actual value is impossible to calculate, that’s the reason why in-
ference is necessary.
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cused on cross section studies, where missing data is more
likely to appear. In that direction, most applications of
MI deal with surveys or incomplete cross section databases
(see for example [4], [18]). In [1] the authors tried to ap-
ply MI in a different scenario. They tested MI with finan-
cial time series paying attention to how simulations change
when one varies the main parameters of the technique. Au-
thor’s wanted to see if simulated values really fit the finan-
cial time series.2. In case that values does not match the
actual time series inference will lead to a wrong results and
inference will be innacurate. In the cited paper, after almost
200 simulations 3, it was possible to draw some conclusions
regarding MI sensitivity:

1. As expected by the theoretical framework, the differ-
ence between simulated values and real ones raises
when the database suffers from a higher percentage of
missing data. It is obvious to conclude the lower the
available data (higher number of missings), the worse
the estimation of plausible values (higher estimation
error).

2. The estimation of plausible values becomes better in-
creasing the number of imputations, but not in a sig-
nificant way. In our empirical tests, the increase in
the estimation accuracy does not worth the increase
in computation time. Although from the theoretical
framework the number of imputations seems a key
parameter, empirical results seem not to support this
importance. The simulation improvement using more
than 40 imputations is negligible, because 80-90% er-
ror reduction is obtained using between 20 and 40 im-
putations.

3. Finally, estimated plausible values become worse
when missings are distant values in time. This idea
was called in our original paper the distance effect.
Errors, when estimating distant values, raise exponen-
tially due to the use of long time series to apply MI
algorithms. Indeed, after a deep analysis, we can con-
clude now that the distance effect might be generated
by an inappropriate design of the database when using
MI with time series. A wrong data base structure leads
to a faulty convergence of the algorithm, and therefore
to non plausible simulations. So, a new perspective
must be considered to improve MI performance when
using the technique with time series.

In this paper, results from [1] are summarized and ex-
tended. Some graphs and tables are presented to a better

2The authors’ original idea was to use new mathematical tools to es-
timate and predict future prices or financial values to improve Minimum
Risk Index calculations developed in [3] and [2]

310 historical components of the Dow Jones Industrial Average were
used in the simulation. Data for the period January 1962-December 2006
was downloaded from the Yahoo Finance Database. The authors used 541
monthly, 2347 weekly, and 11.328 daily observations to perform almost
200 simulations.

understanding of the application of MI to time series. Af-
ter some analysis of sensitivity to different parameters, this
article proposes a solution to the distance effect, based on
time series lags as supporting variables of main series. Do-
ing the simulations in this fashion lead to better results and
the distance effect not only decreases but almost disapears.
As in many situations, the ’lag solution’ brings a trade-off.
Although the estimation of plausible values becomes bet-
ter, higher multiplicity (more plausible values) is generated
with this solution, and the necessity to pool results become
overwhelming.

The paper is structured as follows: In section 2
we summarize methodology, paying attention to Markow
chains, Markov Chain Monte Carlo, Gibbs Sampling and
specially to Multiple Imputation. In section 3, conclusions
of previous papers are presented, and the distance effect
is deeply analized. Some graphs from simulations support
the explanation. In section 4 a new point of view to deal
with the distance effect is proposed. Section 5 developes
empirical tests for this new approach, using different time
series (economic and physic time series). Finally section 6
draws conclusions and section future research is proposed
in section 7. An Appendix with the R code is presented.

2 Methodology Review

2.1 Markov Chains
A Markov chain, named after Andrey Markov, is a discrete
time stochastic process which follows the Markov property.
That means past and future status are independent from cur-
rent status, formally this definition is written as,

Pr(Xn+1 = Xn|xn, ..., X1 = x1) = Pr(Xn+1|Xn = xn)

The process followed by a Markov chain starts with a
state vector called u that includes the probability values of
different states. To go one step further u must be multiplied
by the transition matrix P, which includes every relation
between all the possible states of the chain. So,

u(n) = u(0) ·P

One of the most important properties of Markov chains
consists on the calculation of a time independent transition
matrix. Due to the nature of P is possible to look for a limit
of the transition matrix, following the expression below:

W = lim
n→∞

Pn = P∞ (1)

To carry on Multiple Imputation the calculus of W is a
must, because the stationary matrix of the chain is the target
distribution we are looking for. Also the chain cannot be
absorbing, in this case W only gives information about the
absorbing states. The limit then is as follows:
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lim
n→∞

Pn =
[

0 B
0 I

]
(2)

2.2 Markov chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a collection of
methods to generate pseudorandom numbers via Markov
Chains. MCMC works constructing a Markov chain which
steady-state is the distribution of interest. Random Walks
Markov are closely attached to MCMC. Indeed, this makes
a division within the classification of MCMC algorithms.
The well known Metropolis-Hastings and Gibbs Sampling
are part of the Random Walk algorithms and their success
depends on the number of iterations needed to explore the
space, meanwhile the Hybrid Monte Carlo tries to avoid the
random walk using hamiltonian dynamics.

The literature related to MCMC has raised in last
decades due to the improvement of computational tools4.
Following these improvements and developments, new
fields for these methods have been discovered. For ex-
ample, one can find MCMC applications in Statistical Me-
chanics, Image Reconstruction and Bayesian Statistics.

2.3 Gibbs Sampling

Gibbs Sampling, named after Josiah Willard Gibbs, is
an MCMC algorithm created by Geman and Geman in
1984 [11]. Due to its simplicity it is a common option for
those who implement Multiple Imputation in a software
package. Furthermore, Gibbs Sampling has had a vital
importance in the later development of Bayesian Inference
thanks to BUGS software (Bayesian Inference Using
Gibbs Sampling). Owing to this fact, some authors have
suggested to rename the algorithm to Bayesian Sampling.
The process of the algorythm is as follows: let π(θ) be
the target distribution where θ = (θ1, θ2, ..., θd). Also let
πi(θi) = π(θi|θ−i) be the conditional distributions for
i = 1, 2, ..., d. Then, if the conditional distributions are
available, we may approximate π(θ) through an iterative
process. Gibbs Sampling is performed by 3 steps:

1. Choose the initial values at the moment j

θ(0) = (θ(0)1 , θ
(0)
2 , ..., θ

(0)
d )

2. Calculate a new value of θ(j) from θ(j−1) by the fol-
lowing process,

4see [9] and [10]

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , · · · , θ(j−1)
d )

θ
(j)
2 ∼ π(θ2|θ(j)1 , · · · , θ(j−1)

d )
...

θ
(j)
d ∼ π(θd|θ(j)1 , · · · , θ(j−1)

d )

3. Change the counter from j to j + 1 and go to the sec-
ond step until the convergence is reached.

2.4 Multiple Imputation
The presence of missings means a big issue to process
data. Every empty cell in a database is represented by
software with na which cannot be treated until is replaced
by a number or eliminated. In such scenario the literature
has developed many approaches to deal with this problem.
One traditional approach is case deletion, meaning the na
is directly erased. Another solution is single imputation,
that means the missing is substituted by a value selected
by the researcher. This value can be for example the mean,
the next or previous value, etc. Finally, a more complex
solution to missing data is Multiple Imputation (MI). For
a brief introduction to this technique see [15] and [17],
and for a complete and detailed description see [14] and
[16]. Multiple Imputation is a MCMC technique which
tries to solve missing data problems in a different fashion.
Instead of calculating missing values directly (as we do in
single imputation), it carries many simulations to achieve
plausible values. After this simulation, the researcher
has many plausible values for every missing datum.
This multiplicity of information needs to be summarized
somehow, and special rules of inference are defined to pool
the results.5

MI is a 3 stage process6:

imputation: The number m of imputations is set. The
probability distribution Pr(Xmis|Xobs) is approx-
imated through MCMC algorithms, where Xmis

means missings and Xobs means observed data. Later
on it will be used to Monte Carlo simulations.

analysis: Every simulated data set is analyzed using stan-
dard methods.

pool: At this point m results are available. They are com-
bined with special inference rules.

Multiple Imputation performs fine when the data
missing mechanism is random. To see that, the probability
distribution of the dummy R (it represents the missing

5Inference rules calculate missing data uncertainty using degrees of
freedom.

6MI stages can be found in Figure 1

WSEAS TRANSACTIONS on COMPUTERS Sebastian Cano, Jordi Andreu

ISSN: 1109-2750 770 Issue 7, Volume 9, July 2010



IMPUTATION ANALYSIS POOL

There are missing 
values

One result but 
including 
uncertainty

M results available

Figure 1: Three Multiple Imputation stages

data pattern) has to be analyzed. To do so, the connection
between R (known information), missing information of
the sample and a nuisance parameter ξ is studied through
conditional probability,

Pr(R|Xobs, Xmis, ξ) (3)

In case we haveR∩Xmis = 0 the missing data process
is considered to be random. Nowadays, this analysis lacks
a formal test to be sure about the missing data process.

3 Definition of the problem
Andreu and Cano (2008) [1] performed some tests with
Multiple Imputation and time series. The authors designed
a database with prices of 10 stocks of DJIA and perform
several MI tests7. The main objective of the paper was to
show MI accuracy when used with time series. To per-
form this sensibility analysis, the authors performed 200
simulations changing important parameters as the number
of imputations, the length of the time series and the num-
ber of iterations. After this deep empirical study, conver-
gence is shown to be reached only with a small number of
iterations.8 Secondly, MI accuracy is directly related with
the number of missings the researcher is facing in the data
base. Thirdly, results become better when forcing MI to
perform with a higher number of imputations. Finally, one
important issue was defined from the analysis: the distance
effect, a problem that appears when simulating distant miss-
ing values. These main conclusions are presented in the

7Alcoa Inc (AA), Boeing Co (BA), Carterpillar Inc (CAT), Dupont
(DD), Walt Disney (DIS), General Electric (GE), General Motors (GM),
Hewlett Packard (HPQ), IBM and CocaCola (KO). Available data for 200
simulations are close prices for the period January 1962-December 2006.
541 monthly, 2.347 weekly and 11.328 daily observations are used in the
calculations.

8Fast convergence is known to be one of the main properties of Markov
Chains.

next paragraphs.
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Figure 2: Errors when increasing the proportion of missing
data. Weekly data.

3.1 MI estimations modifying imputation
percentage

Multiple Imputation accuracy depends on the percentage
of missing data we have in the data base. If missing data
represent a 10% of the available dataset, plausible values
provided by Multiple Imputation will be closer to real val-
ues than if the missing ratio is, for example 50%. Figure 2
shows Absolute Average Errors (AAEs) of weekly simula-
tions increasing the percentage to simulate from 5 to 50%.
It can be seen in the graph, as expected, that AAEs grow
when the data base suffers from a higher missing ratio, al-
though the increase is not linear.

3.2 MI estimations modifying number of im-
putations

Perhaps the number of imputations used in MI is the most
important parameter to take into account. An increase in
this number clearly benefits results. If more plausible val-
ues are generated, more values can be combined (pooled)
and simulations are closer to real values. It can be seen
in Figure 3. In this graph, the reduction of AAEs is clear.
The plot shows AAEs of weekly data simulations for the
entire period meanwhile we increase the number of impu-
tations. For each time series it is possible to see how AAEs
decrease when using more imputations in the simulation.
According to our results, 80-90% of the error reduction is
obtained using between 20 and 40 imputations. From an
economic point of view and taking into account computa-
tional costs, it is worthless to use more than 40 imputa-
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tions. The difference between a simulation using 40 and
1.000 imputations is tiny in AAEs, but huge in computa-
tional time (computational time increases 20 times when
using 1.000 imputations).
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Figure 3: Errors when increasing the number of imputa-
tions. Weekly data.
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3.3 MI estimations modifying time series
length

Contrary to one of the most known principles of statis-
tics, more data in our case might be negative. Using MI
to estimate very distant missings (and using that way long
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Figure 5: The Distance effect with Disney share’s prices.
Weekly data.
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prices. Monthly data.
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time series) is dangerous to our purposes. Estimation er-
rors grow when time series’s length increases as can be ob-
served in Figure 7. It is easy to see that this increase is
exponentially, and disturbs MI estimations. The selected
figure shows errors of weekly data simulations for the en-
tire period and for each analysed time series, meanwhile
we increase time series’ length. Paying attention to the de-
tails, AAEs grow in all stocks between 5 and 90%, showing
results are more sensible to this parameter than to percent-
age to impute. In Andreu and Cano (2008) [1] we called
this problem the distance effect. From a theoretical point
of view, these results can be explained that way. Multi-
ple Imputation accuracy depends on the quality of avail-
able data. MCMC algorithm approximates the probability
distribution function generating values of variables taking
into account all the available information and correlations
among variables. Augmenting the length of time series pro-
vides MI with more data to simulate missing values. The
simulated value is worse if we accept structural breaks and
changes in the probability distribution functions generating
the time series are feasible. Giving further data as an in-
put obliges the probability distribution to be the same dur-
ing the period of analysis, and this is not necessarily true.
Putting emphasis on the distance effect, the error analysis
shows that after the 5th or 6th missing the simulation is
not a plausible value, because the Markov chain does not
converge to the right limit distribution, and error rises. In
Figures 4, 5 and 6 the distance effect can be seen in detail.
Figures show inicial missing estimations are good, so the
error is close to the 0%. Error increases when MI tries to
simulate more distant values, and this effect is similar us-
ing daily, weekly or monthly data. Usually, the distance
effect becomes worse after the 6th missing, and errors can
increase from 0% to 100%.

4 A new point of view
The distance effect is a huge issue when using MI with time
series. After conclusions in [1] and [6], some empirical
tests were carried out. We conclude here that the prob-
lem could be solved applying a different approach. Multi-
ple Imputation was designed for working on cross section
databases. Making a design close to a cross section appear-
ance seems not to work with time series, which is mainly
due to the distance effect and the extraordinary increase in
errors when estimating distant values. A new point of view
is needed in order to use the technique with time series. In
this new approach 2 issues need to be considered:

1. Proper construction of the Markov chain.

2. Noise from other variables of the database.

Let’s see a normal time series (X), which is a matrix
with t rows and one column,
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Figure 7: Errors when increasing time series lenght.
Weekly data.

X =


x1

x2

x3

...
xt


One can add an auxiliary variable to the matrix, which

is actually the first lag of X . We call the new data structure
X∗, it has the shape,

X∗ =


x2 x1

x3 x2

x4 x3

...
...

xt xt−1


Arranging the time series in this fashion we let the val-

ues of the past influence the recent values. One can add as
many artificial variables he may consider. Now let’s think
we have a missing value in our time series,

X =



x1

x2

na
x4

x5

x6

x7

...
xt


one can build the matrix X∗ with two artificial vari-

ables,
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X∗ =


na x2 x1

x4 na x2

x5 x4 na
...

...
...

xt xt−1 xt−2


Notice that now the missing value appears 3 times and

is across one diagonal of the matrix. In a more complete
case one might have a matrix like,

X∗ =


xt−2 xt−3 xt−4 xt−5

xt−1 xt−2 xt−3 xt−4

na xt−1 xt−2 xt−3

na na xt−1 xt−2

na na na xt−1


Here one can identify 2 different submatrices, one is

known information and the other one is missing informa-
tion. Some considerations about the triangular matrix:

• if convergence is reached, values of the diagonal
should be closer.

• the best simulation should be the one with more sup-
porting information.

• when the missing is far away from the known infor-
mation uncertainty will grow.

Now there are many plausible values which have to be
pooled using Rubin’s inference. The scalar of interest (Q)
will be the value of the missing cell we are looking for.
First we need calculate the average value of the scalar of
interest,

Q̄ =
1
m

m∑
t=1

Q̂(t) (4)

and the total variance associated to Q,

T =
1
m

m∑
t=1

Ŝ(t) +
(

1 +
1
m

) m∑
t=1

(Q̂(t) − Q̄)2

m− 1
(5)

Next step is to calculate the degrees of freedom for a
small sample to carry out the inference,

dfc

(1− f)− f − f2

m+ 1

+
dfc

df
(6)

After all this process inference based on t distribution
can be calculated,

T 0.5(Q− Q̄) ∼ tdf (7)

After doing this process information can be pooled.
Now, there is a vector for each missing value with the fol-
lowing information,9

Lower value of CI
Central value (Q)
Upper value of CI
Degrees of freedom


At this point one fact needs to be considered. In case

one adds too many artificial variables the results might be
faulty again, specially in those where frequency is low.
Let’s think we have annual frequency. If one adds for in-
stance 15 artificial variables then simulated values may be
smooth again. It is like saying that the value today is influ-
enced by the value 15 years ago. We can see this fact in the
figure below (Figure 8): the performance is raising until the
optimal point, after that the performance decreases.

e
ff

ic
ie

n
cy

number of artificial variablesL*

Figure 8: MI efficiency using Lags

5 Empirical tests
To illustrate what this paper has explained, we make some
simulations with different time series. We use the R lan-
guage to do the programming and to perform 5 tests. We
use a library named multiple imputation simulation for time
series.10 There are 2 main commands in the library:

mists() performs the whole Multiple Imputation process
and builds the X∗ matrix. The sintax is: mists(data,
iterations, number of data simulations, number of ar-
tificial variables).

9where Upper stands for left side of the confidence interval, Q stands
for the average simulated value of the scalar of interest and Upper stands
for right side of the confidence interval.

10This library has been programmed for the unpublished PhD Thesis
”Imputación Múltiple: definición y aplicaciones”, see [5].
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rubin.value() pools the simulations for each missing value
and makes the inference calculation. The syntax is:
rubin.value(object, missing number to make the infer-
ence).

The tests have the following structure: first of all we
run simulations with the mists() instruction and second we
make the inference over each simulated value using 95%
confidence level.11

5.1 Test 1
Time series: IBM prices. Frequency: Daily. Period: 2007.
Sample: 260. Iterations: 50. Artificial variables: 9 Simula-
tion: 7 last values.

mists(IBM,50,c(253:260),10)

Results in the following table,

Actual Q Lower Upper Df Error
126,6 126,17 120,6 131,73 22 0,003
125,22 124,63 117,41 131,84 10 0,005
125,8 123,23 116,08 130,37 10 0,020
126,94 121,96 114,58 129,33 8 0,039
126,36 121,2 111,26 131,13 5 0,041
124,59 120,85 108,36 133,34 4 0,030
122,56 119,88 108,93 130,83 4 0,022

5.2 Test 2
Time series: Apple prices. Frequency: Daily. Period:
2007. Sample: 260. Iterations: 50. Artificial variables:
9. Simulation: 7 last values.

mists(Apple,50,c(253:260),10)

Results in the following table,

Actual Q Lower Upper Df Error
173,56 170,24 163,72 176,75 31 0,020
176,73 170,30 164,36 176,23 27 0,036
179,30 168,99 162,22 175,75 16 0,058
179,32 168,52 161,45 175,59 19 0,060
175,74 169,27 161,67 176,87 12 0,037
175,39 167,66 151,89 183,43 4 0,044
173,53 167,55 138,48 196,62 2 0,034

5.3 Test 3
Time series: water temperature of the Pacific coast in USA.
Frequency: 10 minutes. Period: July of 1974. Sample:
400. Iterations: 50. Artificial variables: 13. Simulation: 9
first values.

11Several missing values have been simulated by the ’Lag approach’.
Only 5 examples are provided here to show the application of this tech-
nique.

mists(aqua,50,c(1:9),14)

Results in the following table,

Actual Q Lower Upper Df Error
17,7 18,14 16,52 19,75 67 -0,025
17,8 18,13 16,48 19,77 63 -0.019
17,7 18,11 16,41 19,83 59 -0.023
17,5 18,10 16,28 19,91 45 -0.034
18,6 18,01 16,10 19,92 47 0,032
18,3 18,23 16,31 20,10 43 0,004
18,2 18,34 16,36 20,31 39 -0,008
18,1 18,42 16,41 20,44 35 -0,018
18,6 18,38 16,36 20,40 34 0,012

5.4 Test 4
Time series: US output aggregate. Frequency: annual. Pe-
riod: 1909 - 1949. Sample: 40. Iterations: 50. Artificial
variables: 8. Simulation: 5 first values.

mists(usq,50,c(1:5),9)

Results in the following table,

Actual Q Lower Upper Df Error
0,680 0,719 0,320 1,118 25 -0,057
0,652 0,722 0,332 1,121 20 -0,107
0,647 0,712 0,308 1,101 15 -0,100
0,616 0,710 0,290 1,134 10 -0,153
0,623 0,718 0,234 1,201 5 -0,152

5.5 Test 5

The last test in this paper is different from above. In this
particular case we compare simulations obtained by the
’Lag methodology’ with the ones obtained in [1]. Andreu
and Cano (2008) found a pattern in the error which can
be clearly noticed. To carry on this test we simulate again
plausible values for the CocaCola Company time series.12

Results for these simulations (in Figure 9) are clearly better
if we compare them with the first 50 simulations obtained
in Figure 4). Simulations do not show a raising pattern in
the error, and statistics are quite satisfying. The following
table shows the main statistics of Absolute Average Errors
(AAEs) of test 5,

Mean 0, 0445
Median 0, 0401
St.Dev 0, 0312
Minimum 0, 0018
Maximum 0, 1212

AAEs (and also median error) is around 4% with an
standard deviation of 3%. Similar results can be obtained

12The first two months in 1962 are simulated using daily frequency, 50
iterations and 14 artificial variables. Available sample: 260.
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repeating the whole simulation for the entire period with
all time series in [1]. It is possible to see in those simula-
tions that AAEs decrease exponentially, showing the new
perspective (the ’lag approach’) indeed helps to improve
the performance of Multiple Imputation. The proposed ap-
proach to use MI with time series seems to avoid two previ-
ously mentioned issues: proper construction of the Markov
Chain and noise from other variables.
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Figure 9: Errors in Test 5

6 Conclusion
Multiple Imputation is a MCMC technique developed to
work out missing data problems via simulation of m sim-
ulated values. After this step, special inference rules are
applied to calculate the uncertainty of missing data over
the scalar of interest (it may be any value of the model
or individual cells of the database). MI is basically used
with cross-sectional data. In [1] the simulation accuracy
depends on the time series length, concluding a distance
effect appears disturbing MI.

In this article we made a further step using Multiple
Imputation on time series. MI may be successfully applied
on time series using the right data structure. Particularly,
in this research an endogenous perspective has been used
to design the database. This new perspective uses ’lags’ as
supporting variables for main time series, leading to a bet-
ter construction of the Markov chain. After some empirical
tests, the authors can conclude the ’lag perspective’ seems
to avoid noise in simulations, and allows MI to estimate
better plausible values.

7 Future Research
Focusing on the performed tests, the actual value is inside
the confidence interval, and Q is quite close to the real
value. Even the estimation results are much better now than
those obtained in previous papers, there are always things
to improve. Data frequency really matters in MI simula-
tions: it can be seen that more frequency improves simu-
lations (best results are on water temperature, worst results

are on annual frequency). In this situation, more uncer-
tainty on the simulations appears, so the loss of freedom
degrees is quite noticeable. More effort has to be put on
this side to obtain a better application of MI.

Appendix
CODE FOR THE INSTRUCTION MISTS()

1: mists← function(x,y,z,l){
2: require(mice)

3: x→ data
4: embed(data,l)→MRT
5: x[z]← NA
6: embed(x,l)→MR

7: mice(MR,maxit=y)→MRS

8: complete(MRS,1)→M1
9: complete(MRS,2)→M2
10: complete(MRS,3)→M3
11: complete(MRS,4)→M4
12: complete(MRS,5)→M5

13: rbind(M1[z,l],M2[z,l],M3[z,l],M4[z,l],M5[z,l])→ Valor

14: data.frame(Valor)→V
15: names(Valor)← P
16: midsobj← list(
17: data=(data[z]),
18: imp=MRS,

19: M1=as.matrix(M1[z,1:l]),
20: M2=as.matrix(M2[z,1:l]),
21: M3=as.matrix(M3[z,1:l]),
22: M4=as.matrix(M4[z,1:l]),
23: M5=as.matrix(M5[z,1:l]),

24: return(midsobj)
25: cat(agm(Valor))
26: }

CODE FOR THE INSTRUCTION RUBIN.VALUE()
1: rubin.value←function(x,y){

2: mdm(x$M1)→c1
3: mdm(x$M2)→c2
4: mdm(x$M3)→c3
5: mdm(x$M4)→c4
6: mdm(x$M5)→c5

7: sddm(x$M1)→cp1
8: sddm(x$M2)→cp2
9: sddm(x$M3)→cp3
10: sddm(x$M4)→cp4
11: sddm(x$M5)→cp5

12: rbind(c[i]$STATSM[y])→mm
13: rbind(cp[i]$STATSSD[y])→ss

14: dim(x$M1)→D
15: D1←D+1-y

16: MIinference(mm,ss,D1)→inference
17: print(inference)
18: list(inference=inference)
19: }
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