
FGN Based Telecommunication Traffic Models 
 

MING LI 1, WEI ZHAO 2, SHENGYONG CHEN 3 
1 School of Information Science & Technology 

East China Normal University 
No. 500, Dong-Chuan Road, Shanghai 200241 

PR. CHINA 
ming_lihk@yahoo.com, mli@ee.ecnu.edu.cn 

2 University of Macau 
Av. Padre Tomás Pereira, Taipa, Macau 

PR. CHINA 
zhao8686@gmail.com, WeiZhao@umac.mo 

3 College of Computer Science 
Zhejiang University of Technology 

Hangzhou 310023 
PR. CHINA 
sy@ieee.org 

 
 
Abstract: - This paper addresses three models of traffic based on fractional Gaussian noise (fGn). The first is 
the standard fGn (fGn for short) that is characterized by a single Hurst parameter. The second is the generalized 
fGn (GfGn) indexed by two parameters. The third the local Hurst function. The limitation of fGn in traffic 
modeling is explained. We shall exhibit that the model of GfGn can be used to release that limitation. Finally, 
we discuss the local Hurst function to interpret that it is a simple model to express the multifractal property of 
traffic on a point-by-point basis. 
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1 Introduction 
Teletraffic (traffic for short) modeling plays a role 
in telecommunications (Akimaru and Kawashima 
[1]). A modern telecommunication system is the 
Internet that is an infrastructure in modern societies. 
In principle, techniques of traffic modeling are 
application dependent. There are two categories of 
the traffic models, namely, stochastic modeling and 
deterministic modeling (Li and Borgnat [2]).  

Let )( itx  be an arrival traffic function, implying 
the number of bytes in the ith packet arriving at it  (i 
= 0, 1, 2, ),…  where it  is the timestamp of the ith 
packet (Li et al. [3]). The function )( itx  may 
represent either aggregated traffic, consisting of 
arrival packets of all connections at the input of a 
server, or arrival packets of a specific connection or 
a specific class of connections. The former is called 
aggregated traffic while the later traffic at 
connection level. Network management concerns 
about stochastic modeling in the aggregated case 
while QoS relates to bounded modeling at 
connection level. Without confusions, we use x(t) 

and x(i) to represent a traffic trace in the continuous 
case and the discrete case, respectively. 

The pioneering work of bounded modeling refers 
to Cruz [4] and that of TAMU (Raha et al. [5,6]). 
This type of models is developing towards 
stochastically bounded modeling, see e.g., Jiang [7], 
Jiang and Liu [8], Li et al. [9,10], Wang et al. 
[11,12], Starobinski and Sidi [13], Yaron and Sidi 
[14], Parekh and Gallager [15], Li and Zhao [16]. 

As far as the stochastic modeling of traffic was 
concerned, self-similar process may be the mostly 
used, see e.g., Partridge [17], Leland et al. [18], 
Crovella and Bestavros [19], Beran et al. [20], 
Paxson and Floyd [21], Tsybakov and Georganas 
[22], Willinger and Paxson [23], Adas [24], Michiel 
and Laevens [25], Stallings [26], Carmona et al. 
[27], Pitts and Schormans [28], MaDysan [29], 
Sheluhin et al. [30], Erramilli et al. [31], 
Karagiannis et al. [32], Chakraborty et al. [33], Song 
and Ng [34], Norros [35], Ma and Ji [36], Lee and 
Fapojuwo [37], He and Hou [38], Li [39,40], just 
citing a few.  

Note that the fractional Gaussian noise (fGn) is 
the only stationary self-similar process while 
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fractional Brownian motion (fBm) is the only 
nonstationary self-similar process. Therefore, we 
take fGn as the synonym of self-similar process if 
considering stationary processes or fBm when 
nonstationary ones in what follows. 

The limitation of fGn in modeling traffic was 
noticed by Paxson and Floyd [21], Tsybakov and 
Georganas [22], and Beran [41]. Therefore, in 
addition to the fGn modeling, locally self-similar 
processes are paid attention to, such as the 
generalized Cauchy process (Li [42,43], Li and Lim 
[44-46]), alpha stable processes (Karasaridis and 
Hatzinakos [47], Shao and Nikias [48], Garroppo et 
al. [49]), Levy flights (Terdik and Gyires [50], 
Kogon and Manolakis [51], Li [52,53]). This paper 
focuses on the fGn based models of traffic. 

By processing data of real traffic, it was reported 
that the fitting the data based on fGn is in the order 
of magnitude of 10−3 when the curve fitting is 
measured by mean square errors, see Li [54], Li et al. 
[55,56]. Those in [54-56] are quantitative results to 
describe the limitation stated in [21,22].  

Recently, two models based on fGn were 
reported. One introduced by Li [57] is an fGn model 
with two parameters, which significantly improves 
the model accuracy. The other is the local Hurst 
function that is introduced in mathematics by Peltier 
and Levy-Vehel [58], see its application to traffic 
modelling in Li et al. [59,60]. We take the local 
Hurst function as a model that is fGn based. 

This paper is organized as follows. We shall 
discuss fGn and its limitation in traffic modeling in 
Section 2. The limitation is further illustrated by 
using real-traffic traces in Section 3. In Section 4, 
we shall brief the two-parameter fGn and the local 
Hurst function modelling of traffic. Finally, Section 
5 concludes the paper. 
 
 
2. FGN and Its Limitation 
Traffic on old telephony networks obeys the Poisson 
model. It has been successfully used in the design of 
infrastructure of old telephony networks for years 
(Gibson [61]). It is such a success on old telephony 
networks that it has almost been taken as an axiom 
for modelling traffic in communication systems. 
Due to unsatisfactory performances of the Internet, 
such as traffic congestions, people began doubting 
about the Poisson model. To re-evaluate the Internet 
traffic models, people began measuring the Internet 
at different sites during different periods of times 
(Paxson [62,63] and Traffic Archive at 
www.sigcomm.org/ITA/). Experimental processing 
real–traffic traces reveals that traffic has fractal 
properties. The early fractal model used for traffic 

modelling is fGn that is introduced in mathematics 
by Mandelbrot and van Ness [64]. 

In order to clarify the significance of fractal 
models, we shall first brief the basics of 
conventional time series in this section. Then, fBm 
and fGn are discussed.  

Let {xl(t)} (l = 1, 2, …) be a 2-order stationary 
random process, where xl(t) is the lth sample 
function of the process. We use xl(t) to represent the 
process without confusion causing. Its mean is  

1

1( ) lim ( ) const.
x

N
s

lN l
t x t

N
µ

→∞
=

= =∑                (1) 

Its autocorrelation function (ACF) is given by 

1

1( , ) lim ( ) ( ) ( ).
x

N
s s

l l xN l
R t t x t x t R

N
τ τ τ

→∞
=

+ = + =∑  (2) 

In (1) and (2), the superscript s implies that the 
mean and the ACF are computed by using spatial 
average. The mean and the ACF of a process 
expressed by time average are expressed by 

0

1( ) lim ( ) const,
x

T
t

lT
t x t dt

T
µ

→∞
= =∫                 (3) 

0

1( ) lim ( ) ( ) ,
T

t
x l lT

R x t x t d
T

τ τ τ
→∞

= +∫                       (4) 

where the superscript t indicates that the mean and 
the ACF are computed by time average. 

The process xl(t) is said to be ergodic if (5) and 
(6) hold, 

( ) ( ) const,s t
x x xt tµ µ µ= = =                      (5) 
( ) ( ) ( ).s t

x xR R Rτ τ τ= =                               (6) 
Note that a real-traffic trace is a series of single 
history. In what follows, consequently, we just use 
x(t) to represent a traffic process. 

Denote by ( )p ξ  the probability density function 
(PDF) of traffic x(t). Then, the probability is  

2

1

2 1 1 2( ) ( ) Pr ob[ ] ( ) .
x

x

P x P x x x p dξ ξ ξ− = < < = ∫  (7) 

The mean and the ACF of x(t) based on PDF are 
written by (8) and (9), respectively, 

( ) ,x xp x dxµ
∞

−∞

= ∫                                       (8) 

( ) ( ) ( ) ( ) .xR x t x t p x dxτ τ
∞

−∞

= +∫                  (9) 

Let 2
xσ  be the variance of x. Then, x is said to 

follow the Gaussian distribution if 
2( )

221( ) .
2

x x

x

x

p x e
µ

σ

πσ

−
−

=                           (10) 

The Poisson distribution is a discrete probability 
distribution that expresses the probability of a 
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number of events occurring in a fixed period of time 
if these events occur with a known average rate and 
independently of the time since the last event. In 
communication networks, one is interested in the 
work focused on certain random variables N that 
count, among other things, a number of discrete 
occurrences (sometimes called “arrivals”) that take 
place during a time-interval of given length. Denote 
the expected number of occurrences in this interval 
by a positive real number λ. Then, the probability 
that there are exactly k occurrences (k being a non-
negative integer, k = 0, 1, 2, …) is given by the 
Poisson distribution below 

( ; ) .
!

kep x
k

λλλ
−

=                                     (11) 

One thing worth noting is that either (10) or (11) 
fast decays, more precisely, exponentially decays. 
Therefore, according to (8) and (9), xµ  and xR  are 
convergent, which is actually a defaulted 
assumption in the traditional theory of 
communication networks. However, actual traffic 
challenges such an assumption. 

Computer scientists claim that a traffic series is 
heavy-tailed, see e.g., [18-23], Resnick [65], 
Willinger et al. [66], Abry et al. [67], Cappe et al. 
[68], Li [69,70]. The tail of the PDF of traffic may 
be so heavy that its ACF decays hyperbolically. On 
the one hand, because of slowly decaying of the 
ACF, a random variable that represents a traffic 
series can be no longer considered to be independent. 
Hence, long-range dependence (LRD). On the other 
hand, the Fourier transform 

( ) ( ) ,j
x xS R e dωτω τ τ

∞
−

−∞

= ∫                        (12) 

of a slowly decayed ACF implies that the PSD of 
traffic with LRD obeys a power law. Hence, 1/f 
noise. These contents are actually in the domain of 
fractal time series. 

Now we consider the fractional Brownian motion 
(fBm). Let B(t) be a random process. Then, B(tn + 1) 
− B(tn) (n = 0, 1, 2, ...) is its increment process. If 
B(t) has the following properties, it is called 
Brownian motion ([4], Hida [73]). 
• The increments B(t + t0) − B(t0) are Gaussian. 
• E[B(t + t0) − B(t0)] = 0 and Var[B(t + t0) − B(t0)] 

= σ2t, where σ2 = E{[B(t + 1) − B(t)]2} = E{[B(1) 
− B(0)]2} = E{[B(1)]2}. 

• In non-overlapping intervals [t1, t2] and [t3, t4], 
the increments B(t4) − B(t3) and B(t2) − B(t1) are 
independent. 

• B(0) = 0 and B(t) is continuous at t = 0. 
Let BH(t) be fBm with the Hurst parameter H ∈ 

(0, 1). Let Γ(⋅) be the Gamma function. Then, 

( ) (0)H HB t B− = 
0

0.5 0.5

0.5

0

[( ) ( ) ] ( )
1 .

( 1/ 2)
( ) ( )

H H

t
H

t u u dB u

H
t u dB u

− −

−∞

−

⎧ ⎫
− − −⎪ ⎪

⎪ ⎪
⎨ ⎬Γ + ⎪ ⎪+ −⎪ ⎪⎩ ⎭

∫

∫
(13) 

The function BH(t) has the following properties. 
• BH(0) = 0. 
• The increments BH(t + t0) − BH(t0) are Gaussian. 
• Var[BH(t + t0) − BH(t0)] = σ2t2H, where σ2 = 

E{[BH(t + 1) − BH(t)]2} = E{[BH(1) − BH(0)]2} = 
E{[BH(1)]2}.                                                  (14) 

According to the properties of fBm, one has 
E{[BH(t2) − BH(t1)]2}  
= E{[BH(t2 − t1) − BH(0)]2}  

= E{[BH(t2 − t1)]2} = σ2(t2 − t1)2H.         (15) 
In addition, 

E{[BH(t2) − BH(t1)]2}  
= E{[BH(t2)]2} + E{[BH(t1)]2}  
− 2E[BH(t2)BH(t1)]  
= σ2(t2)2H + σ2(t1)2H − 2r[BH(t2), BH(t1)]. (16) 

Thus, the ACF of BH(t), denoted by , ( , ),
HB Wr t s  is 

given by 
,

2 2 2

( , )

,
( 1/ 2) ( 1/ 2)

HB W

H H HH

r t s

V t s t s
H H

⎡ ⎤= + − −⎣ ⎦+ Γ +
 

(17) 
where 

cosVar[ (1)] (1 2 ) .H H
HV B H

H
π

π
= = Γ −        (18) 

Denote by , ( , )
HB WS t ω  the PSD of BH(t). Then 

(Flandrin [71]), 
1 2

, 2 1

1( , ) (1 2 cos2 ).
| |H

H
B W HS t tω ω

ω
−

+= −  (19) 

From the above, we see that either the ACF or the 
PDF of BH(t) is time varying. Therefore, BH(t) is 
nonstationary. 

Note that BH(t) is self-similar because it satisfies 
the definition of self-similarity. In fact, 

( ) ( ),     0,H
H HB at a B t a≡ >                    (20) 

where ≡  denotes equality in the sense of probability 
distribution.  

From (19), one sees that the PSD of fBm is 
divergent at ω = 0, exhibiting a case of 1/ f α  noise, 
see Csabai [72] for the early work of 1/f noise of 
traffic. The relationship between the fractal 
dimension of fBm, denoted by DfBm, and its Hurst 
parameter denoted by HfBm is given by 

fBm fBm2 .D H= −                                      (21) 
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Note that the increment series, BH(t + s) − BH(t), 
is fGn. Thus, one has 

E{[BH(t4) − BH(t3)][BH(t2) − BH(t1)]} 
= r{[BH(t4) − BH(t3)], [BH(t2) − BH(t1)]} 
= E{[BH(t4)BH(t2) − BH(t4)BH(t1)  
    − BH(t3)BH(t2)] + BH(t3)BH(t1)} 
= E[BH(t4)BH(t2)] − E[BH(t4)BH(t1)] 

− E[BH(t3)BH(t2)] + E[BH(t3)BH(t1)] 
        = r[BH(t4), BH(t2)] − r[BH(t4), BH(t1)] 

    − r[BH(t3), BH(t2)] + r[BH(t3), BH(t1)].    (22) 
According to (17), therefore, one has 

r[BH(t4), BH(t2)] =
2

2
σ [(t4)2H + (t2)2H − (t4 − t2)2H], (23) 

r[BH(t4), BH(t1)] =
2

2
σ [(t4)2H + (t1)2H − (t4 − t1)2H], (24) 

r[BH(t3), BH(t2)] =
2

2
σ [(t3)2H + (t2)2H − (t3 − t2)2H], (25) 

r[BH(t3), BH(t1)] =
2

2
σ [(t3)2H + (t1)2H − (t3 − t1)2H].  

(26) 
Replacing the right hand of (22) by (23) ~ (26) 
yields 

E{[BH(t4) − BH(t3)][BH(t2) − BH(t1)]} 
= r{[BH(t4) − BH(t3)], [BH(t2) − BH(t1)]} 

=
2

2
σ [(t4 − t2)2H + (t3 − t2)2H − (t4 − t2)2H − (t3 − t1)2H]. 

(27) 
In the discrete case, we let t1 = n, t2 = n + 1, t3 = 

n + k, t4 = n + k + 1. Then, 
r{[BH(t4) − BH(t3)], [BH(t2) − BH(t1)]} 

=
2

2
σ [(k + 1)2H − 2k2H + (k − 1)2H].       (28) 

Thus, the ACF of the discrete fGn (dfGn) is 

r(k) =
2

2
σ [(k + 1)2H − 2k2H + (k − 1)2H]. (29) 

Since the ACF is an even function, we have 

( )σ ⎡ ⎤= + + − −⎢ ⎥⎣ ⎦

2
22 2

( ) 1 1 2 ,
2

HH H
r k k k k   (30) 

where ∈ .k Z� Denote by τ ε( ;  )HC  the ACF of fGn 
in the continuous case. Then, 

τ τε ττ ε
ε ε ε

− ⎡ ⎤⎛ ⎞
⎢ ⎥= + + − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 2 22 2

( ;  ) 1 1 2 ,
2

H H HH
H

H

V
C

(31) 
where ε > 0 is used by smoothing fBm so that the 
smoothed fBm is differentiable.  

The PSD of dfGn was derived out quite early by 
Sinai [74]. It is given by 

ω ω π ω
∞

− −

=−∞

= − +∑ 2 1
dfGn ( ) 2 (1 cos ) 2 ,

H
f

n

S C n    (32) 

where π π−= Γ +2 1(2 ) sin( ) (2 1)f HC V H H  and ω ∈ 
[−π, π]. The PSD of fGn is (Li and Lim [75]) 

1 22
fGn ( ) sin( ) (2 1) ,H

HS V H Hω π ω −= Γ +  (33) 
which exhibits that fGn is a type of 1/f noises. 

We say that f(t) is asymptotically equivalent to 
g(t) under the limit x → c if f(t) and g(t) are such 

that ( )lim 1
( )x c

f t
g t→

=  (Murray [76]), i.e., 

f(t) ~ g(t) (t → c) if ( )lim 1,
( )x c

f t
g t→

=          (34) 

where c can be infinity. It has the property 
expressed by 

f(t) ~ g(t) ~ h(t) (t → c).                       (35) 
In this sense, f(t) is called slowly varying function if 

( )lim 1
( )u

f ut
f u→∞

=  for all t. 

A random series x(i) is said to be of LRD if 
r(k) ~ ck β− ( k → ∞) for c > 0, β ∈ (0, 1), (36) 

where c can also be a slowly varying function. 
Eq. (36) implies that the ACF of a series with 

LRD is non-summable. That is, 
( ) .

k

r k = ∞∑                                            (37) 

Replacing β by the Hurst parameter H yields 
β = 2 − 2H.                                            (38) 

Thus, another expression of (36) is written by 
r(k) ~ 2 2Hck − ( k → ∞) for c > 0, H ∈ (0.5, 1). (39) 

On the other side, if β > 1 or H ∈ (0, 0.5), r(k) is 
summable, corresponding to the case of short-range 
dependence (SRD). 

Note that 0.5[(τ + 1)2H − 2τ2H + (τ − 1)2H] can be 
approximated by H(2H − 1)(τ)2H − 2. In fact, that is 
the finite 2-order difference of 0.5(τ)2H (Mandelbrot 
[77]). Approximating it with the 2-order differential 
of 0.5(τ)2H yields 
0.5[(τ + 1)2H − 2τ2H + (τ − 1)2H] ≈ H(2H − 1)(τ)2H − 2. 

(40) 
From the above, one immediately sees that fGn 

contains three subclasses of time series. In the case 
of H ∈ (0.5, 1), the ACF is non-summable and the 
corresponding series is of LRD. For H ∈ (0, 0.5), 
the ACF is summable and fGn in this case is of SRD. 
FGn reduces to white noise when H = 0.5. 

Among LRD processes, fGn has its advantage in 
traffic modeling. For example, it can be used to 
easily represent two types of traffic series, namely, 
self-similar process and processes with LRD.  

Note that LRD is a global property of traffic. 
However, in principle, self-similarity is a local 
property of traffic. It is measured by fractal 
dimension D, see e.g., Hall and Roy [78], Chan et al. 
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[79], Adler [80], Kent and Wood [81]. In fact, if 
( )R τ  of X(t) is sufficiently smooth on (0,  )∞  and if 

(0) ( ) ~  for 0,R R c ατ τ τ− →             (41) 
where c is a constant, then one has the fractal 
dimension of X(t) as 

2 .
2

D α
= −                                              (42) 

Denote fGnD  the fractal dimension of fGn. Then, 
according to the asymptotic expression (40), one has 

2
fGn fGn(0) ( ) ~  for 0.Hr r cτ τ τ− →       (43) 

According to (39) and (42), therefore, one 
immediately gets 

fGn 2 .D H= −                                           (44) 
Hence, for fGn, the local properties happen to be 
reflected in the global ones as noticed by 
Mandelbrot [82, p. 27]. 

The above discussions exhibit that fGn has its 
limitation in traffic modeling because it uses a 
single parameter H to characterize two different 
phenomena, that is, local property and global one. 
Recently, Li [57] introduced a generalized fGn 
indexed by two parameters, releasing the limitation 
of fGn in traffic modeling. 
 
 
3 Demonstrations 
Real data used in this paper consist of two traces. 
One is DEC-pkt-1.TCP and the other DEC-pkt-
1.UDP, where DEC implies that data were measured 
at Digital Equipment Corporation. Denote R(k) by 
R(k; H) for the illustrations below. 

The series x[t(i)] of DEC-pkt-1.TCP is indicated 
in Fig. 1 (a) and timestamp series t(i) is in Fig. 1 (b). 
The interarrival series s(i) is in Fig. 2. Denote by 
M2(R) the minimum mean square error for the data 
fitting. Then, M2(R) = 2.264×10−3 for s(i) of DEC-
pkt-1.TCP. The measured ACF of s(i) is plotted in 
Fig. 3 (a). The modeled ACF R(k) of s(i) of DEC-
pkt-1.TCP using fGn is indicated in Fig. 3 (b). Fig. 
3(c) shows the fitting the data. By eye, one sees that 
fGn does not satisfactorily fits the ACF of s(i) of 
DEC-pkt-1.TCP for short-term lags. 
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(b) 

Fig. 1. Traffic DEC-pkt-1.TCP. (a). x[t(i)]. (b). t(i). 
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Fig. 2. Interarrival series s(i) of DEC-pkt-1.TCP. 
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(c) ⎯⎯ r(k), ⋯⋯ R(k). 
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Fig. 3. Modeling procedure. (a). r(k): Measured 
ACF of s(i) of DEC-pkt-1.TCP. (b). R(k): Modeled 
ACF based on fGn. (c). Fitting the data. 
 

Real series t(i) for DEC-pkt-1.UDP is shown in 
Fig. 4 and s(i) in Fig. 5, respectively. The measured 
ACF of s(i) is shown in Fig. 6 (a). Fig. 6 (b) 
indicates the modeled ACF using fGn and Fig. 6 (c) 
shows the fitting the data with M2(R) = 6.09×10−3. 
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Fig. 4. Real series t(i) for DEC-pkt-1.UDP. 
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Fig. 5. Real series s(i) for DEC-pkt-1.UDP. 
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(c) ⎯⎯ r(k), ⋯⋯ R(k). 

Fig. 6. Modeling procedure. (a). Measured ACF of 
s(i) of DEC-pkt-1.UDP. (b). R(k): Modeled ACF 
based on fGn. (c). Fitting the data. 
 
 
4 Other fGn Based Models 
As mentioned previously, fGn has its limitation in 
modeling small lags of traffic. To release that 
limitation, Li [57] introduced the generalized fGn 
(GfGn). Its ACF in the discrete case is given by 

( )= + − + −
2

2 2 2

GfGn ( ; , ) | | 1 2 | | | | 1 ,
2

H H Ha a aHV
r k H a k k k  

(45) 
where 0 < a ≤ 1. It can be easily seen that the above 

GfGn ( ; , )r k H a  becomes the ACF of the standard fGn 
if a = 1. 

Traffic has multifractal properties, see e.g., 
Abrey and Veitch [83], Taqqu et al. [84], Feldmann 
et al. [85]. Due to this, we need considering 
processes that are locally self-similar. One of 
possible processes is to generalize fBm by replacing 
the Hurst parameter H by a continuously 
deterministic function H(t) (Lim and Muniandy 
[86]). The function H(t) satisfies H: [0, ∞] → (0, 1). 
Denote the generalized fBm by X(t), instead of BH(t), 
so as to distinguish it from the standard one. Then, 

0
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The following ACF holds for τ → 0 

2 ( ) 2 ( ) 2 ( )( )

E[ ( ) ( )]

.
( ( ) 1/ 2) ( ( ) 1/ 2)

H t H t H tH t

X t X t
V

t t
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τ τ
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⎡ ⎤+ + −⎣ ⎦+ Γ +

 

(47) 
In fact, H(t) can be regarded as a tool to characterize 
local properties of fBm. This can be seen when the 
self-similarity is expressed by 
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( )( ) ( ),     0.H tX at a X t a≡ >                    (48) 
Based on the local growth of the increment 

process, one may write a sequence expressed by 

0
( ) ( 1) ( ) ,   1 ,

1

j k

k
j

mS j X i X i k N
N

+

=

= + − < <
− ∑  (49) 

where m is the largest integer not exceeding N/k. 
Then, H(t) at point /( 1)t j N= −  is given by (Peltier 
and Levy-Vehel [58]) 

log( / 2 ( ))( ) .
log( 1)

kS jH t
N

π
= −

−
                    (50) 

Fig. 7 plots a real-traffic trace. Fig. 8 shows its H(t), 
easily giving the evidence of the multifractal 
property of traffic on a point-by-point basis. 
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Fig. 7. Traffic of BC-pAug89. 
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Fig. 8. Local Hurst function of X(i). 
 

Note that traffic theory relates to computational 
techniques, such as wavelet, fractals, time series and 
statistical computing in short [87-99], which we 
shall discuss in future. 
 
 
5 Conclusion 
We have explained 3 models of traffic based on fGn. 
The limitation of fGn has been addressed. The 
generalized fGn with two parameters is discussed 
and the local Hurst function to easily show the 
multifractal property of traffic is illustrated.  
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