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Abstract: - The numerical analysis of boundary layer effect is one of the major concerned problems in boundary 

element method (BEM). The accuracy of this problem depends on the precision of the evaluation of the nearly 

singular integrals. In the boundary element analysis with direct formulation, the hyper-singular integral will 

arise from the potential derivative boundary integral equations (BIEs). Thus the nearly strong singular and 

hyper-singular integrals need to be calculated when the interior points are very close to the boundary. For nearly 

hyper-singular integrals, it is thought, generally, more difficult to calculate. In this paper, a general nonlinear 

transformation is adopted and applied to calculating the potential and its derivative at the interior points very 

close to the boundary. Numerical examples demonstrate that the present algorithm is efficient and can overcome 

the boundary layer effect successfully even when the interior points are very close to the boundary. 

 

Key-Words: - BEM; potential problems; nearly singular integrals; boundary layer effect; transformation; 
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1   Introduction 

 
Research on numerical methods of differential 

equations is a hot topic. Many efficient methods for 

finding numerical solutions of differential equations 

have been presented so far such as in [1-4]. 
The BEM is power and efficient computational 

methods if integrals are evaluated accurately, 

and the main advantages of the BEM resulting 

from the reduction of the dimension of the 

boundary value problem are well-known. 

However, it is popular as well that the standard 

BEM formulations include singular and nearly 

singular integrals, and thus the integrations 

should be performed very carefully. Other than 

the nearly singular integral, many direct and 

indirect algorithms for singular integral have 

been developed and used successfully [5-15]. 

Therefore, the key point in achieving the 

required accuracy and efficiency of the BEM is 

not the singular integral but the nearly singular 

integral. Although that difficulty can be 

overcome by using very fine meshes, the process 

requires too much preprocessing and CPU time.  

Nearly singular integrals are not singular in 

the sense of mathematics. However, from the 

point of view of numerical integrations, these 

integrals can not be calculated accurately by 

using the conventional numerical quadrature 

since the integrand oscillates very fiercely within 

the integration interval. The accurate evaluation 

of nearly singular integrals plays an important 

role in many engineering problems. In general, 

these include evaluating the solution near the 

boundary in potential problems and calculating 

displacements and stresses near the boundary in 

elasticity problems, for example, contact 

problems, displacement around crack tips, 

sensitivity problems and thin-body problems.  

In the past decades, tremendous effort was 

devoted to derive convenient integral forms or 

sophisticated computational techniques for 

calculating the nearly singular integrals. These 

proposed methods can be divided on the whole 

into two categories: “indirect algorithms” and 

“direct algorithms”. The indirect algorithms, 

which benefit from the regularization ideas and 

techniques for the singular integrals, are mainly 

adopted to calculate indirectly or avoid 

calculating the nearly singular integrals by 

establishing new regularized BIE [11-18]. The 

direct algorithms are employed to calculate the 

nearly singular integrals directly. They usually 

include interval subdivision method [19-21], 
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special Gaussian quadrature method [22], exact 

integration method [23-31], and various 

nonlinear transformation methods [32-40]. In a 

recent study, the above methods have been 

reviewed in detail by Zhang and Sun [41].  

Although great progresses have been 

achieved for each of the above methods, it 

should be pointed out that the geometry of the 

boundary element is often depicted by using 

linear shape functions when nearly singular 

integrals need to be calculated [42, 43]. In fact, 

to the authors’ best knowledge, no work is found 

in the literature which can be used to calculate 

the nearly singular integrals under high-order 

geometry effectively. However, most 

engineering processes occur mostly in complex 

geometrical domains, and obviously, higher 

order geometry elements are expected to be more 

accurate to solve such practical problems. When 

the geometry of the boundary element is 

approximated by using high-order 

elements—usually of second order, the Jacobian 

( )J ξ  is not a constant but a non-rational function 

which can be expressed as 2a b cξ ξ+ + , where 

,a b and c  are constants, ξ  is the dimensionless 

coordinate; The distance r  between the field 

points and the source point is a non-rational 

function of the type 4 ( )p ξ , where 4 ( )p ξ  is the 

fourth order polynomial. Thus, the forms of the 

integrands in boundary integrals become more 

complex, and it is, unfortunately, more difficult 

to implement when nearly singular integrals 

need to be calculated. 

In this paper, a general nonlinear 

transformation is adopted and applied to 

calculating the potential and its derivative at the 

interior points very close to the boundary in 2D 

potential problems. The proposed transformation 

is constructed based on the idea of diminishing 

the difference of the orders of magnitude or the 

scale of change of operational factors. After the 

BIEs are discretized on the boundary, the nearly 

weakly singular, strongly singular and 

hyper-singular integrals can be calculated 

accurately by using the present method. The 

nonlinear transformation is available for linear 

and quadratic elements. Both temperatures and 

its derivative at the interior points very close to 

the boundary are accurately computed. The 

algorithm derived in this paper substantially 

simplifies the programming and provided a 

general computational method for solving thin 

coating problems. 
 

 

2 �on-singular boundary integral 

equations (BIEs) 

 
It is well known that the domain variables would 

be computed by using integral equations only 

after all the boundary quantities have been 

obtained, and the accuracy of boundary 

quantities directly affects the validity of the 

interior quantities. However, when calculating 

the boundary quantities, we have to deal with the 

singular boundary integrals, and a good choice is 

to use the regularized BIEs. In this paper, we 

always assume that Ω  is a bounded domain in 
2R , c

Ω  is its open complement; Γ = ∂Ω  

denotes their common boundary; ( )t x  and ( )n x  

are the unit tangent and outward normal vectors 

of Γ  to domain Ω  at point x , respectively. For 

two dimensional potential problems, the 

equivalent non-singular BIEs with direct 

variables are given in [12].  

 

[ ]
* *( , ) ( ) ( ) ( ) ( , ) ,u q d u u q d y

Γ Γ

Γ = − Γ ∈Γ∫ ∫x y x x y x y

                                                                (1) 

where we can take the fundamental solution 
*( )u x, y  for Eq. (1) as 

* 1
( ) ln

2
u r

π

= −x, y                     (2) 

in which 2 2

1 1 2 2( ) ( )r y x y x= − + − ; 1y  and 2y  

are the coordinates of source point y ; 1x  and 2x  

are the coordinates of field point x . 

After Eq. (1) is discretized to numerically 

evaluate the boundary unknown variables, the 

potential at interior points can be obtained by 

using the following integral equation 
* *( ) ( ) ( ) ( ) ( )u u q d q u d

Γ Γ

= Γ − Γ∫ ∫y x, y x x, y x                                 

(3) 

In order to determine the flux at interior point 

y , taking derivative of Eq. (3) with respect to 
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the coordinates of the source point y  there is 

* *( ) ( , ) ( ) ( ) ( , )u u q d u q d
Γ Γ

∇ = ∇ Γ− ∇ Γ∫ ∫y y y
y x y x x x y   

                       (4) 

The Gaussian quadrature is directly used to 

calculate the integrals in discretized equations (3) 

and (4) in the conventional boundary element 

method. However, when the field point y  is very 

close to the integral element eΓ , the distance r  

between the field point y  and the source point 

x  tends to zero. This causes the integrals in the 

discretized equations (3) and (4) nearly singular. 

Therefore, the physical quantities at interior 

points cannot be calculated accurately by using 

the conventional Gaussian quadrature.  

The above mentioned nearly singular integrals 

can be expressed as the following generalized 

integrals: 

2

1

2 2

( ) ln

1
( )

I r d

I d
r α

ψ

ψ

Γ

Γ

 = Γ




= Γ


∫

∫

x

x

                                                   

(5) 

where 0α >>>> , ( )ψ x  is a well-behaved function 

including the Jacobian, the shape functions and 

ones which arise from taking the derivative of 

the integral kernels. Under such a circumstance, 

either a very fine mesh with massive integration 

points or a special integration technique needs to 

be adopted. In the last two decades, numerous 

research works have been published on this 

subject in the BEM literature. Most of the work 

has been focused on the numerical approaches, 

such as subdivisions of the element of 

integration, adaptive integration schemes, exact 

integration methods and so on. However, most of 

these earlier methods are either inefficient or can 

not provide accurate results when the interior 

points are very close to the boundary. In this 

paper, a very efficient transformation method is 

employed to calculate the nearly singular 

integrals in the discretized equations (3) and (4). 

Consequently, the accurate results of the 

physical quantities at interior points very close to 

the boundary are obtained. 

 

 

3 �early singular integrals under 

linear elements 

 
The quintessence of the BEM is to discretize the 

boundary into a finite number of segments, not 

necessarily equal, which are called boundary 

elements. Two approximations are made over 

each of these elements. One is about the 

geometry of the boundary, while the other has to 

do with the variation of the unknown boundary 

quantity over the element. In this section, the 

geometry segment is modeled by a continuous 

linear element.  

    Assuming 1 1 1 2 2 2

1 2 1 2
( , ), ( , )x x x x= =x x  are the  

two extreme points of the linear element 
j

Γ , 

then the element 
j

Γ  can be expressed  

as 
1 2

1 2
( ) ( ) ( ) , [ 1,1], 1, 2

k k k
x � x � x kξ ξ ξ ξ= + ∈ − =        

                                                              (6) 

where 
1 2
( ) (1 ) / 2, ( ) (1 ) / 2� �ξ ξ ξ ξ= − = + . 

   Letting 2 1 2 1
, ( ) / 2

i i i i i i i
s x x w y x x= − = − + ， one 

has 

                   
,

2
i i i i i

i

r y x s w
r

r r r

ξ− +

= = =     

                                                              (7) 
22 2 2 2 2

[( ) ]
i i

r r r A B E L dξ ξ ξ η= − = = + + = − +x y

                                                              (8) 

Where 

/ 4, , , / 2 ,i i i i i iA s s B s w E ww B Aη= = = = −  

2, 4 / 2L A d AE B A= = − . 

With the aid of the Eq. (8), the nearly singular 

integrals in Eq. (5) can be rewritten as 

{ }

{ }

1 1
2 2 2

1
1 1

1

2 2 2 21

( ) ln[( ) ] ln ( )

( )

[( ) ]

I g d d L g d

g
I d

L d

η

η

η

α α
η

ξ ξ η ξ ξ ξ

ξ
ξ

ξ η

− −

−

= + − + +

= +

− +







∫ ∫ ∫

∫ ∫
                                                                          (9) 

where ( )g ⋅  is a regular function that consists of 

shape function and Jacobian. 
 

 

4 �early singular integrals under 

curvilinear elements 
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The linear element is not an ideal one as it can 

not approximate with sufficient accuracy for the 

geometry of curvilinear boundaries. For this 

reason, it is recommended to use higher order 

elements, namely, elements that approximate 

geometry and boundary quantities by higher 

order interpolation polynomials—usually of 

second order. In this paper, the geometry 

segment is modeled by a continuous parabolic 

element, which has three knots, two of which are 

placed at the extreme ends and the third 

somewhere in-between, usually at the mid-point. 

Therefore the boundary geometry is 

approximated by a continuous piecewise 

parabolic curve. On the other hand, the 

distribution of the boundary quantity on each of 

these elements is depicted by a discontinuous 

quadratic element, three nodes of which are 

located away from the endpoints. 

 

Assume 1 1 1

1 2( , )x x=x and 2 2 2

1 2( , )x x=x  are the two 

extreme points of the segment jΓ , and 

3 3 3

1 2( , )x x=x  is in-between one. Then the element 

jΓ  can be expressed as follows 

1 2 3

1 2 3( ) ( ) ( ) ( ) , 1,2k k k kx � x � x � x kξ ξ ξ ξ= + + =              

(10) 

where 

1 2 3( ) ( 1) / 2, ( ) ( 1) / 2, ( ) (1 )(1 ) 1 1� � �ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= − = + = − + − ≤ ≤，
. 

As shown in Fig. 1, the minimum distance d  

from the field point 1 2( , )y y=y  to the boundary 

element jΓ  is defined as the length of p
yx , 

which is perpendicular to the tangential line t  

and through the projection point p
x . Letting 

η ∈(-1,1)  is the local coordinate of the 

projection point p
x , i.e. 1 2( ( ), ( ))p x xη η=x . Then 

η  is the real root of the following equation 

( )( ( ) ) 0k k kx x yη η′ − =                                   (11) 

If the field point y  sufficiently approaches the 

boundary, then Eq. (11) has a unique real root. In 

fact, setting 

( ) ( )( ( ) )k k kF x x yη η η′= −                                  (12) 

2( ) ( ) ( ) ( )( ( ) ) ( ) ( )( ( ) )k k k k k k k kF x x x x y J x x yη η η η η η η η′ ′ ′ ′′ ′′= + − = + −

                                                                              (13) 

where ( )J η  is the Jacobian of the transformation 

from parabolic element to the line interval [ 1,1]− . 

Therefore, when the field point y  is sufficiently 

close to the element, we explicitly have 

( ) 0F η′ > . 

 
 

The unique real root of Eq. (11) can be 

evaluated numerically by using the Newton’s 

method or computed exactly by adopting the 

algebraic root formulas of 3-th algebraic 

equations. In this paper, two ways are all tested, 

and practical applications show that both ways 

can be used to obtain desired results. 

Furthermore, the Newton’s method is more 

simple and effective, especially if the initial 

approximation is properly chosen and if we can 

do this, only two or three iterations are sufficient 

to approximate the real root. For the root formula 

of 3-th algebraic equations, let’s consider the 

following algebraic equation 
 

3 2 0ax bx cx d+ + + =+ + + =+ + + =+ + + =                                                  

(14) 

if there exists only one real root, the analytical 

solution can be expressed as follows 
1

2 2 3

3 2 2

2( ) 1
cos arccos

3 33 2

b s t s
x

a a s t

 +
= − +  

+ 
                                

(15) 

where 3 22 9 27s b acb a d= − + − , 

2 3 3 2 24(3 ) ( 2 9 27 )t ac b b acb a d= − − − − + − . 

 

Using the procedures described above, we can 

obtain the value of the real root η . Thus, we have 
p p

k k k k k kx y x x x y− = − + − =  

1 3 2 2 11
( ) ( 2 )( ) ( ) ( )

2
k k k k k k kx x x x x x yξ η ξ η η − − + + + − + − 

                                                                             (16) 
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By using Eq. (16), the distance square 2r  

between the field point y  and the source point 

( )ξx  can be written as  
2 2 2( ) ( )( ) ( ) ( )k k k kr x y x y g dξ ξ η ξ= − − = − +                                    

(17) 

where 2 ( ( ) )( ( ) )k k k kd x y x yη η= − − ,  

1 3 2 1 3 2 21
( ) ( 2 )( 2 )( )

4
k k k k k k

g x x x x x xξ ξ η= − + − + +

1 3 2 2 1

2 1 3 2

1
( 2 )( )( )

2

( 2 ) ( ( ) ),  

k k k k k

k k k k k

x x x x x

h x x x x y

ξ η

η

+ − + − +

+ + − + −

2 1 2 11
  where ( )( ).

2
k k k k

h x x x x= − −  

Apparently, there is ( ) 0g ξ ≥ . 

 

By some simple deductions, the nearly singular 

integrals in Eq. (5) can be reduced to the 

following two types 
1

2 2

1
1

1

2
1 2 2

{ } ( ) ln ( ) ( )

( )
{ }

( ) ( )

I f g d d

f
I d

g d

η

η

η

α
η

ξ ξ η ξ ξ

ξ
ξ

ξ η ξ

−

−

  = + − + 



= +
 − +  

∫ ∫

∫ ∫
                                

(18) 

where ( )f ⋅  is a regular function that consists of 

shape function, Jacobian and ones which arise 

from taking the derivative of the integral kernels. 
 

5 The transformation for nearly 

singular integrals 

 

In Eqs. (9) and (18), if d  is very small, the above 

integrals would present various orders of near 

singularity. The key to achieving high accuracy 

is to find an method to calculate these integrals 

accurately for a small value of d .  

The integrals 
1
I  and 

2
I  in Eqs. (9) can be 

reduced to the following integrals by simple 

deduction 

2 2

1
0

2 2 20

( ) ln( )

( )

( )

A

A

g x x d dx

g x
dx

x d

I

I
α

= +

=

+







∫

∫
                     (19) 

where A  is a constant which is possibly with 

different values in different element integrals; 

( )g ⋅  is a regular function that consists of shape 

function, Jacobian and ones which arise from 

taking the derivative of the integral kernels. 

Introducing the following nonlinear 

transformation 
(1 )

( 1), [ 1,1]
k t

x d e t
+

= − ∈ −                                     (20) 

where ln 1k A d= + . 

Substituting (20) into (19), then the integrals 
1
I  

and 
2
I  can be rewritten as follows 

1 1
2 (1 ) (1 ) 2 (1 )

1
1 1

(1 )
1

1 2

2 (1 ) 21

( ) ln ( ) ln[( 1) 1]

( )

[( 1) 1]

k t k t k t

k t

k t

dk g t d e dt dk g t e e dt

g t e
d k dt

e

I

I α

α

+ + +

− −

+

−

+
−

= + − +

=

− +







∫ ∫

∫
                                                                                    (21) 

We can observe that (1 ) 2
( 1) 1 1

k t
e

+

− + ≥ . Thus, 

the integrand is fully regular even if the value of 

d  is very small.  

Similarly, by some simple deductions, the 

integrals in Eqs. (18) can be reduced to the 

following forms 

( )

( )

2 2

1
0

2
0 2 2

( ) ln ( )

( )

( )

A

A

I f g d d

f
I d

g d
α

ξ ξ ξ ξ

ξ
ξ

ξ ξ


= +




=
+

∫

∫
                (22) 

where ( )f ⋅  is a regular function that consists of 

shape function, Jacobian and ones which arise 

from taking the derivative of the integral kernels.  

Substituting the nonlinear transformation (20) 

into Eqs. (22), then we obtain the following 

equations

( )

( )

1
(1 ) (1 )

1
1

1
(1 ) 2 (1 )

1

1
(1 )

2 2 1 1 (1 ) 2

2 ln ( ( 1))

( )ln ( 1) ( ) 1

1 ( )

( 1) ( ) 1

k t k t

k t k t

k t

k t

I kd d f d e e dt

kd f e g e dt

f
I e dt

d e g
αα

ξ ξ

ξ

ξ

+ +

−

+ +

−

+

−
− +




= −


+ − +



=


− +

∫

∫

∫

  (23) 

We can see that the denominator always 
(1 ) 2( 1) ( ) 1 1k te g t+

− + ≥  if ( ) 0g x >  is a regular 

function as assumed above. Thus, the integrand 

is fully regular even if the value of d  is very 

small.  

By following the procedures described above, 

the near singularity of the boundary integrals has 

been fully regularized even if the interior point 

very close to the boundary need to be calculated. 

The final integral formulations are obtained as 
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shown in Eqs. (21) and (23), which can now be 

computed straightforward by using the standard 

Gaussian quadrature. 

 

6 �umerical examples  
 

To verify the method developed above, two 

simplified test cases are studied in which BEM 

solutions are compared with the exact solutions. 
 

 
 

Example 1. A prism with square section and 

infinite length is considered. The prescribed 

temperature or flux boundary conditions are 

shown in Fig. 2. From the theory of heat transfer, 

the analytical temperature solutions are given by 

1 2 1 216 12 12 9u x x x x= − − + .  

To solve this problem numerically, the 

boundary is discretized by 12 uniform linear 

boundary elements with 24 discontinuous 

interpolation points. Both the temperatures and 

the fluxes at interior points are calculated 

respectively by using the conventional method 

and the method proposed in this paper. 

Fig. 3 presents the temperature results at the 

interior point (0.5, )a . These points are gradually 

close to the boundary and the conventional BEM 

cannot be applied to obtain the accurate results. 

We can see that when the computed points are 

not too close to the boundary, both the 

conventional method and the present method are 

effective and can obtain excellent results, but the 

results of the conventional method become less 

satisfactory as the computed points get 

increasingly close to the boundary, i.e., when the 

distance from the internal point to the boundary 

is equal or less 1.0E-2. In contrast, the results of 

the proposed method are steady and satisfactory 

even when the computed points are very close to 

the boundary. 

 
 

Table 1 Results of fluxes 1/T x∂ ∂  at the point on  

the line 2 1 07x E= −  

 
 

Table 1 lists the results of fluxes at interior 

points on the line 2 1 07x E= − . These points are 

very close to the boundary. It is obvious that the 

results calculated by using the conventional 

BEM are out of true with the relative errors 

already greater than 50%. On the other hand, the 

results of the proposed algorithm are very 

consistent with the exact solutions with the 

largest relative error less than 0.1%.  

Table 2 lists the results of fluxes at interior 

points on the line 1 0.1x = . These points are 

increasingly close to the boundary. It can be seen 

that the conventional method and the proposed 

method are both efficient when 2 0.9x ≤ , but the 

conventional method fails when the internal 

point becomes close to the boundary. However, 

the results obtained by using the proposed 

algorithm are excellently consistent with the 

analytical solutions even in the very unfavorable 

computational condition 2 0.99999999x = . The 

relative errors are also given in Table 2, from 
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which we can see that the accuracy of the results 

of the proposed method are high and steady even 

when the computed points are very close to the 

boundary, while the relative errors of the 

conventional method are relatively too large to 

be accepted with the computed points 

increasingly close to the boundary.  

With the increase of the discretized boundary 

elements, the relative errors of the computed 

temperatures at the interior point (0.5, 1E-9) are 

shown in Fig. 4, from which we can observe that 

the convergence speeds of the computed 

temperatures are still fast when the distance of 

the computed point to the boundary reaches 

1.0E-9. 

 
 
Table 2 Results of fluxes 1/T x∂ ∂  at the point on  

the line 1 0.1x =  

 
 
Example 2. As shown in Fig. 5, this example is 

concern with a cylinder with infinite length 

whose inner and outer radii are 1 and 2, 

respectively. The corresponding boundary 

conditions are also described in Fig. 5. 

 
 
Six and twelve quadratic elements are divided on 

the inner and outer surfaces, and four quadratic 

elements are divided on the two short straight 

boundaries. Thus the total number of the 

quadratic elements is 22.  
 

Table 3 Results of fluxes 1/T x∂ ∂  at interior  

point near the inner boundary 

 
 

Table 4 Results of fluxes 1/T x∂ ∂  at interior 

point near the outer boundary 

 
 

The calculated results of the fluxes at internal 

points, on the line 2 0x = , close to the inner 

boundary and the outer boundary are shown in 

Table 3 and Table 4, respectively. Table 3 and 

Table 4 show that the results obtained by using 

the conventional BEM are out of true with the 

relative errors already greater than 80% when the 

distance between the interior point and the 

boundary less than 0.1. On the other hand, the 

results of the proposed algorithm are very 

consistent with the exact solutions with the 

largest error less than 0.4% even when the 
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distance of the interior point to the boundary 

reaches 1.0E-7. 

 

In addition, with the increase of the discretized 

boundary elements, the relative errors of the 

computed fluxes at the interior point 

(1.000001,0)  and (1.999999,0)  are shown in 

Fig. 6, from which we can observe that the 

convergence speeds of the computed fluxes are 

still fast when the distance of the computed point 

to the boundary reaches 1.0E-6. 

 

 

7 Conclusions  

 
In this paper, a general nonlinear transformation, 

based on the direct regularized boundary element 

method, is adopted and applied to calculating the 

potential and its derivative at the interior points 

very close to the boundary in 2D potential 

problems. With the proposed transformation, the 

near singularities of the nearly singular integrals 

can be remove or damp out efficiently, and fairly 

high accuracy of numerical results is achieved 

for the nearly singular integrals with stand Gauss 

quadrature procedures. The proposed 

transformation is available for linear and 

quadratic elements. Compared with the 

conventional BEM, the present algorithm can be 

used to accurately compute the physical 

quantities at interior points much closer to the 

boundary. Numerical examples of the potential 

problem are presented to test the proposed 

algorithm, with which excellent results are 

obtained. The results verify the feasibility and 

the effectiveness of the present method, and the 

boundary layer effect has been overcome 

successfully with the proposed transformation in 

the applications. The present method is also 

general and can be applied to other problems in 

BEM (such as thin-walled structures), which will 

be discussed later. 
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