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Abstract: - Recently, the correlation function of the Matérn’s receives increasing interests in geostatistics. This 
paper discusses our work in synthesizing the random data based on the Matérn’s correlation function. The 
analysis in this paper exhibits that the data of the Matérn type are in the domain of fractal time series. The 
present results suggest that the power spectrum (PSD) based method may be efficiently for synthesizing the 
random data of the Matérn type. We shall explain the reason to select the PSD based method and give the 
demonstrations of simulations. This paper may yet provide a pavement towards the generation of 
multidimensional random fields of the Matérn type. 
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1 Introduction 
Time series and stochastic processes gain 
applications to statistic issues in various fields, 
ranging from financial engineering to geosciences, 
as can be seen from Clements and Hendry [1], Box 
et al. [2], Fuller [3], Papoulis and Pillai [4], Bendat 
and Piersol [5], Elishakoff and Lyon [6], Preumont 
[7], Chatfield [8], Vegte [9], Balescu [10], Stanislaw 
[11], Chakrabarti [12], Dorf and Bishop [13], 
Landahl and Mollo-Christersen [14], Li [15]. In the 
field of stochastic processes, simulation of random 
series is a topic since the simulated data can be used 
to repeatedly explore the statistical properties of real 
random data (Ross [16]). This paper is in the area of 
random data generation. 

Nowadays, nonlinear time series is paid attention 
to, see e.g., Fan and Yao [17], Tong [18]. In this 
aspect, fractal time series and chaotic one are 
particularly attractive (Samorodnitsky and Taqqu 
[19], Mandelbrot [20], Beran [21], Boudec and 

Thiran [22], Liu [23], Li [24]). This paper is in the 
scope of the simulation of fractal time series. 

Recently, geostatistics, a branch of statistics, is 
developing fast. The Matérn correlation function 
(MCF) plays a role in serving as a flexible 
correlation function in the field of geostatistics, see 
e.g., Ripley [25], Schabenberger and Gotway [26], 
Chiles [27], Webster and Oliver [28]. It was 
introduced by Matérn [29] and Whittle [30], 
independently. Gneiting [31] first called such a 
function by the term of the Whittle-Matérn 
correlation family. Late, Guttorp and Gneiting [32] 
detailed it using the term of the Matérn correlation 
family. We use the term as that in [32].  

The MCF receives increasing attention in the 
academic society, see e.g., Minasny and McBratney 
[33], Handcock and Wallis [34], Dietrich [35], Lim 
et al. [36-38], Pardo-Igúzquiza et al. [39], Bivand et 
al. [40], Donner and Barbosa [41], just naming a 
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few. This paper aims at presenting a simulation 
method of random data based on the MCF. 

Denote by r(τ) the correlation function of a zero 
mean random function x(t) for t, τ ∈ R, where R is 
the set of real numbers. Then, 

r(τ) = E[x(t)x(t + τ)],                               (1) 
where E is the mean operator. A correlation function 
is said in the MCF family if 

r(τ) = ( ) ,
( )

v
v

c K
v
τ τ

Γ
                            (2) 

where c is a constant, Γ(⋅) is the Gamma function, 
and Kv(⋅) is the modified Bessel function of the 
second kind of order v. 

Note that the literature of synthesizing random 
data is rich, see e.g., the early work by Cox and 
Muller [42] in 1958, Press et al. [43], Saucier [44], 
Smozuka [45]. Recently, Li [46] discussed the 
reasons that the simulation of fractal time series is 
an issue worth studying. As will be mentioned in the 
next section, random function following the Matérn 
correlation family, which we call the random 
function of the Matérn type, is a type of fractal time 
series rather than conventional ones.  

In methodology, the generation of random data 
can be classified into two caterglories. One is to 
synthezise data according to a given probability 
density function (PDF), see e.g., Press et al. [43], 
Saucier [44]. The other is based on a given power 
spectrum density function (PSD), see e.g., Smozuka 
[45], Li and et al. [47-50]. For the generation of 
fractal time series with long-range dependence 
(LRD), autocorrelation function (ACF) based 
generation is considered, see e.g., Li and Chi [51], 
Li [46], Li et al. [52]. However, the random function 
of the Matérn type is of short-range dependence 
(SRD). Thus, we shall address that we prefer the 
method to synthesize the random function of the 
Matérn type to be PSD-based. 

The rest of paper is organized as follows. In 
Section 2, we shall give the problem statement and 
the preliminaries about this problem. In Section 3, 
the reason to select PSD-based method to synthesize 
the random function of the Matérn type will be 
explained. Demonstrations are given in Section 4. 
Discussions are in Section 5. Finally, we conclude 
the paper in Section 6. 
 
 
2 Problem Statement 
Recall that the process of the Matérn type is 
Gaussian (Lim and Teo [36]). A Gaussian process is 
uniquely determined by its ACF, equivalently its 
PSD (Papoulis and Pillai [4]).  

Conventionally, a Gaussian time series, say y(t), 
can be taken as the output (or response) of a system 
of integer order under the excitation of white noise 
w(t). The system expressed by a stochastically 
differential equation of integer order is given by  

0 0

( ) ( ) .
p i q ip q

i ip i q i
i i

d y t d w ta b
dt dt

− −

− −
= =

=∑ ∑                (3) 

Denote by g(t) the impulse function of the linear 
system (3). Denote the Fourier transforms of y(t), 
g(t), w(t) by Y(ω), G(jω), and W(ω), respectively, 
where 1j = −  and ω is angular frequency. Then, 
according to the theorem of convolution, one has 

Y(ω) = G(jω)W(ω).                                  (4) 
Denote the PSDs of y(t) and w(t) by Sy(ω) and Sw(ω), 
respectively. Then, Sw(ω) = 1 if w(t) is the 
normalized white noise. Therefore, one has 

Sy(ω) = |G(jω)|2.                                      (5) 
Thus, the solution to (3) in time is given by 

1( ) F [ ( )],y yr Sτ ω−=                                   (6) 

where 1F−  stands for the inverse of the Fourier 
transform. We note that the conventionally 
stochastically differential equation (3) may not 
produce the time series of the Matérn type as can 
seen from the following.  

Let f(t) be a piecewise continuous on (0, ∞). It is 
integrable on any finite subinterval of [0, ∞). For t > 
0, denote by 0

v
tD−  the Riemann-Liouville integral 

operator of order v > 0. It is given by 
1

0
0

1( ) ( ) ( ) ,
( )

t
v v

tD f t t u f u du
v

− −= −
Γ ∫         (7) 

see Lubich [53], Miller and Ross [54], Podlubny[55], 
Hilfer [56], Lakshmikantham et al. [57]. 

Now, we turn to the Langevin equation. The 
standard Langevin equation is given by 

1( ) ( ),d X t w t
dt

λ⎛ ⎞+ =⎜ ⎟
⎝ ⎠

                             (8) 

where λ > 0 (Papoulis and Pillai [4]). The solution 
to (8) in frequency domain or in time is given by 

1 2 2

1( ) ,XS ω
λ ω

=
+

                                   (9) 

1
( ) .Xr e ττ −=                                            (10) 

Different from the derivations of either the 
Matérn’s [29] or the Whittle’s [30], Lim and Eab 
[58] derived the correction function of the Matérn 
family from the following fractional Langevin 
equation with a single parameter β > 0  

1( ) ( ).d X t w t
dt

β

λ⎛ ⎞+ =⎜ ⎟
⎝ ⎠

                         (11) 

We address the MCF following [58-60]. 
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Denote 
1
( )Xg t  the impulse response function of 

the above equation. Then, it is the solution to (12) 

1
( ) ( ),X

d g t t
dt

β

λ δ⎛ ⎞+ =⎜ ⎟
⎝ ⎠

                        (12) 

where ( )tδ  is the Dirac-δ function. Denote by 

1
( )XG ω  the Fourier transform of 

1
( ).Xg t  Then, 

doing the Fourier transforms on the above yields 

( )1

1( ) ,XG
j βω

λ ω
=

−
                            (13) 

Then, 

( )1 2 2

1( ) .XS βω
λ ω

=
+

                            (14) 

The above is the solution to (11). The inverse 
Fourier transform of (14) yields the solution to (11) 
in time domain. It is given by 

( )
1 1

2
1( ) F ( ) ,

2 ( 1/ 2)

v
v

X X vv
C S K

v
λτ ω λτ λτ

π

−
− ⎡ ⎤= =⎣ ⎦ Γ +

 

(15) 
where v = β − ½. 

Note that, for v = H ∈ (0, 1), (14) becomes 

( )1 1/ 22 2

1( ) .X HS ω
λ ω

+=
+

                       (16) 

Thus, a random function of the Matérn type is SRD. 
We note that an SRD series does not mean that it is 
smooth. Denote by D the fractal dimension of the 
random function of the Matérn type. It is a measure 
of the local irregularity and is expressed by 

D = 2.5 − β.                                            (17) 
The larger the value of D the stronger the local 
irregularity. One thing essential is that the processes 
of the Matérn type are in the domain of fractal time 
series. Therefore, the random data of the Matérn 
type is not in the conventional sense. Its simulation 
is worth studying. Fig. 1 indicates the plots of the 
PSD of the Matérn type for β = 0.15, 0.25, 0.35, 
0.45, 0.55, 0.65, 0.75, 0.85, and 0.95. 
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Fig. 1. Illustrations of the PSD of the random data of 
the Matérn type. (a). β = 0.15. (b). β = 0.25. (c). β = 
0.35. (d). β = 0.45. (e). β = 0.55. (f). β = 0.65. (g). β 
= 0.75. (h). β = 0.85. (i). β = 0.95. 
 
 
3 Simulation Method 

Let U be a uniformly distributed random number 
between 0 and 1. Let p(x) and F(x) be the PDF and 
cumulative distribution function of x, respectively 
Then, 

( ) ( )d .
x

F x p t t
−∞

= ∫                                     (18) 

From the above, one sees that if the PDF of x is 
given, F(x) is known. Therefore, the PDF-based 
method, i.e., the inverse transform method, says that 
if 

X = F −1(U),                                           (19) 
then x has the given PDF p(x), referring Press et al. 
[43], Saucier [44] for this method. 

Though the random function of the Matérn type 
is Gaussian, the PDF-based method may be difficult 
to use since that method can only assure the 
generated random data to follow the given PDF 
instead of the given form of either ACF or PSD. 

As far as the ACF-based method was concerned, 
for a given ACF 

1
( ),XC τ  we have the synthesized 

random data expressed by 
y = w∗F−1{[F(CX1)]0.5},                         (20) 

where * represents the convolution and F the 
Fourier transform, and w the white noise [46]. Note 
that both 

1
( )XC τ  and 

1
( )XS ω  are ordinary functions. 

Thus, the ACF-based method expressed by (20) 
works in principle. However, it may be time 
consuming compared to the PSD-based method 
interpreted below.  

Let x(t) be a random function with the frequency 
bandwidth (0, fmax), where fmax is the maximum 
effective frequency of x(t). Let Sx(f ) be its PSD. The 
discrete Sx(f ) is given by Sx(n∆f ) (n = 1, 2, …, N), 
which implies that its PSD is divided into N equal 
increments of width ∆f between 0 and fmax. 
According to the analysis in [11,12,45], one has 

1

( ) cos[2 ( )],
N

n
n

x t a n ft n fπ ϑ
=

= ∆ + ∆∑           (21) 

where 0 ≤ t ≤ Tr, and ϑ(n∆f ) is a uniformly 
distributed random phase between −π and π. The 
coefficients an are given by 

( ) 2 ( ) .n xa a n f S n f f= ∆ = ∆ ∆                (22) 
Eq. (21) produces the random data whose PSD 

Sx(f ) is predetermined. The data generated with (21) 
contain periodicity. Let Tr be the period of the 
generated random data. Then, 

r
1 .T
f

=
∆

                                                (23) 

In the case of the finite Fourier transform, 
N∆f = fmax,                                             (24) 
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r

N
T

= fmax.                                                (25) 

Within [0, Tr], the generated random data are not 
repeated. 
 
 
4 Demonstrations 
For Tr = 10, we plot the generations for β = 0.15, 
0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, and 0.95 in 
Fig. 2, which exhibits the periodicity of 10. 

We now increase Tr up to 100. The simulations 
for β (= 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 
and 0.95) for Tr = 100 are shown in Fig. 3, which 
imply the periodicity of 100. If we further increase 
Tr up to 1000, the simulations are not repeated 
within [1, 1000], see Fig. 4. 
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Fig. 2. Simulations for Tr = 10. (a). Simulation for β 
= 0.15. (b). Simulation when β = 0.25. (c). β = 0.35. 
(d). Simulation for β = 0.45. (e). Simulation for β = 
0.55. (f). Simulation for β = 0.65. (g). Simulation 
for β = 0.75. (h). Simulation for β = 0.85. (i). 
Simulation for β = 0.95. 
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Fig. 3. Simulations for Tr = 100. (a). Simulation 
when β = 0.15. (b). Simulation when β = 0.25. (c). 
Simulation for β = 0.35. (d). Simulation for β = 0.45. 
(e). Simulation for β = 0.55. (f). Simulation for β = 
0.65. (g). Simulation for β = 0.75. (h). Simulation 
for β = 0.85. (i). Simulation for β = 0.95. 
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Fig. 4. Simulations for Tr = 1000. (a). Simulation 
when β = 0.15. (b). Simulation when β = 0.25. (c). 
Simulation for β = 0.35. (d). Simulation for β = 0.45. 
(e). Simulation for β = 0.55. (f). Simulation for β = 
0.65. (g). Simulation for β = 0.75. (h). Simulation 
for β = 0.85. (i). Simulation for β = 0.95. 
 
 
5 Discussions 
Note that the fractal dimension represents the local 
irregularity of a sample path [61-72]. Therefore, 
smaller value of β implies higher local irregularity. 
Such an effect is implied in Figs. 2-4. In Fig. 5, 
where Tr = 200, we purposely plot two simulations 
for β = 1.5 (i.e., D = 1) and β = 0.6 (i.e., D = 1.9) to 
demonstrate the effect of the local irregularity.  

There are two things we shall work on in future. 
We shall study the simulation efficiency of the PSD-
based method. In addition, we shall study the 
method to synthesize random field of the Matérn 
type. 
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Fig. 5. Simulations for Tr = 200. (a). Simulation 
when β = 1.5. (b). Simulation when β = 0.6. 
 
 
6 Conclusion 
We have discussed the famous correlation function 
of the Matérn’s. We have explained the PSD-based 
method of simulating the random series of the 
Matérn type. The demonstrations of simulations 
have been indicated.  
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