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Abstract: - Moving least squares (MLS) has wide applications in scattering points approximation fitting and 

interpolation. In this paper, we improve a novel MLS approach, adaptive MLS, for non-uniform sample points 

fitting. The size of radius for MLS can be adaptively adjusted according to the consistency of the sampled 

data points. Experiments demonstrate that our method can produce higher quality approximation fitting 

results than the MLS. 
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1 Introduction 

A curve or surface can be easily drawn if we know 

its explicit representation. However, in most 

engineering application, an explicit formation can 

not be provide for such curve or surface. So, we 

often need to have a dataset of points that sampled 

in a specific scope
[1][2][3]

, with which the curve or the 

surface can be represented by interpolation or 

fitting. The basic idea of interpolation is to do an 

approximate estimation to unknown points with the 

given discrete points, then connect these discrete 

points to obtain the entire curve (curved surface). 

Although the whole smoothness of interpolation is 

good enough, in the boundary of the points set, the 

potential error of interpolation is greater. Thus 

fitting is more frequently used, such as the 

reconstruction of curves. Classical fitting methods 

include Radial Basis Function (RBF) method[4],  

Least-squares method[5], and the Moving Least 

Squares with superior property developed from 

Least-squares method(Moving Least Squares, 

hereinafter referred to as MLS)[5-11]. In recent 

years, MLS has attracted great attention, and now is 

becoming a hot focus in related researching fields. 

A major factor that affects the quality of fitting in 

MLS is the selection of the radius of influence 

domain. In order to obtain high-quality fitting, many 

approaches were presented. In literature [2][12][13] 

heuristic algorithm was used, for instance, weight 

space[14] ball which contains k-nearest neighbors 

and Voronoi triangularization[15] can be used to 

search the influence domain of being fitted points. 

But the limitation of the above method is that only 

when the discrete points are distributed regularly or 

the density of the sampled points is basically 

constant, can it be effective. When it comes to 

non-uniform distribution of sampled points, it would 

be quite difficult to get the fitting details by MLS, 

even hardly can it be realized when it comes to 

larger convex (concave) hull, and still, the fitting 

error is still relatively huge. 

We present an adaptive moving least squares in 

this paper, in which the radius of influence domain 
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is adjusted dynamically according to the density of 

the sampled points. This new method could do 

superior fitting than classical MLS for either dense 

or sparse sampled points. Moreover, when the basis 

function takes the second basis or higher, the 

smoothness of fitting will be better. 

 

 

2 The Moving Least Square Algorithm 

According to fitting region, fitting function f(x) is 

figured as: 
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In above function, a(x) = [a1(x), a2(x) , … , am(x)]
T
 

is the coefficient of the fitting function f(x), In the 

process of calculation, a(x) dynamically changes 

along with the being fitted points. p(x) = [p1(x), 

p2(x) ,..., pm(x)] is the base function which is a 

base-order complete polynomial.  

In order to let the fitting function f(x) close in 

upon the true value u(x) better, at each point x of the 

fitting area, similar to the least-squares principle, the 

value of J in formula (2) should be as small as 

possible.         
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Formula (2) also can be written in matrix form as 
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where n represents the number of sampled points in 

the fitting region. R is the radius of influence, and 

w(x) is the weight function. According to 

mathematical knowledge, J takes the derivative on 

a(x) to zero, then Eqs.(3) and (4) are gotten as 
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J

A x a x B x u
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∂
= − =

∂
                   (6) 

Formula (6) also can be written in matrix form as 
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Via Eqs. (1) and (10), using an appropriate 

sub-base function according to the actual needs, you 

can obtain the approximate value of being fitted 

point. 

All above is the basic principle of the moving 

least squares(MLS). Taking the fitting accuracy, 

smoothness, calculational amount and so on into 

account, in practical application, 1 or 2 times is 

usually chosen for the basis function. Weight 

function usually is spline function as (11) and (12),  

Gaussian function as (13) or exponential function as 
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(14) in which the symbol β  is the figure 

parameter.  
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But, according to a latest literature[16] in MLS, 

the weight function should be defined as Eq.(15) 

which has been improved by us through experiment 
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 (15) 

The result of fitting will be better when the 

weight function w(x) defined as Eq.(15) rather than 

spline function, and in order to cut down the fitting 

time, in this paper, we take Eq.(15) as the weight 

function rather than Gaussian function 

acquiescently. 

 

 

3 Adaptive MLS Algorithm 

3.1 The Shortcoming of Moving Least 

Squares in Non-uniform Points Set Fitting 

When the sampled points which are being fitted by 

traditional MLS are non-uniform, the radius R of 

the influence domain of point to be fitted (i.e., 

compact support domain) usually depends on the 

density of the sparse sampled area. As shown in 

Fig.1, symbol V_true represents the true value of 

point V, Vdr represents the fitted value of point V as 

the radius of influence domain adjusts dynamically, 

Vsr represents the fitted values of V points by 

traditional MLS method. dR represents the radius of 

influence domain obtained while fitting 

dynamically, and sR represents the radius of 

influence domain in traditional MLS at point V, in 

order to make sure matrix A(x) reversible  in 

Eq.(4) and the fitting smooth, R will make the point 

to be fitted contains too many sampled points in it’s 

influence domain, which will result in the fitting 

value far more less than the real. But actually, V’s 

proper radius of influence is less than R. If we let 

the radius of influence domain be dR, the fitted 

value Vdr would be quite closed to the real value. 

Vdr is really more accurate than Vsr. Thus, the 

whole fitting effect would be improved very much if 

we could adjust the radius of influence domain 

according to the density of the sampled points 

dynamically. 

 

 

 

(a)The radius of dense   (b) The radius of sparse 

sampled points         sampled points 

 

   

 

                   (c) Fitting diagram 

 

Fig. 1  The relationship between the radius 

 of influence and the fitting  
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3.2 An Adaptive MLS 

The local shape in some one of the non-uniform 

points is relative to the neighbors merely, so before 

fitting, we need to find the effective sampled points 

for current point marked V fitting, and this can be 

done by seeking the k-nearest neighbor points of V. 

In this paper, we present an adaptive MLS to do 

non-uniform points set fitting betterly. The matrix 

A
-1
(x) must exist before using the adaptive MLS to 

do fitting, This could be fulfilled by searching V’s 

k-nearest neighbors which contains k sampled 

points not all in the same line. The process of the 

adaptive MLS fitting is as follows: 

(1)Assuming the domain to be fitted be in x[xmin, 

xmax], y[ymin, ymax]. Divide the fitting area with 

squares of which side length is L, and 

m ax m in m a x m in( 1 )( 1 )L x x y y
n

k
α

α= + − + −
,

α  

denotes regulating factor of L. According to 

literature[17], We let it equal 1.1. k represents the 

k-nearest neighbors, and the n is the number of 

sampled points. 

(2)To current point V(x’, y’) coming to be fitted, 

calculate the square S[ '/ ][ '/ ]x L y L        where it 

lies according to the square side length L got from 

Eq.(1) ( .    expresses the flooring operation). 

(3)To the sampled points in square 

S[ '/ ][ '/ ]x L y L       , sort the points from small to 

large according to the euclidean distance to the V. If 

the current square S [ '/ ][ '/ ]x L y L        contains 

less than k sampled points or the euclidean distance 

of the j
th
(j<=k) nearest sampled point to V Dsk is 

larger than Dmin (Dmin is the shortest distance of the 

current being fitted point to the four sides of S), go 

to step 4; else consider the distance of the k
th
 nearest 

sampled point to V as the radius of influence 

domain and these sampled points are linearly 

independent. Else find out the k+i-nearest(i= 

1,2,…), until in which there are k sampled points 

linearly independent in the current V’s k+i-nearest 

points or having considered all the sampled points 

in the current S, less than k linearly independental 

sampled points are found, then go to step 4. All 

these could be shown as Fig.2. 

(4)If there are divided squares besides the square 

S
[ '/ ][ '/ ]x L y L        in it’s four directions, then 

take these sampled points into current squares 

account together and let current Dmin and L treble, 

then go to step (3); else make the point who has the 

furthest distance within the sampled points of 

current S to V as the size of radius of influence 

domain. Just here, the whole algorithm is over. 

   

 

(a) The number of the sampled points is less than k in S 

 

 

(b) The distance from k- nearest neighbors of V to V Dsk>Dmin 
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        (c) The distance from S is less than k neighbors of V 

to V Dsk<=Dmin 

Fig. 2  The distribution map about the distance from 

sorted sampled point in S to V 

 

                                                   

Fig. 3  The fitting flow chart of Adaptive MLS 

At each point to be fitted, with the radius R of the 

influence domain obtained through above steps of 

the adaptive MLS, the fitting could be carried out 

finally as shown in Fig.3. 

 

4 Experiment Evaluation and Results 

4. 1 Curve Fitting 

Select two representative formulas (16) and (17), 

with 12 non-uniform sampled points as [-2.9 -2 -1.2 

-0.8 -0.7 -0.45 0 0.5 1 1.8 2.1 2.7] in the interval 

[ 3,3]x∈ − , to make curve fitting respectively on the 

first base function p(x) = [1 x] and the second base 

function p(x) = [1 x x
2
] ( the results are similar 

when the base of the p(x) takes third or larger 

times): 

2 2 2 2(9 5) (9 11) (9 5) (9 1)

16 196 16 4
1

8 7 6 3
x x x x

x
F e e e e

− − + +
− − − −

= + + − (16) 

2

( 1 ) 2

2

cos( )
sin( )x

x
F x xe x

− +
= − +                 (17) 

The fitting results are shown as Figs.4 and 5. We 

can see from the Figs. that the fitting when the 

adaptive MLS takes the second base function is 

closer to the real results more. In Fig. 4 and 5, the 

graphs drawn with solid lines indicate the 

corresponding real graph, and the ones with broken 

lines are the graphs by the MLS or the adaptive 

MLS.   

         

(a) MLS first base          (b) MLS second base 

fitting (R=2)              fitting (R=2.4) 

 

         
     (c) Adaptive MLS first      (d) Adaptive MLS second 

base fitting               base fitting 

Fig. 4  The comparative experiment results of function 

Fx1 fitting 
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(a) MLS first base         (b) MLS second base 

fitting(R=2)               fitting(R=2.4) 

 

     

(c) Adaptive MLS          (d) Adaptive MLS 

first base fitting            second base fitting 

Fig. 5  The comparative experiment results of function 

Fx2 fitting 

 

4.2 Surface Fitting 

Select two representative formulas (18) and (19), in 

the interval [ 3,3]x∈ −  [ 3,3]y∈ −  shown in Fig. 6 

about 36 non-uniform sampled points, to do the 

surface fitting on the first base function p(x) = [1 x 

y] and second base function p(x) = [1 x y x
2
 xy y

2
] 

respectively (the results are similar when the base of 

the p(x) takes third or larger times): 

 
Fig. 6  The distribution of 36 sampled points 

 

2 2 2 2 2 2 2(9 5) (9 5) (9 11) 9 11 (9 5) (9 3) (9 1) (9 5)

16 19 20 16 4
1 8 7 5 2

x y x y x y x y

mF e e e e
− + + − − + + − + + +

− − + − −
= + + − [18] (18) 

2 2 8 8 2

1 1
sin sin

1 1
mF

x y x y
= −

+ + + +
                   (19) 

The fitting results are shown as Figs. 7-8 

 

  (a) The original graph 

 

      

 (b) MLS first base fitting     (c) MLS second base fitting 

(R=2.5）                 (R=3.5) 

 

      

 (d) Adaptive MLS first       (e) Adaptive MLS second 

base fitting                 base fitting 

Fig. 7  The comparative experiment results 

 of function Fm1 fitting 
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(a) The original graph 

 

  

(b) MLS first base fitting   (c) MLS second base fitting 

(R=2.5）                    (R=3.5) 

 

     

(d) Adaptive MLS first     (e) Adaptive MLS second 

base fitting               base fitting 

Fig. 8  The comparative experiment results of function 

Fm2 fitting 

 

4. 3 Results Analysis 

Based on the curve fitting and surface fitting 

experiment obtained by traditional MLS and the 

adaptive MLS presented in this paper respectively, 

we do error analysis about the fitting results. We 

take B(i) and Qmethod as the fitting error difference 

function and fitting performance function 

_ _( ) | | | |MLS j j RSRMLS j jB j F F F F= − − − （j=1,…,N） (20) 

1

(2 1)

*100%

N
t

j

methodQ
N

=

−

=
∑

            (21) 

When the method is the adaptive MLS in 

formula(21), if formula(21) satisfies that B(j)>0, t is 

valued 1, else t is valued 0; when the method is 

MLS, if formula(21) satisfies that B(j)<0, t is valued 

1, else t is valued 0. N is the number of points have 

been fitted. 

According to the criterion given by formula(20) 

and (21), do error difference analysis to the result 

Figs. 4 and 5 of functions Fx1 and Fx2 obtained by 

MLS and the adaptive MLS fitting and result Figs. 7 

and 8 of functions Fm1 and Fm2, we can come to see 

the percent of error done by the adaptive MLS 

fitting in all the fitting area to Fx1、Fx2、Fm1 and Fm2 

is less than all that of MLS, which is shown in the 

following table1. 

 

Table 1. The whole fitting region Adaptive MLS fitting 

error is less than that of MLS 

 

From the error comparing analysis between MLS 

and the adaptive MLS in curve and surface fitting, 

we can easily reach the conclusion that the fitting 

error is less when using the adaptive MLS this paper 

presented compared with that obtained by traditional 

MLS based on the same sampled points. After the 

detail comparisons of Figs. 4 and 5 and Figs. 7 and 

8, we also find the effect of adaptive MLS is much 

better than that of traditional MLS in detail fitting. 

Especially, the fitting of typical complex function 

Fx1 in Fig. 4, the result graph obtained by adaptive 

MLS fitting almost completely overlap with the real 

graph in condition that 12 sampled points spread 

non-uniformly. And the result is even better when 

base function p(x) is linear, while MLS only could 

give a generally trend. Function Fm1 has 3 polar 

 fitted function 

times of base function      

Fx1       Fx2      Fm1    Fm2         

first base function               83%    80%   72%   70%      

second base function             81%    84%   78%   69%      
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peaks as shown in Fig. 7(a). And they all haven been 

fitted nearly by the adaptive MLS, while the largest 

polar peak gotten by traditional MLS. In Fig. 8, 

function Fm2 has two not very clear polar peaks. 

They were both fitted obviously by adaptive MLS, 

while neither of them gotten by traditional MLS. In 

addition, in dealing with more complex functions, 

more realistic function trends could be fitted better 

by adaptive MLS compared with the traditional 

MLS even the sampled points very sparse. Above 

all, the fitting performance of the adaptive MLS is 

better than that of traditional one. 

 

 

5 Deformation Based on the Adaptive 

MLS 

Besides fitting, the Adaptive MLS also could be 

used in 2D or 3D graphics deformation with 

excellent performance. Now we assume ip  be the 

set of control points and iq  the deformed new 

positions of the control points, and then we need to 

find an appropriate affine function ( )v ig p  with 

which the new iq  could be calculated, and the 

deformation at the other points in the graphics could 

be calculated according to the control points as 

formula(22)
[19]

 

∑ −−
i

iivii qpgRpv
2

)()/)((min ω        (22) 

Where, iω  is the weight function, R the radius of 

influence, and the nearer distance from v to ip , the 

less value of weight function. What’s more, the R 

could be adjusted dynamically according to the 

density of neighboring control points. 

In order to obtain the affine function ( )v ig p , we 

must minimize formula(22), which could be fulfilled 

via mathematical theories. And with the presented 

adaptive MLS we could deform the graphics with 

some non-uniform control points to new shape as 

shown in Fig. 9 

 

    

(a) Original graphics 

 

 

(a)                 (b) Non-uniform control points 

 

   

(c) Deformation 1 
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(d) Deformation 2 

Fig. 9  The deformation based on the adaptive MLS 

 

    Fig. 9 The deformation based on the adaptive MLS 

As shown in Fig. 9, we could see that the 

deformation performance of the adaptive MLS is 

excellent, especially the Fig. 9(c) and Fig. 9(d) 

which are vivid. 

 

6 Conclusion 

In this paper, we presented an adaptive MLS, in 

which k-nearest neighbor theory was adopted to 

select appropriate sampled points to fit current 

unknown point. By this way, the radius of influence 

domain can be adjusted dynamically according to 

the density of the surrounding sampled points, and 

the curve or surface can be reconstructed via the 

presented adaptive MLS. Through experiment we 

can draw a conclusion that the fitting performance of 

the adaptive MLS is superior compared with 

traditional MLS algorithm. Besides fitting, the 

presented adaptive MLS also could be used in 

graphics deformation with excellent performance. 

Furtherly, the adaptive MLS could be applied in 

massive 3D discrete sampled data recovery, or fitting 

sampled points in visualization etc. 
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